

Field quality and integrated gradient in MQXFB

Lucio Fiscarelli, Susana Izquierdo Bermudez, Piotr Rogacki, Mariano Pentella, Carlo Petrone, Franco Mangiarotti, Guy Deferne, Ricardo Beltron, and all TE/MSC/TM&LMF colleagues

13th HL-LHC Collaboration Meeting, Vancouver 25-28 September 2023

Content

- Magnetic measurement systems
- Standard magnetic tests
- Available measurements
- Main results:
 - Transfer function
 - Field quality
- Additional results

Measurement systems and standard tests

Measurement system at ambient temperature

- Rotating coil scanner
 - Measurement length 600 mm
 - 13 positions to cover the MQXFB
 - Measurement radius 50 mm
 - PCB for the coils
 - On-board tilt sensor and optical targets
- A full scan of the 8-m-long magnet takes 1.5 hours approximately

Development of a rotating-coil scanner for superconducting accelerator magnets, https://doi.org/10.5194/jsss-9-99-2020

Magnetic tests at ambient temperature

Check during magnet assembly

- Coil-pack
- Centering
- Loading

Alignment during cold-mass assembly

 Angular alignment before welding of end covers and feet

On the final cold-mass assembly

 Final measurement and alignment wrt reference points

Measurement systems at cryogenic temperature

- Rotating-coil chain
 - 6 segments measuring in parallel
 - Length 1.3 m each
 - Radius 50 mm
 - PCB for the coils
 - Composite material for the structure
- Single stretched wire
 - X-Y tables
 - Wire tension control
 - Positioning accuracy ~1 µm

Magnetic tests at cryogenic temperature

- **Powering cycles** by using rotating coils
 - Stair step
 - Machine cycles
 - Variable ramp-rate

TF calibration and **alignment** at nominal by using the stretched wire

Magnetic shimming

- The field quality of the MQXF magnets can be fine tuned by inserting iron blades in the loading slots.
- The position and the dimension of the iron blades can be computed based on:
 - The results of **magnetic measurements** at ambient temperature during magnet assembly
 - Numerical calculations to predict the effect

Computed correction using 9x58 mm										
shims in the bladder slots										
Order	b _n	a _n								
3	1.90	-1.90								
4	0.00	0.52								
5	0.27	0.27								

Main results

Performed measurements

	MQXFB P1	MQXFB P2	MQXFB P3	MQXFB 02	MQXFB 03	MQXFB 04							
Ambient temperature													
Coil pack 🖌 🖌 🖌 🗸													
After centering	✓	✓	 ✓ 	✓	 ✓ 								
After loading	✓	\checkmark	✓	✓	✓								
Cold-mass before	✓	✓	 ✓ 	✓	 ✓ 								
Cold-mass after	✓	\checkmark	✓	\checkmark									
Final cold-mass		✓	 ✓ 	✓									
		At 1.9 H	K										
Stair-step cycle	Stair-step cycle 🗸 🗸 🗸												
Machine cycle			\checkmark	✓	\checkmark								
Ramp-rate cycle			✓	✓	✓								
Stretched wire at nominal	\checkmark	~	✓	~									

Transfer function vs current

CERM

Integral TF **accurately** measured with stretched wire at **few points.** Integral and local TF measured **continuously** with rotating coils.

Transfer function

Transfer function of integral gradient (T kA ⁻¹)												
MQXFB	P1	P2	P3	02	03	04		Average	Max-min			
At ambient temperature												
After coil pack insertion	63.098	62.992	62.949	63.053	62.988	62.965		63.016	24			
After centering	63.238	63.122	63.087	63.204	63.103			63.151	24			
After loading	63.394	63.359	63.328	63.407	63.458			63.389	20			
Cold-mass before cold test		63.400	63.539	63.457	63.407			63.451	22			
Cold-mass after cold test	63.432	63.524	63.610	63.598				63.541	28			
Final cold-mass		63.646	63.459	63.586				63.564	29			
		At 1.9	F K and no	minal curre	ent							
At 1.9 K with rotating coils			58.526	58.579	58.500							
At 1.9 K with stretched wire	58.562*	58.708*	58.620	58.649	58.582**			58.624	25			
Δ to average at amb. temp.	1	-5	-10	3	11							
Δ to average at 1.9 K	-11	14	-1	4	-7							

* Extrapolated from a measurement at lower current.

** Measured with rotating coil then cross calibrated.

The integrated gradient at the nominal current of **16230** A is **951.47** T (35 units more than specification). The integral gradients of all magnets measured so far are within **25 units**.

Field direction and magnetic axis (final cold-masses at ambient temperature)

Field direction and magnetic axis under control

L. Fiscarelli - Field quality and integrated gradient in MQXFB

Stability of main field at nominal

Plateau of 1 hour measured with stretched wire

Field stability better than $\pm 0.5 \ 10^{-5}$ (limited by measurement precision)

Stability of main field at nominal

 Plateau of 8 hours at nominal with rotating coils

Field stability better than $\pm 1 \ 10^{-5}$ (limited by the measurement precision)

Magnetic shimming

LHC PROJEC

MQXFBP2

Computed correction									
Order b _n a _n									
3	-3.37	0.00							
4	0.00	0.00							
5	-0.11	0.00							

MQXFB02

Computed correction									
Order b _n a _n									
1.90	-1.90								
0.00	0.52								
0.27	0.27								
	uted correcti b _n 1.90 0.00 0.27								

Integral field quality at nominal

	MQXFI	BP2*	ΜQXI	FBP3	MQXF	B02	MQXF	B03	Average		STD			
n	bn	an	bn	an	bn	an	bn	an	n	bn	an	n	bn	an
3	1.11	-1.71	-1.08	-0.23	-0.15	0.46	1.61	0.27	3	0.37	-0.30	3	1.22	0.98
4	0.93	1.25	0.40	-0.88	-0.39	-0.79	1.04	0.55	4	0.49	0.03	4	0.65	1.04
5	-0.20	1.43	0.23	-1.50	1.21	0.97	-1.01	0.47	5	0.06	0.34	5	0.92	1.29
6	0.32	-0.04	-0.95	-0.27	0.15	0.22	-1.39	0.57	6	-0.47	0.12	6	0.83	0.36
7	0.26	-0.27	-0.67	0.61	-0.47	0.04	-0.08	0.15	7	-0.24	0.13	7	0.41	0.36
8	0.02	0.06	0.17	0.25	-0.19	0.16	0.02	0.13	8	0.00	0.15	8	0.15	0.08
9	0.23	-0.11	0.08	-0.14	-0.24	0.05	-0.01	0.06	9	0.02	-0.03	9	0.20	0.10
10	-0.34	0.03	-0.41	-0.03	-0.18	0.01	-0.54	0.01	10	-0.37	0.00	10	0.15	0.02
11	0.01	-0.03	-0.09	0.06	0.01	0.00	-0.01	-0.02	11	-0.02	0.00	11	0.05	0.04
12	0.06	0.01	-0.05	0.00	-0.01	0.02	-0.02	0.07	12	-0.01	0.03	12	0.05	0.03
13	-0.05	-0.03	-0.02	0.00	0.00	0.01	0.00	0.00	13	-0.02	0.00	13	0.02	0.02
14	-0.92	0.03	-0.90	0.01	-0.87	0.01	-0.85	0.01	14	-0.89	0.02	14	0.03	0.01
15	0.00	-0.01	-0.01	0.00	0.01	0.00	0.00	-0.01	15	0.00	0.00	15	0.01	0.01

Field quality fully under control for both systematic and random components.

Integral field quality

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

Harmonics at Rref = 50 mm

Multipoles vs current

IL-LHC PROJEC

Allowed multipoles vs current

Effect of magnetic shimming on the TF

Magnetic shimming has a slight effect on the main field (~10 units). To be taken into consideration when the shimming is evaluated.

Additional results

Not important for the MQXFB but interesting for the understating of NB₃Sn technology

Ramp-rate effects

Some dynamic effect due to induced currents are visible.

The effect can vary from magnet to magnet and along the same magnet.

Overall, it is a small effect (~1 unit).

Much larger ramp rate to see significant effects (50 A/s vs 14 A/s)

Dynamic effects at injection level

Decay and Snapback in Nb3Sn Dipole Magnets 10.1109/TASC.2016.2633980

Quench antenna

Quench antenna development at CERN

Instrumentation and Diagnostics for Superconducting Magnets Workshop (IDSM)

L. Fiscarelli - Field quality and integrated gradient in MQXFB

Quench antenna to measure flux-jumps

The instrument is suitable for the measurement of flux-jumps in terms of magnitude, direction, position, propagation, and impact on field quality (work in progress...).

99.22

99.20

Conclusions

Main results of magnetic tests on MQXFB's

- 5 magnets already measured at 1.9 K
- A comprehensive set of results is available
- Transfer function within 25 units
- Multipoles within specifications

