

TE-VSC contribution to WP4: Vacuum aspects & procurement status

EDMS 2954141

V. Baglin, G. Bregliozzi, C. Pasquino, I. Lopez Cuevas on behalf of TE-VSC contribution to WP4

13th HL-LHC Collaboration Meeting, Vancouver, Canada, 25-28th September 2023

https://indico.cern.ch/event/1293138/overview

Outline

Overview Status of the series production Layout

1. Overview

TE-VSC to WP4 contributions

What is planned to be installed:

- SPS LSS6 : 1 X RFD LHC type cryomodule (EYETS 2023/2024);
- LHC LSS1 (L+R) : 4 (2 + 2) DQW cryomodules;
- LHC LSS5 (L+R) : 4 (2 + 2) RFD cryomodules;
- What is planned for production: 10 CC cryomodules
 - SPS LSS6 : 1 RFD (spare RFD);
 - LHC:
 - 5 (4 + 1 spare) DQW;
 - 5 (4 + 1 spare) RFD;

Canada-CERN RFD CMs

UK-CERN DQW CMs

TE-VSC to WP4 contributions

2. Status

Beam screens in non-crabbed line

Ongoing production

ltem	Needed	Spare	Produced	Comments
Beam screen	20	2	29	14 DQW, 15 RFD, 4 DQW aC coated 2 RFD aC delivered to UK
BS Bellows	20	2	9	63 bellows delivered by Q4 2023 (more spares for the bellows)2 delivered to UK

RFD beam screens in CERN storage

RFD type is1019 mm long, DQW type is 800 mm long

Plug-In-Modules & cold to warm transitions

Ongoing production

ltem	Needed	Spare	Produced	Comments
PIM & cold to	60	6	21	63 bellows delivered by Q4 2023
warm				(more spares for the bellows)
transitions				6 assemblies for RFD delivered to UK

PIMs and cold to warm transitions production

Extremity vacuum chambers

Production completed

Item	Needed	Spare	Produced	Comments
Ext. Vac. Ch	40	4	44	4 for RFD delivered to UK

DN80 Sector valves

Procurement completed

ltem	Needed	Spare	Produced	Comments
Sector valves	40	4	44	4 for RFD delivered to UK 5 for RFD delivered to TRIUMF

Sector valves in CERN stores

Sector valves at TRIUMF

Standard equipment

Production / procurement completed

11

Project & quality management

TE-VSC WP4 contributions EDMS node:

- TE-VSC production Plan
- Spending Profile
- Long Term Planning (WP4 planning)
- List of Assets
- Monthly reports

TE-VSC Budget follow-up

TE-VSC Production follow-up

TE-VSC Contribution to WP4 definition

3. Overview of Total Budget

Vacuum acceptance tests

Residual gas composition.

- The RGA scan must be normalized to the highest peaks (H₂ or H₂O) and the RGA is considered non-conform if one of the following levels is not respected (EDMS 2779658)
 - Highest gas not being H₂ or H₂O;
 - Mass of 40 (argon) > mass 39: indication presence of air;
 - Light hydrocarbon (27,29,35,37,39,41): at least 100 times lower the maximum peak;
 - Masses > 50: at least 1000 times lower the maximum peak;
 - Presence of mass 4 (He).

3. Layout

14

Inter-crab vacuum sector: integration

- Inter-tanks cryomodules design is at his final step
- Layout already in Optic LS3 V1.7 of Layout Data Base
- Engineering report will circulate soon for a final approval at the project level:
 - EDMS 2045739

inter-crab vacuum sector: components

- Stainless steel vacuum fired
- Copper Pated, NEG coated
- Special RF shield for pumping and valves ports

- Compact and easy installation or intervention
- Support integrated in the CRAB vessel (EDMS 2899757)

Electron cloud mitigation

 Crab cavities are not expected to contribute to the e-cloud: <u>EDMS 2663141</u>

Pressure profile in D2-Q4

- Simulations of the blue beam (B1) in LSS1R as a worst-case scenario:
 - LSS1: shorter inter-cavity sector
 - Outgoing beam from IP having more SR radiation from the D2 dipole
- Three configurations investigated:
 - All extremity vacuum chambers uncoated
 - Baseline: aC coating on the extremity vacuum chambers of the non-crabbed line only
 - All extremity vacuum chambers aC coated

Pressure profile in D2-Q4

Beam parameters:

- Energy: 7 TeV
- Intensity: 1.08A per beam (2748 bunches, 2.2×10¹¹ppb)

Baseline:

- $P@NCL = 2 \ 10^{-10} \ mbar$
- $P@CL = 3 \ 10^{-10} \ mbar$

All aC coated:

- $P@NCL = 2 \ 10^{-10} \text{ mbar}$
- $P@CL = 1.5 \ 10^{-10} \ mbar$
- Full conditioned machine:
 - $P@NCL = 4 \ 10^{-11} \ mbar$
 - $P@CL = 4 \ 10^{-11} \ mbar$

Thank you for your attention

Many thanks to all contributors

Inputs for simulation scenarios

Intensity ramp up scenario	Fully conditioned machine scenario
Electron flux only on uncoated parts: $2 \times 10^{15} \frac{e^{-}}{m s}$	No e ⁻ flux (SEY < ecloud threshold)
ESD yields conditioned by a factor 10 (after scrubbing run)	No ESD
Synchrotron radiation imported from Synrad+	Synchrotron radiation imported from Synrad+
PSD yields of materials as received	PSD yields conditioned (dose ≈10 ²³ photons/m)
 Beam parameters: Energy: 7 TeV Intensity: ≈1.08A per beam (2748 bunches, 2.2×10¹¹ppb) 	 Beam parameters: Energy: 7 TeV Intensity: ≈1.08A per beam (2748 bunches, 2.2×10¹¹ppb)

a-C coating for beam screen: Argon cleaning

Argon glow discharge surface preparation step before a-C coating

- Remove the native oxide layer
- Then build a new oxide layer with dry air to avoid presence of copper hydroxides, detrimental for the adhesion.

Beam screen

Plasma cleaning process

Plasma cleaning of cold bore

- Plasma cleaning of the cold bore using O2 glow discharge.
 - Generation of a plasma inside the cold bore, using a Ti wire in the centre of the cold bore as anode and grounding the cold bore, that acts as a cathode.
 - O radicals and O ions are formed and clean the cold bore surface.
 - The O ions acquire an energy of ~200 eV and cause some sputtering of the cold bore.
 - The cleaning effect is clearly seen by comparing the spectra before and after cleaning. (the cold bore was dirty)

23

• ONGOING:

 Finalization of a plasma cleaning process using a "remote plasma source": the plasma is generated in a source and then injected in the cold bore -> The main advantages are the lower energy of the ions (~50 eV, practically no sputtering), and the simplicity (do not require the assembly of an anode; easier to operate).