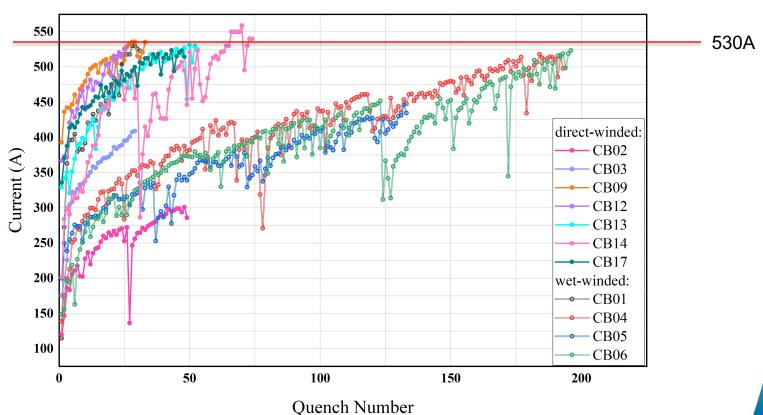


Status of CCT corrector construction and test

Yingzhe Wang

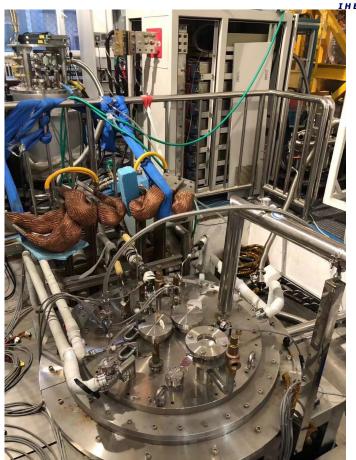
	XX7' 1' (1 1	-	C 1 (1 1 C (40 IZ)	*************************************			
Coil name	Winding method	Location	Coil stand-alone performance (4.2 K)	Magnet performance at 4.2 K			
MCBRD_CB01	Wet wind	CEDN	530 A	Both apertures reached ultimate current 422 A, and passed 4-			
MCBRD01 MCBRD_CB03	Direct wind	CERN	410 A (training stopped due to the availability of the test station)	hour stability test			
MCBRD_CB02	Direct wind	CERN	Failed to reach the design current				
MCBRD_CB04	Wet wind	CERN	422 A (training stopped due to the availability of the test station)	Both apertures reached ultimate current 422 A, and passed 49 hour stability test			
MCBRD_CB06	Wet wind		530 A	nour stability test			
MCBRD_CB09	Direct wind with new channel size	CEDN	530 A	Both apertures reached ultimate current 422 A, and passed			
MCBRD03 MCBRD_CB12	Direct wind with new channel size	CERN	526 A (25 quenches)	stability test			
MCBRD_CB14	Direct wind with new channel size	BAMA	530 A (30+34 quenches), put in quarantine				
MCBRD_CB13	Direct wind with new channel size	IMP	530 A (20+33 quenches)	Both apertures reached ultimate current 422 A, and other tests will be implemented in the middle of Oct.			
MCBRD04 MCBRD_CB17	Direct wind with new channel size		524 A (47 quenches)				
MCBRD_CB18	Direct wind with new channel size	IHEP	The stand-alone test of CB18 and CB19 will be implemented in the middle of Oct.	-			
MCBRD_CB19	Direct wind with new channel size	IHEP		-			
MCBRD_CB20	Direct wind with new channel size	BAMA	<u>Ready for VPI</u>				
MCBRD_CB10, 11, 15, 16		Shipped to CERN for fabrication					
	MCBRD_CB01 MCBRD_CB02 MCBRD_CB04 MCBRD_CB06 MCBRD_CB09 MCBRD_CB12 MCBRD_CB14 MCBRD_CB13 MCBRD_CB17 MCBRD_CB18 MCBRD_CB19 MCBRD_CB20	MCBRD_CB01 Wet wind MCBRD_CB02 Direct wind MCBRD_CB02 Direct wind MCBRD_CB04 Wet wind MCBRD_CB06 Wet wind MCBRD_CB09 Direct wind with new channel size MCBRD_CB12 Direct wind with new channel size MCBRD_CB14 Direct wind with new channel size MCBRD_CB15 Direct wind with new channel size MCBRD_CB16 Direct wind with new channel size MCBRD_CB17 Direct wind with new channel size MCBRD_CB18 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB20 Direct wind with new channel size	MCBRD_CB01 Wet wind MCBRD_CB03 Direct wind MCBRD_CB02 Direct wind MCBRD_CB04 Wet wind MCBRD_CB06 Wet wind MCBRD_CB09 Direct wind with new channel size MCBRD_CB12 Direct wind with new channel size MCBRD_CB14 Direct wind with new channel size MCBRD_CB15 Direct wind with new channel size MCBRD_CB16 Direct wind with new channel size MCBRD_CB17 Direct wind with new channel size MCBRD_CB18 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB20 BAMA	MCBRD_CB01 Wet wind MCBRD_CB03 Direct wind MCBRD_CB02 Direct wind MCBRD_CB04 Wet wind MCBRD_CB06 Wet wind MCBRD_CB09 Direct wind with new channel size MCBRD_CB12 Direct wind with new channel size MCBRD_CB13 Direct wind with new channel size MCBRD_CB16 Direct wind with new channel size MCBRD_CB17 Direct wind with new channel size MCBRD_CB18 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB10 Direct wind with new channel size MCBRD_CB11 Direct wind with new channel size MCBRD_CB12 Direct wind with new channel size MCBRD_CB13 Direct wind with new channel size MCBRD_CB16 Direct wind with new channel size MCBRD_CB17 Direct wind with new channel size MCBRD_CB18 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB19 Direct wind with new channel size MCBRD_CB20 Direct wind with new channel size			

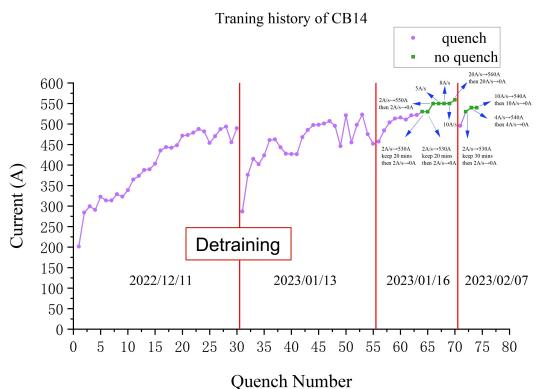

Stand-alone test results of all Apertures

Training History of the HL-LHC CCT Coils

Manufacture of CB14


Manufacture of CB14

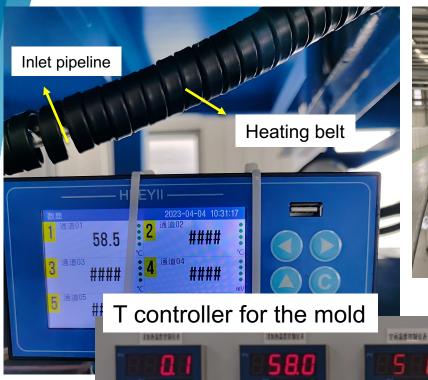

Stand-alone test of CB14 at IHEP



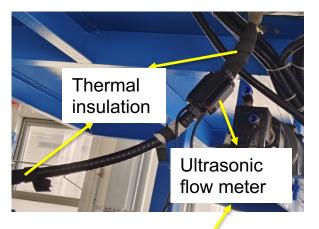
Stand-alone test of CB14

Changes:

- Changes of the operators.
- The inlet pipeline between mix tank and impregnation furnace (exposed in the air ~10°C) didn't use any thermal insulation.
- It takes a longer time (6~7h) of injection compared with CB09 ~ CB13 (3~4h).



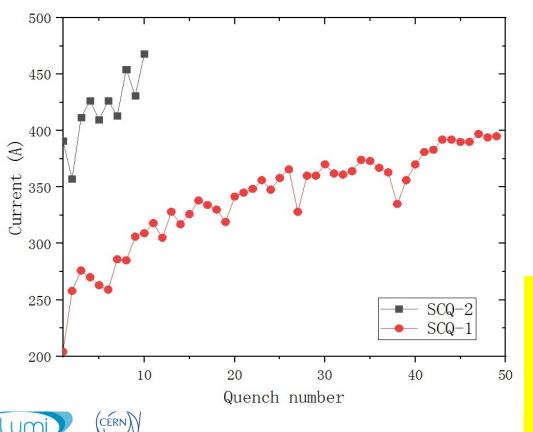
Corrective action of the VPI station

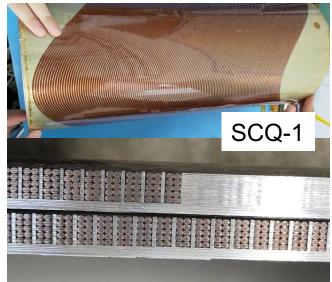


SHEEDERS

0000

Qualification of the VPI system

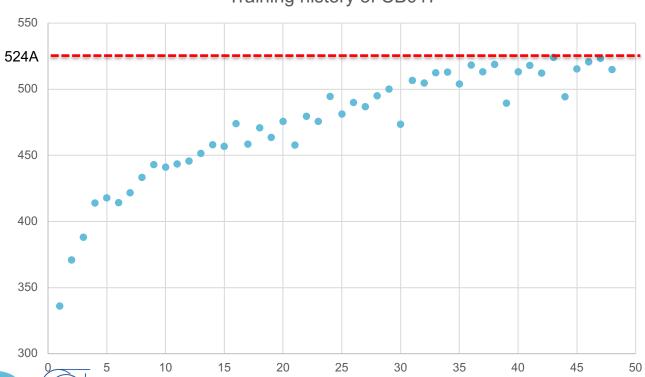

- We use a 0.5m quadrupole CCT magnet as a qualification of the VPI system after applying the corrective actions.
- This magnet will be tested this week.


Performance of SCQ-CCT coils

- Well impregnated magnet experienced SCQ-1 long training
- With the modified channel size, the training performance of SCQ-2 significantly improved.

VPI for CB17

Equipment	Object	Function	Voltage/ Current	Test Time	Resistance
Megger MIT 525	Coil to ext. tube	IR	512V/5.82nA	30 s	88.0 GΩ
	Coil to ext. tube	IR	1026V/10.4nA	30 s	98.4 GΩ
	Coil to ext. tube	IR	1544V/16.5nA	30 s	93.8 GΩ
	Coil to ext. tube	IR	2052V/22.3nA	30 s	92.2 GΩ
	Coil to ext. tube	IR	2557V/20.8nA	30 s	123.2 GΩ
	Coil to ext. tube	IR	3267V/32.1nA	30 s	101.9 GΩ

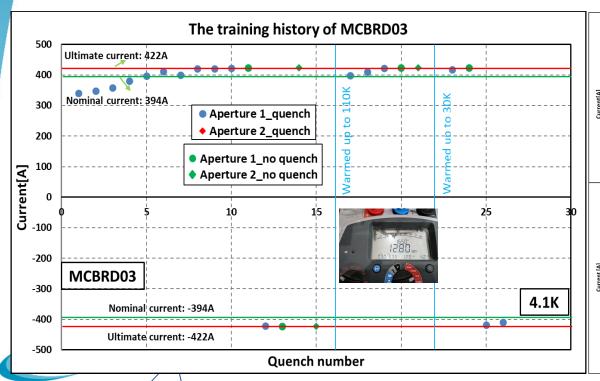

Stand-alone training of CB17

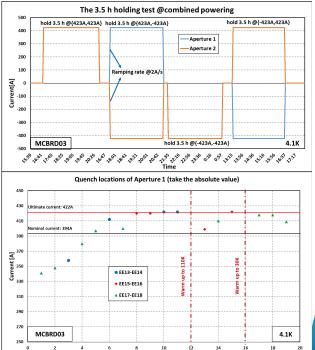
Training history of CB017

Manufacture of CB18



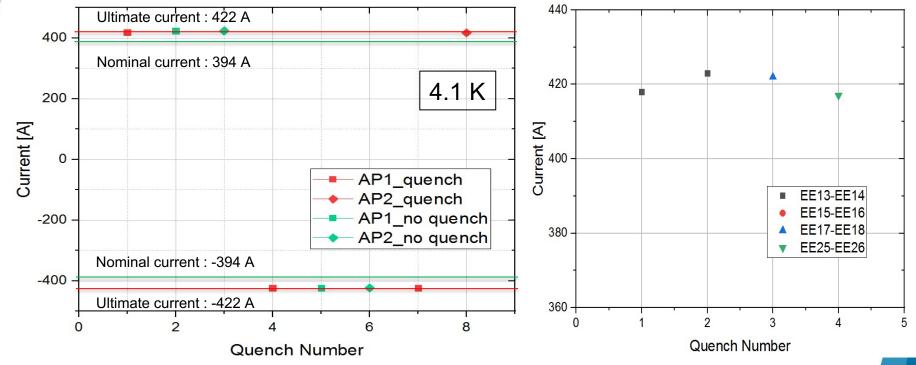
Manufacture of CB19


Training history of MCBRD03 (1st test)

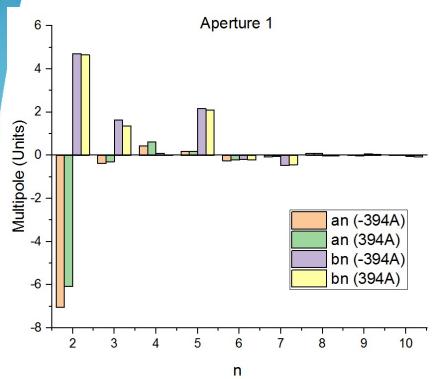


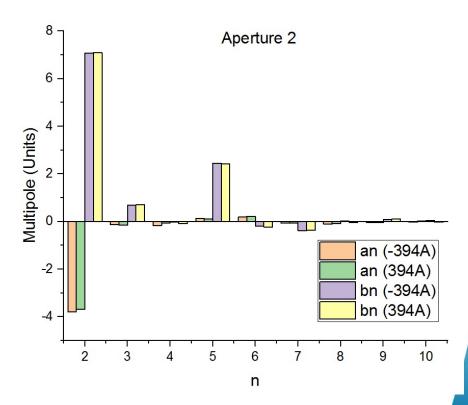
- AP1(CB12, 25 quenches 526A) reached ±422A after 11 quenches.
- AP2(CB09, 33 quenches 530A; after thermal cycle >500A) reached ±422A without any quenches.

Quench Number


Training history of MCBRD03 (2nd test)

Both Apertures reached the nominal current without any quenches after thermal cycle.

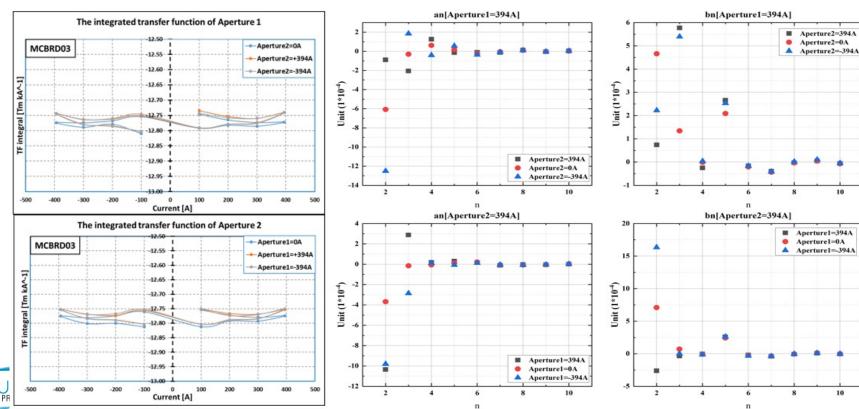




Training history and quench location of the 2nd test

Field Quality of MCBRD03

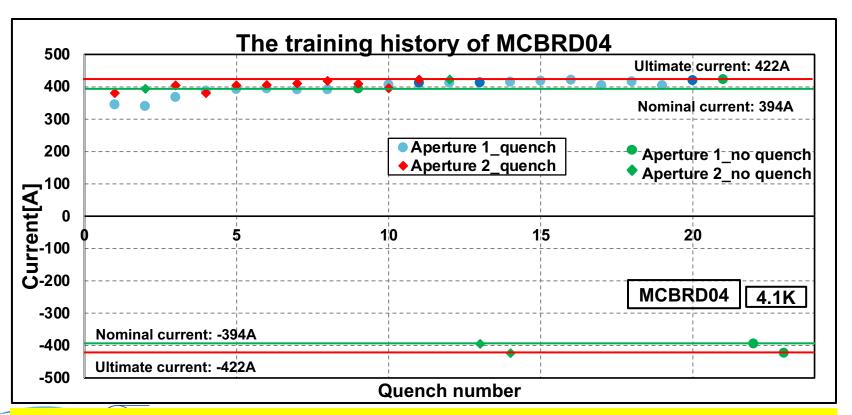
Multipoles (individual powering)

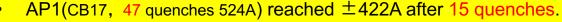


Field Quality of MCBRD03

Crosstalk-transfer function (combined powering)

Crosstalk- Multipoles (combined powering)




Training history of MCBRD04 (1st test)

• AP2(CB13, 53 quenches 530A) reached ±422A with 10 quenches.

Summary

- 4 series CCT magnets have been fabricated. All of them reached the ultimate current and passed the field quality test. The 5th magnet is under fabrication.
- The 4th magnet to be delivered in late Oct or early Nov. The 5th magnet to be assembled in Nov, tested and delivered in late Dec 2023 or early Jan 2024
- Production rate for the rest of series magnets: every 3 month per magnet
- Components for 2 CCT magnets have been shipped to CERN from IHEP, to verify the performance with components from China and CERN fabrication process.

Thanks for your attention

