

Horizontal Test Results of LQXFA/B01 and Plans for testing LQXFA/B02

Guram Chlachidze Fermilab

> 13th HL-LHC Collaboration Meeting Vancouver, Canada 25-28 September 2023

LQXFA/B01

 LQXFA/B01 - the first pre-series cryo-assembly fabricated by HL-LHC AUP with MQXFA03 and MQXFA04 magnets

MQXFA03

- Voltage taps used only for quench detection
- Strip heaters on the outer coil layer
- Dump delayed for 1000 ms

Fermilab

LHCLMQXF_E0001

13th HL-LHC Collaboration Meeting, Sep. 25-28, 2023

LQXFA/B01 at Fermilab's horizontal test stand

Initial Electrical Checkouts

 Cryo-assembly was received at the test facility with one open heater (YT223 in MQXFA03) and one open voltage tap EE152

- Room temperature insulation (Hipot) tests: no failures
 - Coil-to-structure at 2.5 kV for Top plate leads w/o magnets
 - Coil-to-ground at 368 V
 - Quench heater-to-coil at 460 V

LQXFA/B01 controlled cooldown

- 19 days of cooldown: Mar 15 Apr 3
 - About 5 days of downtime due to various issues
 - First week running with the 50 K temperature difference across the coldmass
 - GHe mass flow rate varied from 5 g/s to 18 g/s

LQXFA/B01 Controlled cooldown (2)

- ΔT requirement between the GHe supply and the CM RE changed from 50 K to 80 K
 - Delta T (meas) difference between the temperature readings of the RTD sensors 505/506 located on the magnet ends
 - Delta T (calc) is based on the magnet resistance measurements

Date & Time

Fermilab

 $\cdot LHC$

Cold Electrical Checkouts

- Coil-to-ground at 1840 V
- Quench heater-to-coil Hipot at 2300 V

Test	Resistance to	Target	Current	Ramp	Arc Sense	Voltage Lead	Return	Max Ramp	Leakage		Type of Failure	Breakdown
Item	GND/Coil	HV (V)	Threshold(µA)	Time (s)	Setting	Location	Location	Current (µA)	Current(µA)	Success?	Arc or BreakDown	V + Current
YT111 & YT112	>60Mohms	2300	10	230	1	P221 A-B	CLIQ Lead (Coil Grounded)	2.7	0.0	YES		
YT113 & YT114	>60Mohms	2300	10	230	1	P222 A-B	CLIQ Lead (Coil Grounded)	5.3	0.0	YES		
YT121 & YT122	>60Mohms	2300	10	230	1	P223 A-B	CLIQ Lead (Coil Grounded)	3.7	0.0	YES		
YT123 & YT124	>60Mohms	2300	10	230	1	P224 A-B	CLIQ Lead (Coil Grounded)	4.7	0.0	YES		
YT211 & YT212	>60Mohms	2300	10	230	1	P225 A-B	CLIQ Lead (Coil Grounded)	4.0	0.0	YES		
YT213	>60Mohms	2300	10	230	1	P226 A	CLIQ Lead (Coil Grounded)			NO	Breakdown	2190V (>10mA)
YT214	>60Mohms	2300	10	230	1	P226 B	CLIQ Lead (Coil Grounded)	2.9	0.0	YES		
YT221 & YT222	>60Mohms	2300	10	230	1	P227 A-B	CLIQ Lead (Coil Grounded)	3.2	0.0	YES		
YT224	>60Mohms	2300	10	230	1	P228 B	CLIQ Lead (Coil Grounded)	2.3	0.0	YES		

- MQXFA03: YT213A/B heater failed the Hipot test around 2190 V
 - No dead short to coil or ground, small current leakage at 200 V
- Dummy load is used instead of YT213

No degradation of the heater to coil and heater to ground insulation observed after the thermal cycle

LQXFA/B01 Quench Performance in TC1

- Magnets reached the acceptance current Inom+300 A w/o a quench, but with two trips in leads
 - One of the Cu-SC lead joints in the top plate assembly exhibited higher resistance and the LHe level adjustments were required
- Two attempts of the holding current test
 - First trip at Inom+300 A=16530 A caused a minor detraining

Quench in TC1

- Only one spontaneous quench in magnets
 - Quench at 16386 A, in MQXFA04 (Magnet A), coil 113 (P2)
 - Quench Integral 27.8 MIITs (w/o external energy extraction)

Splice measurements

- Two additional splices were made in LQXFA/B01 power leads to add extra length for testing at Fermilab (and CERN)
 - Lead length w/o the additional splice is sufficient for the tunnel installation at CERN

Splice measurements (2)

- Splice measurements were made at 1.9 K for currents up to 5 kA
 - 8-channel MUX system based on Keithley 2182A Nanovolt Meter
- Two-splice segments are measured ~0.7 \pm 0.1 n Ω , and single splice Lead 1 (B-lead) SC splices (2) segments - less than 0.3 ± 0.1 n Ω -8.0F-06 -1.0E-05 Voltage (V) 6.48E-10x - 1.27E-05 v = 6.28E - 10x - 1.28E - 05-1.2E-05 ramp up Through-Bus SC splice (1) ramp down 0.0E+00 -1.4E-05 0 1000 2000 3000 4000 5000 Magnet Current (A) -5.0E-07 (>) -1.0E-06 ≤ −1.5E-06 Lead 2 (Through-Bus) SC splices (2) 0.0E+00 v = 2.99E-10x - 2.32E-06-2.0E-06 ramp up -2.0E-06 v = 3.00E-10x - 2.33E-06 Voltage (V) ramp down y = 7.06E-10x - 6.39E-06 -2.5E-06 -4.0E-06 0 1000 2000 3000 4000 5000 ********* v = 7.08E-10x - 6.53E-06 Magnet Current (A) -6.0E-06 ramp up ramp down -8.0E-06 0 1000 2000 3000 Magnet Current (A) 4000 5000

Fermilab

-LHC

13th HL-LHC Collaboration Meeting, Sep. 25-28, 2023

Splice measurements (3)

Splices resistance values well below the required 1 nΩ

Warmup and cooldown for TC2

Controlled warmup just over 1 week. Cooldown was interrupted few times

Cooldown in TC1 and TC2

- First cooldown used for optimizing the controlled cooldown parameters
 - Two weeks are expected for 1.9 K cooldown. Further improvement requires upgrade of the heat exchanger in the Helium return line

US L-LHC

13th HL-LHC Collaboration Meeting, Sep. 25-28, 2023

LQXFA/B01 Quench Performance in TC2

The acceptance current reached w/o a quench.

Fermilab

-LHC

- Only one spontaneous quench in TC2 at 16525 A in MQXFA03, coil 111 (P4), QI 27.6 MIITs
- The holding current test failed after 75 min due to the same LHe stability issue (no trip thanks to PLC interlock modification)
 - High ramp rate test (with 150 A/s ramp down) successfully done

Plans for Testing LQXFA/B02

- Improvements of the cryogenic system components are planned before LQXFA/B02 test
 - Inspect and fix Feed box helium supply valves
 - Replace failed flowmeter and plastic rotameters
 - Upgrade valve actuators
 - Improvements will be prioritized and executed as test schedule allows
- Root cause of the liquid helium instability is understood
 - No additional investigation is required
- The Cu-SC lead joint repair will increase robustness to the LHe level fluctuations in future
- Second liquefier maintenance to be completed by the end of October
- LQXFA/B02 test prep work to be completed in November

LQXFA/B01 leaving the Magnet Test Facility

Conclusions

- The first pre-series cryo-assembly LQXFA/B01 successfully tested at Fermilab's horizontal test stand
 - The test facility upgrades successfully commissioned with a cryoassembly for the first time
 - Liquid level instabilities and power supply issues, as well as Labwide safety pause made the commissioning and test longer than expected
 - The cryogenic issues were identified and fixed, allowing the completion of the horizontal test
- LQXFA/B01 test goals are achieved
 - Only two spontaneous quenches in magnets one per magnet
 - Nominal and acceptance currents are reached at 1.9 K
 - Nominal current was reached at 4.2 K
 - Ramp down at 150 A/s was validated
 - Nominal current was successfully held for 5 hours

18

Backup Slides

LQXFA/B01 Test Status (2)

On Apr. 6, LQXFA/B01 was cooled down to 1.9 K

AUP

