Recoil uncertainty in top mass measurement

M.Seidel, P.Silva, V.Slokenbergs

Summer Student Sessions, August 11, 2023

b

CMS

Introduction

• Studying simulation of top quark decays with gluon emissions

- t→bW
 - Need to assign 'recoil' from gluons to other final state particles
 - Recoil to bottom (RTB), recoil to top (RTT), recoil to W (RTW)
 - Recoil uncertainty = how much does change in recoiler assignment impact extracted top mass
- Expectations in RTT and RTW observables:
 - b-jet energy reduced
 - o b-hadron momenta hardened
 - W p_t *mildly* impacted

[4] ATLAS Collaboration, "Measurement of the top-quark mass using a leptonic invariant mass in p p collisions at \sqrt{s} = 13 TeV with the ATLAS detector", September 2022

^[1] H. Brooks, P. Skands, "Coherent Showers in Decays of Colored Resonances", February 2020

^[2] P. Skands, "Notes on Top Quark Modelling in Pythia 8 and Vincia", March 2021

³ P. Skands, "Note on RecoilToColoured", November 2020

CMS

Objective

- Evaluate effect of new recoilToTop option on generator level top mass measurements in CMS
 - L + jets hadronic top mass (L+jet)
 - Lepton + soft muon mass (L+SMT)
 - Boosted top decay normalized jet mass (Boosted)
- Integrate RTT into CMSSW Pythia8Interface and Rivet
- 2022 ATLAS paper uses this in their analysis, reports unc GeV from recoil [4]
 - We want to cross check this on different top mass measuring methods!

Impact on b jet observables

- Difference visible between different recoil options!
 - Observables directly connected to b hadron momentum most impacted
 - Quite literally... b-hadron momentum fraction (x_B) , b-jet internal angles

Tuning strong coupling constant α_s

- Perform α_s scan using HEPdata entry from CMS-TOP-17-013 [5]
 - minimize χ^2 on highly correlated observable delta ΔR_{a}
 - Independent of input top mass

[5] CMS Collaboration, "Measurement of jet substructure observables in ttbar events from proton-proton collisions at \sqrt{s} = 13TeV", December 2018

Qualitative tuning results

• Better agreement to observable data and other recoil schemes AFTER tuning

Pre tune

Qualitative tuning results

• Better agreement to observable data and other recoil schemes AFTER tuning

Jet substructure and radiation effects

- Confirmation via study of e+e- at E_{COM}= 500 GeV
 - Behavior between models as expected from theory
 - Much less wide-angle radiation in RTB
 - more energy in RTB jet, jet less focused after tune

Boosted

CMS

Top mass calibration

- Need to calibrate BEFORE we evaluate top mass shift
- Plot input mass vs. mass plot peak
 - Fit to $y = a^{*}(x-172.5)+b$ and use fit parameters *a* and *b* to get extracted masses
- Apply fit from RTB to both RTT and RTW
 - Compare differences!

Top mass results

- Notable shifts between recoil models
 - RTT and RTW behave very similarly (expected)
 - RTB to RTT have bigger shift
 - Importance of α_s tuning
 - Big impact on lep + soft muon method
- Technical work:
 - RecoilToTop implemented as Pythia8 plugin [6]
 - Backported to older CMSSWs for Run 2 analysis
 - Rivet routine for L+soft muon implemented

[6] PR #42180

RTB - RTT at 172.5 GeV input mass

$\alpha_{s}^{}$ setting	L+Jet	L+SMT	Boosted
Default α_s	+0.48 GeV	-1.11 GeV	+0.44 GeV
Tuned α_s	+0.65 GeV	+1.02 GeV	+0.34 GeV

V. Slokenbergs. Summer Student Sessions: August 11 2023. Contact: valdis.roberts.slokenbergs@cern.ch

Backup!

Continuation of work

- Implement Powheg matching
- Perform tunes using current CMS data (CP5 tune), check if shift consistent
- Central production

Additional studies: dead cone effect

- Compare default setting with switching off wide angle suppression via recoilDeadCone
- Comparison on L+jets yields only statistical difference, i.e. no change!
 - Reported statistical uncertainty in L+jets sample of 30 MeV
 - Default tune: Approximately 30 MeV change between sample with and without wide angle suppression
 - Tuned α_s : < 10 MeV less difference between samples with and without dead cone setting

Emissions from these 'primary' gluons also respect dead cone

Tuning strong coupling constant $\boldsymbol{\alpha}$

- Mimic procedure used in CMS-TOP-17-013 [5]
 - \circ ΔR_{a} observable *very* sensitive to α_{s} AND independent of top mass

[5] CMS Collaboration, "Measurement of jet substructure observables in ttbar events from proton-proton collisions at $s\sqrt{=}$ 13TeV", December 2018

Scaling procedure fits

Default Pythia8:

Reco type:	L+soft muon	L+jet	Boosted
Fit params:	a=0.21 +/- 0.01 b=41.62 +/-	a=0.97 +/- 0.01 b=171.48 +/-	a=0.86 +/- 0.17 b=183.28 +/-
	0.02	0.01	0.29

Scaling procedure fits

Tuned:

Reco type:	L+soft muon	L+jet	Boosted top jet
Fit params:	a=0.19 +/- 0.01 b=41.73 +/-	a=0.97 +/- 0.01 b=171.48 +/-	a=0.67 +/- 0.09 b=183.43 +/-
	0.01	0.01	0.19

Differences between recoil models

- RTB RTT: correction for Run 2 measurements to RTT scheme
- RTB RTW: correction for Run 2 measurements to Run 1 setup
- RTW RTT: correction for Run 1 measurements to RTT scheme

Comparison mode	α_s setting	L+jet	L+soft muon	Boosted
RTB-RTT	Default α_s	+0.48	- <mark>1</mark> .11	+0.44
	Tuned α_s	+0.65	+1.02	+0.34
RTW-RTT	Default α_s	-0.18	-0.42	+0.12
	Tuned α_s	-0.24	+0.12	-0.23
RTB-RTW	Default α_s	+0.65	-0.69	+0.32
	Tuned α_s	+0.89	+0.91	+0.57

Table 2: Recoil model difference with top input mass at 172.5 GeV

Important plots not otherwise shown

Important plots not otherwise shown

• Note minimal difference, so b momenta is primary factor in xB

Tuning effect on light jets

- Tune might have negative effect on light jets
 - Need independent alpha_s tunes for light and bottom jets?

