

LHC Longitudinal Studies

- Helga Timko, Theodoros Argyropoulos, Andy Butterworth, Rama Calaga, Nuria Catalan Lasheras, Konstantinos Iliakis, Birk Karlsen-Bæck, Ivan Karpov, Katarzyna Turaj, Michail Zampetakis CERN, SY-RF Group
 - 13th HL-LHC Collaboration Meeting, Vancouver, 28th September 2023

Longitudinal Studies for HL-LHC

Power limitations at injection

- Measurements, modelling & simulations
- Minimum voltage and losses in operation

Machine diagnostics

- Logging of injection power transients
- Longitudinal machine-learning tomography

Longitudinal beam stability

Refining the threshold of single-bunch loss of Landau damping

Longitudinal impedance model

• Refining the LHC & HL-LHC impedance model

Longitudinal Studies for HL-LHC

Power limitations at injection

- Measurements, modelling & simulations lacksquare
- Minimum voltage and losses in operation

Machine diagnostics

- Logging of injection power transients
- Longitudinal machine-learning tomography

Longitudinal beam stability

Refining the threshold of single-bunch loss of Landau damping

Longitudinal impedance model

Refining the LHC & HL-LHC impedance model

Estimates based on 2018 operation [1]

- Two scenarios for Run 3 with 'small' and 'large' longitudinal emittance
- The minimum voltage was scaled from 2018 experience with large SPS-LHC energy mismatch [2]

	Bunch par	ameters	SPS	LHC parameters					
When	Bunch intensity	Bunch emittance	Momentum spread	Main RF voltage	Bunch length	Optimum detuning	Optimum QL	Average power	
2018	1.4x10 ¹¹ p/b	0.40 eVs	3.74x10-4	4 MV	1.22 ns	-12.1 kHz	16.6 k	84 kW	
Run 3	1.8x10¹¹ p/b	0.49 eVs	4.59x10-4	6 MV	1.22 ns	-10.4 kHz	19.4 k	161 kW	
Run 3	1.8x10¹¹ p/b	0.57 eVs	4.95x10 ⁻⁴	7 MV	1.28 ns	-8.6kHz	23.3 k	183 kW	
HL-LHC	2.3x1011 p/b	0.57 eVs	5.32x10 ⁻⁴	7.8 MV	1.24 ns	-10.1 kHz	19.9 k	265 kW	

Estimated injection voltage and average power in the half-detuning scheme from [1]

[1] H. Timko: 'LHC RF: possible limitations and planned Run 3 studies', LHC Performance Workshop 2022. [2] L. Medina et al., 'Optimal injection voltage in the LHC', NIMA, 1039, 166994, 2022.

Predictions based on 2018

Estimates based on 2022 MDs

- MDs with 1.8x10¹¹ p/b and 4 MV capture voltage showed that there is still margin in power
 - First-turn transients did not deteriorate the beam
 - This beam was not ramped and losses at start of the ramp are unknown
 - Relies mainly on eliminating the first-turn transients by pre-detuning the cavities
- Concluded that we can push the intensity to 2.0x10¹¹ p/b

Power measurements at injection [3]

Although the first turn transients are close to saturation, there is some margin in peak power in the halfdetuning scheme to increase the intensity

[3] T. Argyropoulos et al.: 'RF power at injection & longitudinal tomography', LHC Chamonix Workshop 2023.

Predictions based on 2022

Reducing first-turn transients

- Pre-detuning the cavities close to the optimum half-detuning value
- Equalises the maximum power between first turn and steady state
- Put into operation in May 2023 [4]
 - Fine-tuning to be finished in 2024

Top: turn-by-turn peak power with and without pre-detuning Bottom: optimum detuning phase in simulations and measurement Courtesy of B. E. Karlsen-Bæck

[4] B. E. Karlsen-Baeck et al., 'Effects of cavity pre-detuning on RF power transients at injection into the LHC', to be published, Proc. HB2023, 2023.

CÉRN

 $ilde{\phi}_{\Delta\omega}$ [deg.]

MD results from 2023

Can indeed capture 2.0x10¹¹ p/b

- Injection voltage of 4-7 MV
 - Standard beam of 72b trains
- With 7 MV, close to the saturation limit for most klystrons
 - Required fine-adjustment of cavity frequency and Q_L
 - Little operational margin remaining
- Losses still have to analysed
 - Correlating abort gap population with start-of-ramp losses
 - To determine the minimum capture voltage

	Bunch parameters		SPS	LHC parameters					
When	Bunch intensity	Bunch emittance	Momentum spread	Main RF voltage	Bunch length	Optimum detuning	Optimum QL	Average power	
2023	2.0x10 ¹¹ p/b	0.55 eVs	5.09x10-4	7 MV	1.25 ns	-9.7 kHz	20.6 k	206 kW	

Maximum voltage and power maintainable with 2.0x10¹¹ p/b

In the theoretical best case, power transients reach 230-310 kW for 206 kW average power

Operational experience in 2023

Physics fills with 1.6x10¹¹ p/b

- Hybrid beam: 56b 8b4e + 3-5 trains of 36b BCMS
- Improved SPS-LHC energy matching
 - Small blow-up due to filamentation (± 50 ps)
- No significant losses at the start of ramp

Bunch length

- At injection: 1.08 ns (ML tomography)
- At the end of filling: 1.23 ns (beam quality monitor)
- Small emittance bunches arriving from SPS
- Capture voltage of 5 MV was sufficient
 - Probably still margin to reduce the capture voltage further (test next year)

SPS-LHC energy mismatch

SPS-LHC energy matching based on longitudinal machine-learning tomography 2023 range from -60...40 MeV 2018 ranged from -60...90 MeV

Beam-loading transients

Power transients in steady state, hybrid beam

- Analysed 13 physics fills with 1.6x10¹¹ p/b
- Transients could be optimised (theoretical peak power: 150 kW)

Peak power [kW]	C1	C2	C3	C4	C5	C6
Beam 1	223.3±4.9	221.9±2.8	229.1±4.2	192.5±3.8	207.5±3.9	237.9±6.8
Beam 2	189.0±5.4	198.0±5.3	220.1±4.8	182.6±4.1	160.8±3.4	209.3±5.2

Measured forward power in beam- and no-beam segments Left: B1 lines, right: B2 lines

Courtesy of B. E. Karlsen-Bæck

Simulated transients, hybrid beam

- Extrapolation to HL-LHC intensities
 - Theoretical peak power: ~330 kW

Simulated power for 2023 and HL-LHC intensities

The regulation margin assumes ±2.5 k in QL, ±3 dB in RFFB gain and ±5 % in OTFB gain

Courtesy of B. E. Karlsen-Bæck

Updated estimates for HL-LHC 350

Scaling based on operational experience with 1.6x10¹¹ p/b

- Hybrid beam, captured with 5 MV
 - Bunch length 1.08 ns at injection, 1.23 ns at end of flat bottom
 - No issues with beam losses at start of ramp
- What is the present system, as is, capable of?
 - MD experience with 2.0x10¹¹ p/b: 206 kW average, ~230-310 kW peak power
- Scaling to HL-LHC
 - Capture voltage: 7.9 MV (confirms 2018 estimates)
 - Power at capture: 267 kW average, with 330-340 kW optimised peak power

	Bunch parameters			SPS parameters		LHC parameters					
Scenario	Bunch intensity	Bunch emittance	Main RF voltage	4th harm. voltage	Momentum spread	Main RF voltage	Bunch length	Optimum detuning	Optimum Q∟	Average power	Peak po
2023 (hyb)	1.6x10¹¹ p/b	0.360.45 eVs	9.4 MV	1.7 MV	(4.244.68)x10 ⁻⁴	5 MV	1.081.23 ns	-11.811.0 kHz	17.018.3 k	119127 kW	160-230
2023 (max)	2.0x1011 p/b	0.55 eVs	9.4 MV	1.7 MV	5.09x10-4	7 MV	1.25 ns	-9.7 kHz	20.6k	206 kW	230-310
HL-LHC	2.3x1011 p/b	0.58 eVs	10 MV	2 MV	5.32x10-4	6.57.9 MV	1.251.32 ns	-11.69.9 kHz	17.320.3 k	212267 kW	320±15

Simulated power for 2023 and HL-LHC intensities with regulation margin

Courtesy of B. E. Karlsen-Bæck

10

Maximum power and voltage available (1)

Maximum voltage obtained w/o beam

- Just without saturating yet
- $Q_L = 20$ k in all cases
- Folding in the beam-based voltage calibration results from a 2022
- If we trust the voltage more:

$$P = \frac{V^2}{8R/QQ_L}$$

- Expect to have 1.4 MV for 275 kW
- B1: 2/8 cavities, B2: 6/8 cavities OK
- 4B2 unphysical high power

Maximum power and voltage available (2)

Analysis

- The calculated power underperforms, especially on B1
 - What is the sensitivity to Q_L ?
- Q_L is calibrated yearly with an openloop response measurement
 - What is the error at injection values?
 - Sensitivity study to be performed
- Assuming an error of ±2.5 k
 - B1: 4/8 cavities, B2: 7/8 cavities OK
 - Could explain the excess on 4B2

Top left: Q_L vs coupler position, 2B2 2022 data Top right: open loop transfer function fit Bottom: RF power at saturation with Q_L errors

High-efficiency klystrons

Increasing the power reach of LHC klystrons

- Embedded into the LHC HV circuitry providing 500 kW DC
- The improved design allows to increase the efficiency from 60 $\% \rightarrow 70 \%$ [5]
 - RF power: 300 kW \rightarrow 350 kW
- Plug & play replacement of the current LHC klystrons
 - Compatible with high voltage, driver, water, and waveguide network

Staged replacement of present LHC klystrons

- 30 klystrons currently (16 operational + 14 spares)
- Prototype testing: 2024
- Production: 4 klystrons/year
 - 16 operational klystrons from 2026-2029
 - 14 spares from 2030-2033

[5] A. Beunas et al., 'Towards high efficiency klystrons for LHC', Talk at FCC workshop, Brussels, Belgium, 2019.

CERN

Redesigning LHC klystrons for higher efficiency

Summary of expectations

Global analysis [6]

- Managed to capture 2.0x10¹¹ p/b with up to 7 MV
- Several improvements have been implemented over 2022-2023
 - Pre-detuning removes the limitations from injection transients; focus now on peak power in steady state Continuous operational optimisation of SPS-LHC energy matching lowers blow-up at injection Operation with short bunches at 1.6x10¹¹ p/b allows to capture with 5 MV
- Calibration measurements ongoing to verify margins in voltage and peak power
 - Voltage-based calibration shows a lack in voltage/power for 5/16 RF lines
- Projected HL-LHC peak power in the fully optimised (simulated) case is 320±15 kW
 - High-efficiency klystrons are a must, plus we will need to find a way to lower the figures

Next steps

CERN

- Year-end shutdown: implement the corrections from the beam-based voltage calibration
- 2024: repeat calibration measurements w/ and w/o beam
- Try reducing operational capture voltage to probe margins
- Prepare continuous adjustment of Q_{L} at injection

[6] H. Timko et al.: 'Advances on LHC RF power limitation studies at injection', Proc. HB'23 workshop, CERN, Geneva, Switzerland, 2023.

Longitudinal Studies for HL-LHC

Power limitations at injection

- Measurements, modelling & simulations
- Minimum voltage and losses in operation

Machine diagnostics

- Logging of injection power transients Longitudinal machine-learning tomography

Longitudinal beam stability

Refining the threshold of single-bunch loss of Landau damping

Longitudinal impedance model

Refining the LHC & HL-LHC impedance model

Adding operational observation tools to improve our knowledge about beam and RF parameters at injection

- Injection power transients
 - First 37 turns at injection
 - Limited by buffer size in VME cards
- Injection beam profiles
 - Batch-by-batch
 - Input for ML tomography

Injection transients with a 36-bunch batch of 1.8x10¹¹ p/b

Courtesy of B. Karlsen-Bæck

New logged signals

Machine-learning tomography: motivation

At injection: can now determine & log longitudinal beam parameters (e.g. injection errors, bunch length) and reconstruct the longitudinal phase space batch by batch, fill by fill [7,8]

- Tracking-based methods are too time consuming for online use, limited to single bunch
- Develop the ML model to:
 - Extract the desired beam parameters & 2D longitudinal beam distribution
 - Fast enough to allow for online use with multi-bunch beams

[7] T. Argyropoulos and G. Trad, 'Machine-learning tomography and longitudinal beam parameters at LHC injection', Talk at CERN, Geneva, Switzerland, 2022. [8] K. Iliakis, T. Argyropoulos, and G. Trad, 'Longitudinal tomography in the LHC', Talk at CERN, Geneva, Switzerland, 2023.

CERN

Machine-learning tomography: evaluation

 \bullet

Encoder evaluation (simulation data)

Ground truth available only in simulations •

	95 percentile
Phase Error	0.3 deg
Energy Error	1.56 MeV
Bunch Length	13.2 ps
Intensity	1.2e9 p
LHC VRF	0.05 MV
μ	0.2 a.u.
SPS VRF	0.16 MV

= max error of 95 % of the samples

Conclusion: excellent agreement in simulation data, good agreement in measurements On-going

- Deploy operationally, apply model online at every injection, store beam parameters in NXCALS
- Refine based on observations from real measurements

Decoder evaluation (measurement data)

- Visually indistinguishable
- Takes ~50 sec for a full tomography reconstruction
- For 48 bunches over 300 turns

Longitudinal Studies for HL-LHC

Power limitations at injection

- Measurements, modelling & simulations
- Minimum voltage and losses in operation

Machine diagnostics

- Logging of injection power transients
- Longitudinal machine-learning tomography

Longitudinal beam stability

Refining the threshold of single-bunch loss of Landau damping

Longitudinal impedance model

- Refining the LHC & HL-LHC impedance model

Theoretical model for multi-bunch stability

crucial to predicting stability for HL-LHC intensities

Possible scenarios

Threshold is defined by BB imp., slow instal

Threshold is defined by HOM imp., fast insta

Threshold affected by both imp., fast instal

[9] I. Karpov and E. Shaposhnikova, 'Impact of broadband impedance on longitudinal coupled-bunch instability threshold', Proc. IPAC'22, Bangkok, Thailand, 2022.

Since broadband impedance defines the threshold of the loss of Landau Damping [9], its knowledge is

	1	
ontribution of B impedance	+	Contribution of HOM impedance
$ImZ/k)_{eff}$ and f_c		$\propto (R)_{\rm sh}/f_r$

	BB	НОМ
bility	Strong	Weak
ability	Weak	Strong
oility	Strong	Strong

Beam-based measurements of LLD threshold

Different measurements were performed before LS2 [10]

- New proposal: use a phase kick in steady state, with beam phase loop open
 - This technique is already used in the PS and SPS [11]
 - A precise knowledge of the RF voltage is important (pre-requisite: beam-based calibration)
 - Residual oscillation amplitude contains information about the effective impedance [12] for LLD

[10] J. Esteban Müller, 'Longitudinal intensity effects in the CERN Large Hadron Collider', PhD thesis, 2016. [11] L. Intelisano, PhD project, ongoing. [12] I. Karpov, T. Argyropoulos, and E. Shaposhnikova, 'Thresholds for loss of Landau damping in longitudinal plane', Phys. Rev. Accel. Beams 24, 011002, (2021).

CÉRN

Sensitivity to the cut-off frequency

Connection to impedance studies

- Oscillation amplitude after the kick strongly depends on the effective cut-off frequency
- Scanning the parameter space allows to probe the longitudinal impedance

ÇÉRN

ends on the effective cut-off frequency the longitudinal impedance

> MELODY results for single broad-band impedance at LHC flat bottom

Longitudinal Studies for HL-LHC

Power limitations at injection

- Measurements, modelling & simulations
- Minimum voltage and losses in operation

Machine diagnostics

- Logging of injection power transients
- Longitudinal machine-learning tomography

Longitudinal beam stability

Refining the threshold of single-bunch loss of Landau damping

Longitudinal impedance model

Refining the LHC & HL-LHC impedance model

Present longitudinal impedance model

Full impedance: mostly interested in the imaginary part that drives instabilities

- Present model based on the model in the LHC Design Report and the refinement of it [13-15]
- Lower frequencies: resistive-wall behaviour $\sim \sqrt{\omega}$
- Higher frequencies: broad-band behaviour
- In the frequency range of the beam spectrum (~GHz), the impedance can be approximated as a broadband resonator with

 $Z/n \approx 0.07 \,\Omega$

[13] O. S. Bruning, et al., 'LHC Design Report Vol.1: The LHC Main Ring,' Tech. Rep. CERN-2004-003-V-16, CERN, Geneva, Switzerland, 2004. [14] Python Wake and Impedance Toolbox, https://gitlab.cern.ch/IRIS/pywit. [15] Impedance Wake 2D code, https://gitlab.cern.ch/IRIS/IW2D.

Present longitudinal LHC impedance model at flat bottom (red) and its broad-band resonator approximation

Courtesy of M. Zampetakis

Refining the impedance model

Refining the main contributors around 1 GHz

The original model has been constructed with the highest transverse contributors in mind, which might not be the same in the longitudinal plane

- Beam screen
 - Wire measurements ongoing to verify the beam screen model and characterise the behaviour around the cut-off frequency
- Design broad-band impedance
 - Investigating whether any device models have been updated
- **RF** cavities
 - Included the fundamental mode with RF feedback

Top: relative impedance contributors of the present model, in the longitudinal frequency range of interest Bottom: model with updated RF cavities

Courtesy of M. Zampetakis

Estimating the cut-off frequency

In the present model: a cut-off frequency of 50 GHz is assumed for the broad-band contributions

- In the longitudinal plane, led to artificial losses for injection simulations [16]
- Finding a reasonable cut-off frequency by probing the LLD threshold in measurements [17]

Measurement method tested in the LHC

- Apply a phase kick to single bunches and observe the resulting oscillations
- Three phase kick methods were compared:
 - Method 1: phase offset in the RF cavities \Rightarrow adiabatic phase shift
 - Method 2: phase offset in the synchronisation loop \Rightarrow step-like
 - Method 3: injection phase offset \Rightarrow mix of dipole/quadrupole oscillations
- Systematic measurements still to be performed

[16] L. Medina Medrano et al., 'Studies of longitudinal beam losses at LHC injection', Proc. IPAC'21, online, 2021. [17] I. Karpov: 'HL-LHC longitudinal stability', Talk at the 12th HL-LHC Collaboration meeting, Uppsala, Sweden, 2022.

Was chosen for transverse applications to stay conservative for instability predictions at high chromaticity

Courtesy of M. Zampetakis

Summary

Power limitations at injection

- Several improvements in 2023 (energy matching, pre-detuning)
- Captured 2.0x10¹¹ p/b bunch trains with 7 MV
- Will need high-efficiency klystrons and further improvements to achieve HL-LHC goals

Machine diagnostics

• New methods and signals available to measure beam and RF parameters at injection

Longitudinal beam stability

• A more accurate picture of Landau damping to predict longitudinal beam stability for HL-LHC

Longitudinal impedance model

• Improvements of the model are advancing on several fronts

(Thank you for your attention!

Backup slides

Training

Simulation scenario:

- Generate single bunch in SPS with varying:
 - a. Bunch length: 1.2 -- 1.8ns
 - bunch intensity: 1e10 -- 3e11 protons b.
 - LHC RF Voltage: 5 -- 12 MV C.
 - d. binomial distribution factor µ: 1 -- 5 a.u.
- Inject in LHC with varying: 2.
 - a. Phase error: -50 -- +50 degrees
 - b. energy error: -100 -- +100MeV
 - c. RF voltage: 3.0-9.2 MV
- Track for 500 turns, 1M particles, 100 profile bins.
- 4. Store bunch profiles, beam parameters, phase-space

Training samples:

- 20K in total, 1B input points
- Training 85%, Validation 7.5%, Testing 7.5%

4

ML Tomography, Model Architecture

Encoder input

connected layers

Longitudinal Tomography in the LHC

04/07/23

Decoder

Re-construct phase-space from beam parameters

