

HIWP3 MCBRD production Status at CERN

MSC TE/MSC-SMT

On behalf of CERN-IHEP collaboration HL LHC week annual meeting

https://indico.cern.ch/event/1293138/

HL-LHC Collaboration Meeting Vancouver, Canada, 25-28 September 2023

Outline

- HL-WP3 MCBRD D2 orbit correctors scope
- MCBRD11,12 features, background
- Components QC tests
- Series electrical diagram
- MCBRD11,12 Series coils production, acceptance tests, setbacks & lessons
- Electrical insulation of Coils to floating formers (MPE-MSC)
- Update schedule
- Summary

HL-WP3 MCBRD D2 orbit correctors scope

- Recombination dipole orbit correctors as part of the HL-LHC Work Package 3 based on Canted Cosine Theta (CCT)
- The MCBRD magnets constitute the D2 orbit correctors (8 MCBRD series units + 4 spares) – IHEP responsible
- Completed MCBRDP4 @ CERN last 08/2022, tested successfully.
- Decision to start two series magnets MCBRD11,12 production at CERN 927 lab from Q1-2023 using IHEP components.

Parameters @ nominal current (7 TeV operation)	D2 MBRD	MCBRD
Material	Nb-Ti	Nb-Ti
# apertures	2	2
Distance between apertures [mm]	188	188
Aperture [mm]	105	105
Field [T]	4.50	2.60
Integrated field [T.m]	35	5
Nominal Current [kA]	12.328	0.394
Stored energy [MJ]	2.26	0.143

Series MCBRD features

- Last MCBRDP4 built in 2022 per the series magnet requirements. (EDMS 2051870), including recent series instrumentation consolidation.
- MCBRD11,12 follow the series manufacture features

Parameters	Unit	Value
Aperture size	mm	105
Magnetic length	m	1.93
Nominal field	Т	2.59
Nominal integrated field	T.m	5.0
Nominal current	А	394
Ultimate current	А	422
Short sample current at 1.9 K	А	767
Short sample current at 4.2 K	А	650
Loadline fraction at 1.9 K (WST)		53 / 47 %
Strand diameter	mm	0.825
Cu/no_Cu (WST wire)	-	1.95 (1.3)
Strand critical current at 4 T	А	700
Nominal strand current density	A/mm ²	737
Nominal superconductor current density	A/mm ²	1695
Nominal differential inductance per aperture	mH	970
Nominal stored energy per aperture	kJ	74.9
CCT skew angle	deg	30°
No. of turns per layer		365
Slot size in former (mm) (IHEP depth)		2.1 × 5.2 (4.9)
Number of CCT layers / Strands in channel		2/5x2

Background

- Since last MCBRDP4 prototype made at CERN and successful cold test as reported at last HL-LHC annual meeting, it was decided to support the IHEP series production activities and launch MCBRD11-12 fabrication at CERN.
- All components were provided by IHEP CN sub-suppliers (from Q1-2023).
 - 20 kms of WST insulated wires
 - 6 tons of iron laminations
 - 8+4 Alu formers, ext. tubes anodized

MCBRDP4 COLD TEST : Training summary

- Powering to 394 A nominal @ 4.5 K with 14 training guenches in apertures during CD1. (relatively fast training in comparison with magnets constructed so far)
- Powering at 422 A ultimate current @ 1.9 K without any guenches, before & after (... second cool down CD2.

CD1 - 4.5 K single aperture - training quenches CD1 - 1.9 K ultimate current single aperture - No guench CD1 – 1.9 K ultimate current combined powering - No auench

 After initial training at 4.5 K all cycles showed stable magnet performance, good memory at 1.9 K.

https://indico.cern.ch/event/1161569

A Foussal

CD2 - 4.5 K ultimate current single aperture - No guench CD2 - 1.9 K ultimate current single aperture - No quench CD2 – 1.9 K ultimate current combined powering - No quench

Excellent results:

WST sc insulated wires delivery (MCBRD11-12)

- Last delivery of single 20 kms UL of WST SC
 NbTi insulated wire by IHEP from Q4-2022.
- Original traveller shown several identified defects in the Pl insulation (65 microns thick), rechecked by IHEP, then at CERN.
- Standard repair procedure is applied at CERN on line.

出土土土合河川	宮县	米粉(由用向外)	冬注(测试由压为 2400 以)			
	/1. 3	小奴(田主四)	田住(例UU电压))2400V/			
wire inspection	serial number	Meters (from inside to outside)	Remarks (the test voltage is 2400V)			
	1	81	击穿/Electrical Breakdown			
	2	3762	原有标记/Original Mark			
	3	4642	原有标记/Original Mark			
	4	8492	原有标记/Original Mark			
	5	10752	击穿/Electrical Breakdown			
	6	12299	击穿/Electrical Breakdown			
	7	13462	原有标记/Original Mark			
	8	14856	原有标记/Original Mark			
	9	14869	击穿/Electrical Breakdown			
	10	14892	原有标记/Original Mark			
	11	16362	击穿/Electrical Breakdown			
	12	17118	击穿/Electrical Breakdown			
	13	17148	击穿/Electrical Breakdown			
	14	17162	原有标记/Original Mark			
	15	17572	原有标记/Original Mark			
	16	20062	击穿/Electrical Breakdown			
	17	20945 2页	击穿/Electrical Breakdown			
		20 - 24				

Fig. 1- Type of defects QC marked on SC supply UL

MCBRD CERN production status

WST wires Hi-pot re-test & respooling at CERN

- Spool splitting work at CERN, cleaning and rewind of 44 individual ULs spools (480 m each) involved Hi-pot test at 2 kV, revealing a few more defects than marked ones by IHEP supplier
- ✓ Further re-check of the Ic(B), metallographic tests to exclude risk of elongation during heavy spool respooling: no apparent Ic degradation. (NC 2790885)

IHEP SPO	OL manufa	acture	Fait du 27/09/22 au 30/09/22	lieu:Bat 103	Bat 927	fait le 05/1	0/2022	Test isolation électrique /Bat 927 Fait du 13/10/2 14/11/22		13/10/22 au	
technicien: F.Garnier P-A.Contat	Commenti La longueur des tour pas être inferier	aire: rets ne dolvent ur à 480m							first 0.8 meter and last 3 r	neters are not teste	d
Projet	N°Tourets	Longueur initial	Défaut et Remarque	Total	Respooling longueur utile	Longueur restant	Défaut visuel	HVC Test Isolation at 21	Remarque 👻	sens polyimide sur le palan	sens polyimide Machipe respool
MCBRD-AP15	2	704.00	Brulée 1199-1201, Début	1184.00	716m		Brulée: 0 à 3m Kapton:355m	2 x 10 uA fault	2 faults at the same location: 1m 10 uA	sens non bobinage	sens bobinage
MCBRD-AP15	11	485.00	Prélever 2,5m pour test le 11.11.22	5778.00	491m		Repère blanc: Brin déformé: 132m	Ok		sens non bobinage	sens bobinage
MCBRD-AP15	15	480.00		7698.00	486m		Kapton:156m Kapton:235m	Ok		sens non bobinage	sens bobinage
MCBRD-AP15	23	480.00		11695.00	486m		RAS	Ok		sens non bobinage	sens bobinage
MCBRD-AP15	25	480.00		12655.00	486m		Kapton:37m Repère blanc:248m	4 x 10 uA fault	4 faults 10uA at the same location: 233m	sens non bobinage	sens bobinage
MCBRD-AP15	29	480.00		14519.00	486m		RAS	Ok		sens non bobinage	sens bobinage
MCBRD-AP15	37	480.00		#REF!	485m		RAS	Ok		sens non bobinage	sens bobinage
MCBRD-AP15	42	480.00	Prélever 2m pour test le 11.11.22	#REF!	485m		Repère blanc: 14,8m	2x 10 4x 25 uA fault	1 fault 10uA 4 faults 25uA at the same location: 337.5m / 1 fault 10uA: 466m	sens non bobinage	sens bobinage

MCBRD CERN production status

CMM on IHEP AI6082 formers, tubes

CB10,11,15,16 Alu formers received (8+4) inspected, dimensional checks at CERN:

- White spots on anodised surface, uneven change of contrast (thickness variation)
- Inner/ Outer CB10-11 with mean depth 5.2 mm (different profile from CERN)
- Inner/ Outer CB15-16 with mean depth at 4.9 mm (IHEP baseline)
- Nominal 2.1 mm width oversized by extra 40 microns

Auxiliary pieces

 ✓ All GFRP pieces conform to IHEP drawings. Layer jump and connection boxes required slight outer radius correction to match insertion gaps.

HL-LHC collaboration meeting, Vancouver, Canada

MCBRD CERN production status

Winding activities

 Winding process still broadly manual followed past qualified applied procedure on prototypes.

 Validated on AP11, further setbacks on AP10,15, and AP16.

HL-LHC collaboration meeting, Vancouver , Canada

Aperture final preparation steps

 Components dimensions compatible with common series CCT assembly procedure

Series electrical diagram

- The applied electrical diagram was updated for series (EDMS <u>2817784/1.0</u>, used on MCBRD11, 12
 - No central VTs, no CLIQ lead, no T-sensors.
- All past MCBRD P03b, P04 prototypes & S02 were modified to comply with the series diagram.

IHEP confirmed diagram compliance of series from MBRD04 (V2)

EDMS 2817784/2.1

Coils winding production update schedule

Coil #ID number	Period
AP11	Jan – Feb. 2023
AP10	Mar. 2023 / Nov 23 - Jan 2024
AP16	Apr. 2023 / Oct Nov. 2023
AP15	July 2023 / on going - Oct. 2023

MCBRD12 AP11: Hi-pot & magnetic tests acceptance

✓ Hi-pot test passed <u>after</u> impregnation (PAI), ready on shelves (QC Hi pot test to formers at dry is mainly for check). AP11 insulation similar to majority of coils
 ✓ Magnetic test is conform

		Tes	t name	PAiWi	(Fiber glass+ Kapton + layer jump box)	PAWi	PBI	PAI	Final	
		C)ate	27/01/23	06/02/23	15/02/23	15/03/23	13/04/23		
		Opera	tor name	PA Contat	PA Contat	PA Contat	PA Contat	PA Contat		
		Tan	_њ [°С]	19.6	21	20.9	20.6	21.9		
		Humi	dity [%]	23.5	26.6	28	29	30.2		
		U[test]	time	measured	measured	measured	measured	measured	measured	nominal
	insulation resistance	[V]	[S]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]
	coil> former inner	500	30	59.9	25.7	22.10	Х	Х	Х	>1
	coil> former outer	500	30	Х	Х	15.51	Х	Х	Х	>1
	inner former> outer former	500	30	Х	Х	Х	Х	Х	Х	>1
	inner former> ext. tube	1000	30	Х	Х	Х	21.00	168.2	Х	>1
_	coil> inner former	500	30	Х	Х	Х	Х	Х	Х	>1
÷.	coil> inner former	1000	30	Х	Х	Х	220MΩ	17.89	Х	>1
- F	coil> ext. tube / ground	500	30	Х	Х	Х	20.90	Х	Х	>1
Ŕ	coil> ext. tube / ground	1000	30	Х	Х	Х	14.26	177.2		>1
ä	coil> ext. tube / ground	3250	30	Х	X	Х	Х	156.5		>1
e e e e e e e e e e e e e e e e e e e	CCS 308> all tubes	500	30	Х	Х	Х	1.563MΩ	Х	Х	>1
_	CCS 308> all tubes	1000	30	Х	Х	Х	Х	2540		>1
	CCS 355> all tubes	500	30	Х	Х	Х	521	Х	Х	>1
	CCS 355> all tubes	1000	30	Х	Х	Х	Х	>3T		>1
	coil> CCS 308	500	30	Х	Х	Х	1.45	Х	Х	>1
	coil> CCS 308	1000	30	Х	Х	Х	Х	2140		>1
	coil> CCS 355	500	30	Х	Х	Х	466	Х	Х	>1
	coil> CCS 355	1000	30	Х	X	Х	X	>3T		>1

MCBRD12 AP 10: Hi-pot tests acceptance

 AP-10 Hi-pot test shown unusual low insulation resistance level (10 kOhms) between coil and floating inner/outer former <u>After</u> impregnation (PAI) (EDMS NC 2907797).

		Test	name	PAiWi (Fiber glass)	After inner winding (Fiber glass+ Kapton + layer jump box)	(Fiber glass+ Kapton + layer jump box) outer former insertion	(Fiber glass+ Kapton + layer jump box) outer former insertion	PAWi	PAWi extra test for validation	PBI	PAI
		D	ate	02/12/22	06/12/202	08/12/22	12/12/22	19/12/22	31/03/23	12/04/23	01/06/23
		Operat	tor name	PA Contat	PA Contat	PA Contat	PA Contat	PA Contat	PA Contat	PA Contat	PA Contat
		Tam	ь [°С]	20.8	19.9	18.6	19.9	34.6	22.4	21.3	23.7
		Humid	dity [%]	29.5	31.5	28.6	24.8	20.5	41.9	38.7	48.5
	Inculation resistance	U[test]	time	measured	measured	measured	measured	measured	measured	measured	measured
	insulation resistance	[V]	[S]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]
	coil> former inner	500	30	13.61	20.4	Х	Х	14.15	Х	Х	Х
	coil> former outer	500	30	Х	Х	20.0	18.32	18.07	14.57MΩ	Х	Х
	inner former> outer former	500	30	Х	Х	14.32	17.67	Х	Х	Х	Х
	inner former> ext. tube	1000	30	Х	Х	Х	Х	Х	Х	13.61	139.4
~	coil> former inner	500	30	Х	Х	Х	Х	Х	Х	Х	Х
10	coil> former inner	1000	30	Х	Х	Х	Х	Х	Х	Brd 1025V /918MΩ	<10kΩ 61V
-AF	coil> ext. tube / ground	500	30	Х	Х	Х	Х	Х	Х	35.90	Х
Ó	coil> ext. tube / ground	1000	30	Х	Х	Х	Х	Х	Х	13.56	132.2
B	coil> ext. tube / ground	3250	30	Х	Х	Х	Х	Х	Х	Х	138.5
NO NO	CCS 351> all tubes	500	30	Soo no	vt ločalic	ntion and	froquon	v 7 moth	od X	152	Х
-	CCS 351> all tubes	1000	30		λι Ισςαποι		Jiequent	y z metn		Х	2380
	CCS 352> all tubes	500	30	X	1 č 1.	X	сі X.	X	Х	453	Х
	CCS 352> all tubes	1000	30	contirn	ned fault	value to	floatina f	ormer.	Х	Х	1928
	coil> CCS 351	500	30	X	Х	Х	Х	Х	Х	139	Х
	coil> CCS 351	1000	30	Note e	vcollont a	round in	sulation of	nt 140 Go	hmč	Х	1895
	coil> CCS 352	500	30		ACCIENT 9			11 140 00		684	Х
	coil> CCS 352	1000	30	Х	Х	Х	Х	Х	Х	Х	2230

Root cause analysis, AP10 - Actions

- □ *A1- Splicing* : AP10 suffered a first **unusual issue of broken strand during splicing** which required repair (NC 2818415)
- A2- Post impregnation : The insulation resistance coil to formers of few
 MOhms did not increase after impregnation (PAI) like most of past coils to Gohms.
 - □ Localization test on **direct fault** (~10kOhms, post impregnation), **close to interconnection box**, i.e not related to winding.
 - □ Plausible root cause is **loss of EE107 VTs worsening** during tube insertion.
 - □ As no feedback on possible fault time evolution, **decision not to be installed**.
- □ Recovery actions :
 - Production of new Alu formers, tube at CERN as replacement of AP10
 - Use left CERN stock of sc insulated wires. Parallel order of a 10 kms reserve SC insulated wire (enhanced bonding).

AP10 diagnostics

DC voltage fault localisation method allowed to locate direct short of 13 kΩ at about 6 cm from splicing box entrance, close to EE106 voltage tap. (EDMS 2918370, MPE report)

Z frequency measurement : insight from quality factor Q measurement
 vs. frequency showing clear deviations from the sane coils

HL-LHC collaboration meeting, Vancouver, Canada

MCBRD CERN production status

AP16 – Hi-pot test outcome- (winding stage)

- ✓ AP-16 Hi-pot test passed <u>during winding</u> (PAWI) but <u>not</u> before Impregnation (PBI).
- ✓ Following experience from AP10, decision not to further impregnate, investigate (on going) and rewind once root cause identified.

		Tes	t name	PAiWi	PAWi	РВІ	PBI_bis	PBI_bter
		[Date	29/03/23	30/04/23	26/06/23	27/06/23	28/06/23
		Opera	tor name	PA Contat				
		Tam	_{լի} [°C]	21.7	22.1	28.1	24.6	23.5
		Humi	dity [%]	28.2	52.45	45.3	51.5	42.3
	Insulation resistance		time	measured	measured	measured	measured	measured
		[V]	[s]	[GΩ]	[GΩ]	[GΩ]	[GΩ]	[GΩ]
	coil> former inner	500	30	33.0	2.43	Х	Х	Х
	coil> former outer	500	30	Х	7.91	Х	Х	Х
	inner former> outer former	500	30	Х	Х	Х	Х	Х
	inner former> ext. tube	1000	30	Х	Х	2.40	10.75	18.34
	coil> inner former	500	30	Х	Х	Х	2.43	2.38
	coil> inner former	1000	30	Х	Х	Brd 589V	Brd	Brd
9	coil> inner former	1000	Ramp 2kV/min	Х	Х	Х	Х	Brd 602V / 82.1MΩ
Ъ.	coil> outer former	500	30	Х	Х	Х	Х	2.94
4	coil> outer former	1000	30	Х	Х	Х	Х	Brd
BRI	coil> outer former	1000	Ramp 2kV/min	Х	Х	Х	Х	Brd 962V / 106.9MΩ
<u>i</u>	coil> ext. tube / ground	500	30	Х	Х	3.05	24.20	17.97
2	coil> ext. tube / ground	1000	30	Х	Х	4.05	21.80	29.70
	coil> ext. tube / ground	3250	30	Х	Х	Х	Х	Х

AP15 winding, root cause analysis, actions

- □ First decision to add bottom extra 0.17 mm tck fiber glass at bottom like IHEP (extra height and electrical barrier)
- □ Additional QC intermediate Hi-pot tests on the manual winding process (~ each 1/5th layer)
- **2/3** inner layer passed Hi-pot test, last section did not.
 - Root cause analysis report EDMS 2936245 pinpoints occurrence of damage at each tip (50 cm) under 1kV test
 - Only two bottom wires affected due to winding process, enhanced by low bonding of WST wire insulation (270 deg C cured, vs.400 degC on P4) and relative sharp former edge.

□ Actions:

- □ CERN 927 team developed an **improved tooling with** extra protection (next slide).
- □ Rewind started using SC CERN wires from stock with best curing temperature feature (310 degC).

QC analysis and improvement of winding

- □ New PI sheet travelling funnel as protection of bottom wires insulation (Fig.1)
- □ Progressive Hi-pot testing during winding to check any porous insulation (Fig.2)
- Occurrence of breakdowns at ramps to 1 kV at respective 600 V or 900 V due to
 Paschen conditions in either possible 65 microns or 110 microns wide air gap. (Fig.3)

Fig. 2 - on going progressive Hi-Pot test coil

Insulation resistance during inner winding

Fig. 1- New travelling PI protective sheet, 50 mic. thick guiding funnel

Fig. 2 - on going progressive Hi-Pot test coil to inner former on AP15 winding (09/2023)

Electrical insulation of floating formers to Coils (MPE-MSC)

- A- "Occurrence of one short coil to the formers on its own does not pose any problems for the operation unlike multiple shorts"
- What are acceptable double short values level of R1,R2?
- From quality assessment point of view, too weak insulation is a strong indication and can be a cause of rejection. (note no information on fatigue)

- B- Insulation faults to floating inner formers cannot be detected after magnet assembly. QC tests during manufacture like hi-pot test and Impedance measurements can intercept shorts at production.
- C- Indications of Capacitive effect from floating formers (~200 nF) during Hi-pot testing campaign of AP10: Charging from dV/dt hi-pot test history of several 10's volts. To be further discussed with MPE to analyse pro & con's, see if any measures to be taken. (inner formers not accessible in MCBRDs)

Assembly schedule (next 6 months)

Milestones	Date
MCBRD 11, 12 components delivered at CERN	mid Feb. 2023
1st series magnet assembly at CERN (MCBRD12)	Nov. 2023
2nd series magnet assembly at CERN (MCBRD11) *	Feb 2024
Cold test at CERN (MCBRD12)	Dec. 2023 – Jan 24
Cold test at CERN (MCBRD11)	By April. 2024

* Need IHEP delivery of MCBRD11 structure by End September 2023.

Summary

- The manufacture of MCBRD11, 12 has started with apertures production using IHEP delivered components following last proven MCBRDP4 procedures.
 - Aperture AP11 is ready, approved for magnet assembly,
 - Impregnated **AP10 shown low electrical insulation to formers**, rejection of coil. Production of new formers by December 23.
 - Further setbacks providing several insights from AP15, AP16 winding in presence of weak wire insulation type, partial anodisation cases. Production back to track with adaptation of 927 winding tool. Target of first 2 coils readiness for assembly by November 23.
- Last update series electrical diagram approved by IHEP as compliance set from MCBRD04
- Large work of standardisation consolidation and repair in front ends carried out at CERN (180, 927 teams) on CERN prototypes (3,4) and first IHEP series 01, 02 then 03.
- CERN Magnet assembly of MCBRD12,11 planned respectively by Dec 23, Feb 24 followed by cold test in SM18. (last IHEP structure shipment by end Oct.)

Acknowledgment to active contributors from 927 SMT team

Carlos Fernandez, Frederic Garnier, Veronica Ilardi, Pierre Antoine Contat, Francois Olivier Pincot, Ruth Diaz Vez, Sabine Menu, Pietro A. Rizzo, Dominique Cote, Ahmed Benfkih, Cedric Urscheler, Sebastien Clement, Roland Piccin, Diego Perini, Ezio Todesco.

and our colleagues from IHEP supplying components:

Qingjin Xu, Yingzhe Wang

HILLHC PROJECT

Thank you for your attention

HL-LHC collaboration meeting, Vancouver , Canada

MCBRD CERN production status

BACK UP SLIDES

home.cern

splicing resistance

MCBRD exhibit joint average resistances at 6 but some deviates on series up to 10 nOhms at nominal current. Some update design is being considered in future CCT to target 1-2 nOhms range. (key for large joints number in CCTs)

Long series MCBRD : 9 splices per aperture

- 45 mm long
- Crimping with "non insulated end-
- sleeve " (= tube)
- Sn96Ag4 welding alloy
- Flux MOB39
- Polyimid sleeve for protection
- G10 connexion box

		Ap.	V taps	Resistance [nΩ]
		1	EE24-EE25	6.55 ± 0.02
	MCBRD1	•	EE26-EE27	6.62 ± 0.04
erture		2	EE14-EE15	5.38 ± 0.06
, italo		-	EE16-EE17	5.03 ± 0.07
		Aperture	V taps	Resistance [nΩ]
		V4	EE14-EE15	5.36 ± 0.6
		V I	EE16-EE17	5.32 ± 0.5
		1/2	EE24-EE25	3.20 ± 0.4
		V2	EE26-EE27	
		Ap.	V taps	Resistance InΩ1
	MCBBD3			
		1	EE108-EE109	9.16 ± 0.12
		2	EE24-EE25	6.77 ± 0.03
		2	EE26-EE27	6.51 ± 0.05

Inter layers series splicing

- 10 wires winding layers spliced in series in the connection box
 - 10 voltage taps wires and 9 SC wires splicing
 - Crimping, Sn96Ag4 soldering and polyimide insulating
 - Current design reaches joint resistances values of 7-8 nOhms at cold when procedure is applied.

box

Fig.1 Series splicing terminal connection

VPI impregnation

- CB 10,11 followed the VPI update CERN procedure <u>EDMS 2002875</u>
 - Use of milking cycle turn out useful, N2 gas overhead pressure on tank
- All apertures VPI impregnation followed same procedure and exhibit similar filling, hydraulic behavior as previous MCBRDP4 (circ. 1h filling time, overhead pressure up 0.7 b in tank)
- Capacitance monitoring had issues of grounding, partially good on AP10 (under progress)

Splicing

- Splicing executed according CERN procedure EDMS <u>2002873/1.1</u>.
- NC 2818415 on AP10 : Broken wire MCBRD12-V1 -HCMCBRD_C015-CR000001
 - An issue occurred due to misalignment of crimping tool;
 - Solution: wires connection order could be adapted:
 - ✓ outer wire 7 spliced with the inner wire 10 with 2 Vtaps.
 - outer 10 is spliced with the short inner 8 without instrumentation.

MCBRD CERN production status

Consolidation of CS front end

- Following Hi-pot voltage limitation found below 1650V test value at cold on both MBRD01, MBRD02 during Q4-2022, baseline design was updated to minimize assembly risk.
- □ Issuance of ECR <u>2797173</u>,
- □ MCBRD01: NC<u>2755485</u>, MCBRD02: NC<u>2795912</u>
- □ Finding of damaged VT wires, braids during front end assembly, not all PI insulated wires.
- A new routing was proposed to minimize wires crossings (see next slide). All protective fibre glass sleeves have to be replaced, soldered joint consolidated with PI sleeves and thermo shrinkable sleeves.

Figure 10 - Vtsp exposed conductor

Figure 11 - Pinched CCS T-sensor wire

Front end wires routing

- Routing update decided of VTs and leads wires from MCBRD01, 02, 11, 12, P3, P4. localized in front end routing CERN agreed to update design to limit risk during assembly
 - o In-situ local machining of end plates
 - Separation of VTs and Leads channels on double level to avoid successive crossi
 - $\circ~$ Use of newly produced transparent Ultem $\ensuremath{\mathbb{R}}$ covers.

CERN decided to apply this update to all 6 magnets incl. P3b & P4

32

MCBRD CERN production status

End plate machining

Local machining example on MCBRDP3b of the central channel in SS end plate for installation of new routing covers

