

HT measurements & outlook for HL-LHC

T. Levens, T. Lefevre, M. Krupa, A. Schlögelhofer (CERN SY-BI) S. Gibson, A. Arteche, M. Bossman (RHUL)

13th HL-LHC Collaboration Meeting, 25–28 September 2023, Vancouver

Introduction

- Existing high-bandwidth "Head-Tail" monitors installed in SPS + LHC
 - Measurement of transverse instabilities (LHC+SPS)
 - Measurement of crab-cavities (SPS)
- Limited in bandwidth & resolution by imperfections of pick-up, hybrid, cables and digitizers
- Existing LHC HT pick-ups generally at bad phase advances with respect to the future CC locations
 - Will need new pick-ups in optimal locations for CC diagnostics
 - Optimal locations studied by WP2...

HT diagnostic close to IP (APWL about 165 m from IP) i.e. beside the CC

Amplitude of the ideal $0.03\sigma_{x,y}$ leakage (phase advance & ATS independent)

Round optics H crossing IP1, V crossing IP5

β* (cm)	x <u>[IP1 L]</u> (μm)	x [IP1 <u>R] (u</u> m)	y [IP5 <u>L1 (u</u> m)	y [IP5 R] (μm)
15 (B1/B2)	30.4 /19.0	20.8/ 28.3	20. 7/28.4	30.3 /19.1
50 (B1/B2)	30.4 /18.8	20.8/ 28.3	20. 7/28.3	30.2 /19.0

Approx. 30um residual signal in all cases

Flat optics with CC

V crossing IP1, H crossing IP5

β* (cm)	y [IP1 L] (µm)	y [IP1 R] (µm)	x [IP5 L] (µm)	x [IP5 R] (µm)
18/7.5 (B1/B2)	20.8 / 28.3	30.4 /19.0	30.2 ,19.1	20.7/ 28.4

N.B. there is another flat optics with H, V crossing not shown here.

R. De Maria, S. Kostoglou, Special Joint HiLumi WP2/WP4/WP13 Meeting (https://indico.cern.ch/event/1044711/)

Head-Tail correction for CC

- Well phased CC results in a static intrabunch position offset at the HT pick-up
- Residual HT baseline signal from beam position offset plus systematic effects from hybrids, etc
- In SPS, baseline correction has been performed by taking a reference measurement in each cycle with the cavities un-phased (or off)
 - Works well in SPS but is not technique that is easy to implement in long fills in HL
 - Hoped to study stability of baseline during 2023 LHC run... maybe in 2024 ☺

Limits of traditional Head-Tail

- With optimal BPM locations (IP1/5) need to measure ~30um signal
 - Note: we are still missing a spec from WP2/WP4 on resolution requirement!
- Given existing HT, 30um corresponds to a ~3mV signal
- Baseline signals of ~20mV from hybrid imperfections
 - Current HT scopes have ~175uVrms noise for these signal levels
 - ~10% of signal level
- Reminder: no FRAS foreseen for these BPMs, can expect mm offset between beam and BPM electrical center!
 - Resulting in an additional ~200mV baseline from the beam offset
 - Current HT scopes have ~750uVrms noise for these signal levels
 - ~25% of signal level
- There is possibly some improvement from newer high-speed ADCs
 - But cannot expect an orders of magnitude improvement
- Electro-Optical (EO) techniques are under study for potential of further improvements

Electro-Optical BPMs

- Electro-Optical (EO) BPMs are being studied by WP13, in collaboration with RHUL, as a potential upgrade for higher bandwidth
 - Using birefringent crystals to modulate a laser signal in response to the bunch's EM field
 - Fiber coupled interferometer utilises the coherence of light to suppress common mode signal
 - Difference signal measured directly at photodetector

EO-BPM development history

- 1. 2016: Original SPS design using bulky free-space optics with a polariser/analyser
- 2. 2018: Installation of a compact interferometric design in SPS
- **3. 2021:** Optimised fully fibercoupled waveguide design
- 4. 2021: Beam tests in HiRadMat
- 5. 2022: Beam tests in CLEAR

© RHUL

EO-BPM tests summary

HiRadMat (2021)

- First single shot measurements with proton beams with in-air prototype and EO interferometer
- Mechanical translation of BPM body to allow "beam position" scans

CLEAR (2022)

- Test of time resolution with short (5ps) electron bunches, acquisition with 33 GHz oscilloscope and optical probe
- Preliminary results show time resolution is within the required <50ps specification.

2nd SPS EO-BPM test installation

(As presented at the 2022 meeting)

- HL-LHC EO-BPM prototype will be installed in SPS
 - Benefit from reuse of existing fiber infrastructure in SPS LSS4
- Beam tests planned during 2023.
 - Focusing on resolution and long-term stability of the EO-BPM
 - Benefit from possible 2023 crabcavity tests as a validation step
- Technical review at end of 2023.
 - Decision to install EO-BPMs or "traditional" strip-lines in HL-LHC

Integration of EO-BPM on SPS girder GHY.42101 (EN-ACE)

Issues with EO-BPM production

- Long lead time on ceramic washers and delays lead to delivery only in late 2022
- First brazing attempt: cracked ceramics
 - Minor adaptation of geometry of Kovar parts to improve the situation
- In addition, defects (pores) were found in Kovar stock at CERN
 - Again, long lead time of replacement material
- Successfully (?) brazed parts finished in mid-2023 and welded to the body...

EO-BPM prototype assembly

Issues with EO-BPM production (pt. 2)

- Last week: leaks were found on both buttons during vacuum acceptance tests
- Work ongoing now to understand the source of the leaks
 - Seems to be localised to brazing
- Additional parts are available:
 - 3 brazed buttons
 - 1 body
- Still some possibility for installation in YETS 23-24 but schedule is very tight
- Need to make a go/no-go decision soon for EO-BPM installation
 - Ideally should be done after the SPS tests
 - Any further installation delays make this difficult

Stripline for CC

- Design of a traditional stripline BPM is being done in parallel to the EO-BPM
- Backup in case the EO-BPM is not a viable option
- Space reservation and integration proceeding with this design as it has a longer length
 - Possibility to substitute it by a shorter EO-BPM
- More details in the next talk by M.Krupa

BI R&D into EO spectral decoding techniques

 Study in BI for FCC using EO intensity modulators with spectral decoding techniques using commercial EO-modulators

BI R&D into EO spectral decoding techniques

 Initial results at CLEAR show very high potential with pulse response < σ = 10 ps

See: A. Schlögelhofer, Optical Fibre Sensing at CERN (31st August 2023)

Applicability to HL-LHC

Initial proposal to test these techniques for HL-LHC:

Summary

- Traditional Head-Tail techniques on the limit for HL-LHC
 - Measurement of 30um residual crabbing is very challenging!
- EO-BPMs under development with RHUL as potential upgrade
 - Issues during manufacturing \rightarrow installation in SPS was not possible in YETS 22-23
 - Further vacuum leaks were recently discovered → not yet clear if installation in YETS 23-24 is possible
 - Any futher delay will make the go-no decision for installation in HL-LHC too late
- Novel new EO techniques are also being investigated to overcome limits of traditional HT
 - Allowing slower (higher resolution) ADCs for the same equivalent resolution
 - Possibility for continuous data acquisition (not possible with current HT)
 - Procurement of suitable laser for test with LHC beam conditions started
 - Early stage of R&D

Thank you...

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 951754 & 101004730.

