

Firmware Design for Particle Timing Measurements in the CMS ETL

Hamza Elsayed Supervisor: Özgür Sahin

CMS MTD DAQ Team

HamzaMohdDarwish@gmail.com

9 AUGUST 2023

The CERN accelerator complex Complexe des accélérateurs du CERN

The CERN accelerator complex Complexe des accélérateurs du CERN

MTD: MIP Timing Detector

• • • • • • • • • •

The Main Goal of MTD

Is to measure particles with 30 ps resolution at the beginning of its lifetime.

30 picoseconds = 0.00000000030 seconds

What we see

What we conclude

The detector separates the tracks coming from different simultaneous collisions.

Modified from Ziga Brencic, CERN Student Session 2018

- 1: ETL Thermal Screen
- 2: Disk 1, Face 1
- 3: Disk 1 Support Plate
- 4: Disk 1, Face 2
- 5: ETL Mounting Bracket
- 6: Disk 2, Face 1
- 7: Disk 2 Support Plate
- 8: Disk 2, Face 2
- 9: HGCal Neutron Moderator
- 10: ETL Support Cone
- 11: Support cone insulation
- 12: HGCal Thermal Screen

ETROC is the ASIC

designed for precision timing in CMS ETL. ETROC2 is the first fullsize fully-functionality prototype of ETROC, which aims to achieve 50 ps per hit time resolution. An ETROC2 includes a 16 x 16 pixel matrix and a chip peripheral.

Raw data frame

Frame Header	0	15'H3C5C				2'B00	L1Counter(8B)	TYPE (2B)		BCID (12B)	
DATA Word	1	EA(2B) Col_ID(4B) Row_ID(4B)				TDC_DATA/TEST PATTERN(29B)					
Frame Trailer	0							ште	(0D)		
	U			CHIPID(17B)			STATUS(0B)	HIE	(od))
Frame Filler		15'H3C5C			2'B10	RT_L1Counter(8B) EBS (2B)		RT_BCID (12B)			

Input Module

Header Detection Module

Data Word Storage Module

Reads 8 bits by 8 bits from an incoming bitstream.

Detects the "Header" data type in the incoming bitstream.

Stores the data when the "Header" is detected.

Hamming Coding Module

Checks for errors using Hamming coding.

FIFO Buffer Module

Puts the entire information (data word with error check result) into a FIFO buffer.

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL;

```
entity hamming_code is
Port ( data_in : in STD_LOGIC_VECTOR(7 downto 0);
encoded_data : out STD_LOGIC_VECTOR(9 downto 0));
end hamming_code;
```

Example On Hamming (10,8) Code Error Correction

```
architecture Behavioral of hamming_code is
```

signal p1, p2 : STD_LOGIC;

begin

```
-- Calculate parity bits
```

pl <= data_in(0) XOR data_in(1) XOR data_in(3) XOR data_in(4) XOR data_in(6) XOR data_in(7); p2 <= data_in(0) XOR data_in(2) XOR data_in(3) XOR data_in(5) XOR data_in(6) XOR data_in(7);

```
-- Create encoded data
encoded_data(0) <= data_in(0);
encoded_data(1) <= data_in(1);
encoded_data(2) <= p1;
encoded_data(3) <= data_in(2);
encoded_data(4) <= data_in(3);
encoded_data(5) <= data_in(4);
encoded_data(6) <= p2;
encoded_data(7) <= data_in(5);
encoded_data(8) <= data_in(6);
encoded_data(9) <= data_in(7);
```

end Behavioral;

• • • • • • • • •

Conclusion

Including the **MIP Timing Detector** in the upgrade plan for the **HL-LHC era** will help to assign charged tracks to the correct interaction vertices in bunch crossing with an **average of 200 collisions** or more.

Special thanks to: My family Dr. Özgür Sahin Dr. Fuad Al-Ansari Dr. Haifa Ebrahim Al-Khalifa Prof. Zuhair Khalifa Bahri Dr. Bader Al-Mannai Dr. Sarah Al-Shareeda Dr. Ebrahim Abdul-Rahman

Thank You