Long-range correlations in PP collisions at $\sqrt{s}=13.6~{ m TeV}$

Olavi Kiuru for the ALICE Collaboration

olavi.kiuru@helsinki.fi

Motivation

- The collective, hydrodynamic behavior in heavy ion collisions is a well-studied phenomenon.
- Recent results show signs of similar behavior in smaller systems e.g. pp collisions, but the origin of these effects is unknown for small systems.

Methods

The collective behavior of the pp system is quantified by the ridge yield $Y^{
m ridge}$ and is obtained in the following way:

- Project the correlation function along the $\Delta \varphi$ axis over the region $1.4 < |\Delta \eta| < 1.8$.
- Integrate over the symmetric bump around the origin.

Systematic uncertainty

There are many sources of systematic uncertainty that can affect the results, including:

- The choice of the $\Delta \eta$ interval, i.e. the effect of the jet peak on the result.
- The integration bounds for $\Delta \varphi$.
- Residual two-particle acceptance effects (the non-physical upward bend

ALICE Collaboration, J. High Energ. Phys. 2021 290 (2021) Collective behavior is present in high-multiplicity pp collisions. Simulations incorporating repulsion or fluid description reproduce the results.

• Data on low multiplicity pp collisions from Run 3 of the LHC can improve our understanding on small system collectivity by investigating previously unexplored regimes.

Results

The results of the ridge yield calculations are shown in the plot below.

A generalized Gaussian distribution is fitted to the projection of the data along the $\Delta \eta$ axis to estimate the effect of non-flow contamination on results, and jet shape modification.

The effects of the different systematic uncertainties have been summarized in the table below.

Sources	Systematic uncertainty (%)
$\Delta\eta$ interval	$\pm4.7-35\%$
$\Delta arphi$ integration bounds	$\pm 8.4-11\%$
Wing correction	$\pm 6.3-17\%$
Total (in quadrature)	$\pm 10-38\%$

• The results show evidence for the existence of collective-like behavior in low multiplicity pp collisions.

• Future work is needed to mitigate the effects of systematic uncertainty.