LQXFA/B01 Magnetic Measurements

26Sep2023
Presented by J. DiMarco

Measurements at 1.9K/4.5K for LQXFA/B01
 (MQXFA03 and MQXFA04 magnets)

- 4.2 K rotating coil Zscan at 6 kA
- 1.9 K rotating coil Zscan at 16.23 kA
- SSW DC strength measurements at $16.23 \mathrm{kA}, 1.9 \mathrm{~K}$
- SSW alignment measurements at 10A AC, 1.9 K

First set of full-length zscans at high currents were met with several simultaneous issues:

- Cryo heat excursions which could trip the system at random times (max. about 1.5 hours, typically about 40 min .)
- Occasional problems with motion rail
- Laser tracker losing sight/unable to read targets
- Probe shaft coupling slippage

These all were causing scans to stop - the latter three were mitigated, and eventually we held nominal current and were able to take a couple of Zscans and get the full field integral.

Magnetic measurements at horizontal test bench

Rotating coil ‘FERRET’ probe

Cryo

 Feed
Probe has 436 mm -long

 Nwinding and two 'back-to-

Local encoder and slipring

22 m -long, 6 mm diameter carbon fiber rotating drive shaft and polycarbonate push-tube

PCB probes stiffened with carbon fiber or G10

Laser tracker targets visible from non-drive end

The harmonics are reported for a negative normal quadrupole

- A negative normal quadrupole viewed from the magnet lead end. Positive current ("P") flows towards the reader (along the positive z axis)

This reporting is the same for each of the two MQXFA magnets of the Cryo Assembly

Reference radius 50 mm

MQXFA03/MQXFA04 Alignment

After move to average axis

 23Aug2023 - cold TC2, 2K$\sim 0.2 \mathrm{~mm}$ over
0.5 mm acpt. criteria

Horizontal Offsets plan view

MQXFA03 Lead End: $X=0.042, Y=0.394 \mathrm{~mm}$
MQXFA03 Interface End: $X=-0.030, Y=-0.402, \mathrm{~mm}$
MQXFA04 Interface End: $X=0.498 \quad Y=-0.676 \mathrm{~mm}$
MQXFA04 Lead End: $X=-0.482, Y=0.681 \mathrm{~mm}$
MQXFA03 roll angle $=4.59$ mrad MQXFA04 roll angle $=2.26 \mathrm{mrad}$
Delta angle $=2.32 \mathrm{mrad}$
Vertical Offsets
Ave angle $=3.42 \mathrm{mrad}$ profile view

Actual distance measured by Laser Tracker

To minimize the effect of the variations in positioning, take average body field and length of body field for calculations

$$
\int g d l=\int L E+\int N L E+g_{b o d y_{-} a v e} * L_{b o d y}
$$

Define Z-center as the point at which the integral starting from one end of the magnet accumulates half the value of $\int g d l$
(Also simply summed consecutive positions assuming that they were all in steps of the probe length - no significant difference)

Usually rail motion is within +/0.25 mm measured by LT, but worst case $\sim 1.5 \mathrm{~mm}$
Cryo-Assembly Magnet: A04 A03 Integral GdI (T): $\quad 559.95 \quad 559.70$
Sum $=1119.65 \mathrm{~T}$
Magnetic length (m):
4.2134 .216
Body field TF (T/m/kA):
8.1878 .178
Magnet center separation (m): 4.7721
(Magnet separation measured by SSW during fabrication was 4.7892 m , expected shrinkage $\sim 15 \mathrm{~mm}$, (observe ~ 17))

Integral strength requirement ~1114 T

Local Field Angle Variation measured with dual 109 mm - length probes

For each Z position, the trailing probe provides a relative orientation of the measurement of the lead probe

Cumulative sum gives total local variation:

$$
\Delta \theta(n)=\theta_{\text {magNonLin }}\left(z_{n}\right)+n * \beta_{\text {magLin }} * \Delta z
$$

Local non-linear angle variation
local effect of overall twist (note that need to remove angle offset between the probes to see this)

FieldAngleMeas LQXFA01_A03A04 Cold TC2, 6kA 31Jul2023

Laser tracker measures probe position variation during Z-scan (as does the RC probe itself from feed-down)

LQXFA01 - TC2 6000A, 4.2K, combined LTfastMode scans, 31Jul2023

LQXFA01 - TC2 16233A, 1.9K, 16Aug2023

LQXFA01 - TC2 16233A, 1.9K, 16Aug2023

Probe pitch/yaw of $1-2 \mathrm{mrad}$ at LT targets \rightarrow offset ~ 1 mm at the probe ($\sim 0.7 \mathrm{~m}$ away)

Correct for this using Helmert transform at each position

LQXFA01 Magnetic Axis Variation

LQXFA01 Integrated harmonics
Nominal Current, 16233 A

LQXFA01, 16233A, 1.9K, 436mm probe - b3

LQXFA01, 16233A, 1.9K, 436mm probe - b6

Summary

- Magnetic measurements on the first LQXFA cold mass assembly were able to determine all quantities of interest, with precision adequate to characterize the magnet.
- The magnetic parameters meet acceptance criteria except for 0.2 mm alignment offset at the ends of magnet A04 with respect to the average axis of the two magnets.
- The a3 (marginally) and a8 harmonics of magnet A04 also exceed expected range.
- Total integrated gradient is 1119.6 T at nominal current.

