Optimization of 500MHz Pixie-16 for Fast Time Measurement

Jooyoung Lee

Supervisors: James Cubiss, Zixuan Yue, Christopher Page

Why Fast Time Measurement?

- Lifetimes of excited nuclear states is used to understand Nuclear Structure and Transition Matrix Elements
- Magnitude of lifetime is in wide range: femtoseconds (10⁻¹⁵) to years

Analogue & Digital Data Acquisition

Analogue

Higher Time Resolution (Charge & Discharge of Capacitor)

 $O(n^2)$ complexity for n detectors

Time Resolution should be optimized

Digital

Flexibility & Scalability

How Data are Collected

- CFD and Trapezoidal Filter
- What is a "Good Parameter"?

Constant Fraction Discriminator CFD & Trapezoidal Filter

http://lmu.web.psi.ch/docu/manuals/bulk_manuals/software/TDC/set_cfd.html

Mutti, Paolo & Jentschel, M. & Ruiz-Martinez, E & Ratel, Justin & Rey, F & Urban, Waldemar. (2023). A NEW FAST TRIGGERLESS ACQUISITION SYSTEM FOR LARGE DETECTOR ARRAYS.

What is a "Good Parameter"?

Current Status

How Data are Calibrated

- Time Calibration

Time Calibration (60Co)

Data gathered in a specified time interval (TIM_REF) are considered as one event even though they are not simultaneous in reality

 γ - γ Coincidence of 60Co source (1173 keV & 1332 keV) is used for time calibration

⁶⁰Co β⁻ decay (1925.28 d) Decay Scheme Intensities: Iy per 100 parent decays Legend $\gamma < 2\% \times P$ $I_{\gamma} < 10\% \times I_{\gamma}^{ma}$ $L > 10\% \times 1$ Q_β-=2822.8 2 60 27Co33 $I\beta^-$ Log f 99.88 3.3 ps 10 7.512 0.000 >14.02 2158.61 0.12 14 702 0.9 ps stable 60 28Ni32

Self-Coincidence: Evidence of Background

Prompt Time Gate

Time Calibration (⁶⁰Co)

If the time gate is properly set, true coincidence spectrum can be obtained by gating in energy

Summary

- Lifetimes of excited nuclear states is used to understand Nuclear Structure and Transition Matrix Elements
- LaBr3(Ce) is a good detector for fast time measurement
- Digital system is considered to be used for its convenience, but has tradeoff of resolution
- Time resolution & Energy resolution of data can be optimized by CFD & Trapezoidal Filters
 - Search for Optimization Criteria and Optimization is being done
- After getting the good data, calibration is rather simple! (and familiar)

Thank you for Your Attention

Any Question?

Backup Slides

Just in Case

Energy Calibration (¹⁵²Eu) & Efficiency Curve

It is basically matching channel no. with known spectrum energy

I. A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, W. B. Siong, M. S. Elias; New approach for calibration the efficiency of HpGe detectors. *AIP Conference Proceedings* 12 February 2014; 1584 (1): 38–44. <u>https://doi.org/10.1063/1.4866101</u>

Several digitally CFD shaped signals recorded by a CAEN V1730 digitizer module

Reference 2D Histogram for CFD Optimization

Harter, Andreas & Weinert, M. & Knafla, Lukas & Régis, J.-M & Esmaylzadeh, Arwin & Ley, M. & Jolie, J.. (2023). Investigating timing properties of modern digitizers utilizing interpolating CFD algorithms and the application to digital fast-timing lifetime measurement.