
Systematic Uncertainties with Deep
Sets Neural Network (DSNN)

Fang-Ying Tsai (Stony Brook University)
Computational HEP Traineeship Summer School

July 27 2023

➤ In particle physics analysis, we compare the observed data with predictions from
Monte Carlo simulations. However these MC simulations often have limited precision
and can’t fully capture all aspects of the data.

➤ The likelihood function quantifies how likely it is to observe the data given the model’s
prediction (S+B), and the uncertainties associated with the model.

 Motivation

NPs (θ): affecting the total signal or background
are called normalization factors (NFs), affecting
the corresponding probability distribution
function (PDFs) are called shape uncertainties.

μ: signal strength

Signal process

+ Background processes
(Diboson, single top, W+jets…)

➤ We, analyzers, provide variations of histograms that represent the systematic
uncertainty for specific kinematic distributions (e.g. mBB). The LH fit will determine the
best-fit values for μ and NPs that minimize the discrepancy between the data and MCs.

2

 Motivation Uncertainties in the 𝑊 + Jets Background Process

➤ One common way to estimate shape uncertainties is to make MC-to-MC
comparisons on kinematic variables in 1-dimension and take the differences as
shape uncertainties. 🙅

- Many variables are correlated, and uncertainties in one variable can affect the
others.

➤ An alternative approach that aims to capture the interdependencies and
correlations between input variables using neurons networks.

- The comparison between the BDT and the DSNN may shed light on the relative
strengths and weaknesses of these different ML techniques.

➤ Goals of the DSNN: Allowing for independence from specific analysis
techniques and reconstruction schemes.

➤ To achieve a classifier trained inclusively, the DSNN framework replaces all
higher level input variables with the 4-vectors of the final state particles' momenta.

 - Avoiding the need for separate training for small-radius or large-R jet algorithms

used in resolved or boosted regions.

3

Small-R jet: Anti-kt R=0.4 Large-R jet: Anti-kt R=1.0

 Intro to the DSNN

4

φ1

φ2

φM

NN mapping
per object

representations pooling operation, Σ

r

the latent representation in
the *PFN architecture
(*includes pdgID)

nonlinear transformation, F

prediction at MCa:
Probability of being MCa and MCb

(event by event)

NN mapping to a mean
and variance of the MCb

objs input features= (pT, η,φ,m)

Obj1_feat_MCb

Obj2_feat_MCb

ObjM_feat_MCb

.

.

.

.

.

.
dense layers
(100,100,80)

dense layers
(100,100,100)

O(p1,...,pM)= F(⌃M
i=1�(pi))

𝚽 Networks F NetworksObj1_feat_MCa

Obj2_feat_MCa

ObjM_feat_MCa

.

.

.

➤ The DSNN architecture (ref.)

- to analyze collections of data points generated by Sherpa and Madgraph.

➤ The inputs to the framework are fixed-length vectors, which are then passed to a
deep-set neural network.

➤ The deep-set neural network (Φ) is used to handle unordered sets of data,
allowing the DSNN to analyze particle collision data without the need for a specific
ordering of particles.

➤ Another deep neural network (F) is used to predict the behavior of particles event
by event.

https://pkomiske.com/publication/efns/

5

 Comparison BDT v.s. DSNN

➤ BDT

 - Collection of decision trees trained on high-level observables (see backup).

 - Optimized using a gradient boosted decision trees algorithm.

 - Works by building trees that ask a series of questions based on input variables.

 - Hyper-parameters control the learning process (see backup).

 - Events are categorized into four folders based on remainder when divided by 4.

 - Training for this study is done without requiring 𝑏-tagging, truth flavor info and the BDT.

➤ DSNN

 - Deep neural network trained on four-vector of input 6 objects.

 - Optimized using backpropagation algorithm.

 - Works by passing the input through multiple layers of interconnected nodes.

 - Number of nodes, layers, and activation functions control the learning process.

 - Events are split 50-50 using the Sklearn train_test_split function.

 - without requiring 𝑏-tagging but with truth flavor info.

6

 Performance & Demo

7

(data >= 0.4) & (data <= 0.48): -0.05; (data > 0.55) & (data <= 0.84): -0.05;
(data > 0.32) & (data <= 0.38): + 0.05

P-value (2jets): 4.1E-01
P-value (3jets:): 6.5E-02
P-value (all-jets): 2.7E-2

W/ DSNN W/ DSNN

All-jets

W/ DSNN

8

W/ DSNN W/ DSNN

All-jets

W/ DSNN

9

 Backup

 Data Preprocessing

10

➤ Store 4-vector sets of interested objects that
pass certain criteria from CxAOD.

➤ Convert information from CxAOD to Numpy
arrays in a tensor format: (events(N) x
objects(6) x features(5)) dimension.

electron (0.1)
Muon (0.2)

jet1
jet2
3rd

MET(0.6)

pT Eta Phi Mass

ID

1st event

2nd event
jet flavors (0.4, 0.5 or 0)
are used as input features
for 2 jets and the third jets

Props::HadronConeExclTruthLabelID.get()

 Data Scaling
➤ The feature scaling technique: Normalization.

11

X 0 =
x� xmin

xmax � xmin

linear scaling

leading jet_pT

➤ Remove outliers; e.g. pT > 3000 GeV.

➤ Particle IDs are scaled to be between 0 and 1 (e.g. 4 → 0.4, 5 → 0.5). However,
some events may not have a third jet, in which case the jet flavor became -9.9.
This value of -9.9 is likely to be misleading for the model.

 → jet flavors that are missing in some events are modified to be NAN before
scaling, and then reassigned to -99 after scaling and masked during training.

leading jet_pT

 Train & Test

12

➤ The NN is trained in a supervised way.

- Both the training and testing datasets assigned categorical labels [0,1] and [1,0]
representing MCa and MCb.

- The labels are represented using one-hot encoding, which ensures that there is
no ranking between the category values and makes it easier to determine the prior
probability of each category.

MCb+[1,0], MCa+[0,1], MCa+[0,1]…

Dataset

MCa+[0,1], MCb+[1,0]

MCa+[0,1], MCb+[1,0], MCa+[0,1]…

Train Model Evaluate Model

Categorical labels

50% training, (shuffle) 50% testing, (shuffle)

 Hyper-parameters
➤ Finding the optimal combination of hyper-parameters can be challenging!

➤ Understanding hyper parameters in the DSNN:

 - batch size: if events in a single batch are not enough to represent the full
dataset, resulting in poor network performance.

 - optimization algorithm: Adam (default), Adamax, RMSprop, etc., can be used
to modify the learning rate.

 - learning rate: A linear decrease in the learning rate after the first 2 epochs is
seen to improve stability and reduce the gap in the loss function, leading to better
network performance.

➤ The behavior of the cross-entropy/loss suggests that it is a good fit that results
in the generalization ability of the DSNN model.

13

 Hyper-parameters and Deeper Residual Learning
➤ Neural networks with many layers have shown great potential for improving the
accuracy of various tasks [ref].

- However, the gradient vanishing or exploding problem can occur when training
deep neural networks meaning the system is not easy to optimize.

➤ A solution to the problem of training very deep neural networks with many layers:

14

paper, here

➤ The best combination:
Phi(110,105,100)+F(95,95,95,95,95,95,95)

The residual F(x) = H(x) - x

-> H(x) is a “truth function”, x is the input

To ensure we get the desired/truth mapping:

-> output = F(x) + x

If the identity mapping is optimal, then F(x) ~ 0:

-> The output (F(x)+x) ~ the input (x)

If the input is directly added to the output, the
gradient can flow directly through the network.

https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1512.03385.pdf

 Prediction
➤ The final NN layer returns the raw values for the
predictions (= logits), classifier output.

➤ Softmax is used as a default recommended activation
function: Funcsoftmax (logits) => Probabilities for each class.

fig. source here
Common DSNN architectures
options, here.

➤ Two distributions intersect at
Prob_{MCa} = 0.5.

➤ The probability metric 𝑃𝑟𝑜𝑏𝐴/
(𝑃𝑟𝑜𝑏𝐴+𝑃𝑟𝑜𝑏𝐵) is monotonically related
to the predicted probability for class
MCa. However, a calibration is needed!

➤ Morphing between samples. NNweight =
ProbMCb

ProbMCa

15

higher likelihood of being MCa

➤ Reweight the 𝑊 + jets production process as predicted by Sherpa (nominal sample)
with a ratio provided by the DSNN algorithm event-by-event.

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://energyflow.network/docs/archs/

 Features Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

dp
Tσd

p-value(test, MCb):3.1E-07

p-value(MCa, MCb):2.8E-14

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

11−10

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

dp
Tσd

p-value(test, MCb):3.7E-03

p-value(MCa, MCb):3.2E-40

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

dp
Tσd

p-value(test, MCb):1.8E-03

p-value(MCa, MCb):1.8E-38

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

dp
Tσd

p-value(test, MCb):1.1E-04

p-value(MCa, MCb):0.0E+00

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

11−10

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

dp
Tσd

p-value(test, MCb):9.2E-05

p-value(MCa, MCb):0.0E+00

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

dp
Tσd

p-value(test, MCb):2.5E-03

p-value(MCa, MCb):0.0E+00

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MGPy8)Stat Unc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1pT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

w
.r.

t M
G

Py
8

electron pT muon pT

leading jet pT 3rd jet pT

MET

sub-leading jet pT

➤ Checking the algorithm is using the informative input features.

➤ The non-closure can mostly be explained by statistical fluctuations.

perhaps we can optimize the Φ network for better mapping of the objects
16

W/o corrections

 Observables Performance

17

0 1 2 3 4 5 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

dR
BBσd

p-value(test, MCb):4.4E-04
p-value(MCa, MCb):9.4E-273

MGPy8 (2jets)
Sherpa (2jets)
Sherpa(testing_2jets) * NN
(Test+MCb)Stat Unc.

0 1 2 3 4 5 6

dR(jet,jet)
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

0 200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pT
Vσd

p-value(test, MCb):8.9E-04
p-value(MCa, MCb):2.1E-41

MGPy8 (2jets)
Sherpa (2jets)
Sherpa(testing_2jets) * NN
(Test+MCb)Stat Unc.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pTV [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

50 100 150 200 250 300 350 400 450 5000

0.05

0.1

0.15

0.2

0.25

0.3

m
BBσd

p-value(test, MCb):6.8E-03
p-value(MCa, MCb):0.0E+00

MGPy8 (2jets)
Sherpa (2jets)
Sherpa(testing_2jets) * NN
(Test+MCb)Stat Unc.

50 100 150 200 250 300 350 400 450 500

m(jet,jet) [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

0 200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

dp
TVσd

p-value(test, MCb):1.9E-06
p-value(MCa, MCb):1.7E-46

MGPy8 (3jets)
Sherpa (3jets)
Sherpa(testing_3jets) * NN
(Test+MCb)Stat Unc.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pTV [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

50 100 150 200 250 300 350 400 450 5000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2dm
BBσd

p-value(test, MCb):1.3E-01
p-value(MCa, MCb):1.1E-215

MGPy8 (3jets)
Sherpa (3jets)
Sherpa(testing_3jets) * NN
(Test+MCb)Stat Unc.

50 100 150 200 250 300 350 400 450 500

m(jet,jet) [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

0 1 2 3 4 5 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

dd
R

BBσd

p-value(test, MCb):2.0E-11
p-value(MCa, MCb):8.1E-72

MGPy8 (3jets)
Sherpa (3jets)
Sherpa(testing_3jets) * NN
(Test+MCb)Stat Unc.

0 1 2 3 4 5 6

dR(jet,jet)
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

2-jets

3-jets

➤ These are evaluated by applying the NN weight to each events and looking at the
values of the observables stored in the NTuple.

pTV m(jet, jet) dR(jet, jet)

W/o corrections

18

 Comparison BDT v.s. DSNN

2-jets

3-jets

➤ The performance of each method depended on the kinematics and bins being
considered, with the DSNN sometimes outperforming the BDT and vice versa.

W/o corrections

19

 Summary
➤ We evaluate the 𝑊+jet shape uncertainty using the Deep Sets neural network
technique.

➤ The DSNN showed improved performance when additional particle-level
information was incorporated, and residual learning through the use of residual
blocks further improved performance.

➤ The performance is similar to the BDT, but with a significant advantage.

 - the ability to define analysis independent weights and incorporate them into
the nominal MC sample without the need to run on the entire alternative sample.

➤ Outlines the next steps to take:

 - The results are promising, and further improving the performance of a DSNN

 is possible (e.g. calibration)

 - derive one round of these weights and validate/test it further in additional

 analyses that are subject to the same kind of systematics.

 - if that works well, the approach could be extended to other samples as well.

 - We are welcome you to join us to build upon the work!

Internal Note, here.

https://cds.cern.ch/record/2837826/files/mydocument.pdf

20

200 400 600 800 1000 1200 1400 1600 1800 20000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ds
um

Pt
Je

ts
σd

p-value(test, MCb):2.7E-05
p-value(MCa, MCb):0.0E+00

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

sumPtJets [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25su
m

Pt
Je

ts
σd

p-value(test, MCb):1.7E-04
p-value(MCa, MCb):0.0E+00

MGPy8 (2jets)
Sherpa (2jets)
Sherpa(testing_2jets) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

sumPtJets [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

200 400 600 800 1000 1200 1400 1600 1800 20000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

ds
um

Pt
Je

ts
σd

p-value(test, MCb):1.3E-01
p-value(MCa, MCb):0.0E+00

MGPy8 (3jets)
Sherpa (3jets)
Sherpa(testing_3jets) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

sumPtJets [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

 SumPtJets

All jets

2 jets 3 jets

//CxAODReader_VHbb
AnalysisReader_VHQQ::computeSumPt(std::vector<const xAOD::Jet *> signalJets,
 std::vector<const xAOD::Jet *> forwardJets) {
 double sumPt = 0;
 for (unsigned int s_i = 0; s_i < signalJets.size(); s_i++) {
 sumPt += signalJets.at(s_i)->pt();
 }
 for (unsigned int f_i = 0; f_i < forwardJets.size(); f_i++) {
 sumPt += forwardJets.at(f_i)->pt();
 }
 return sumPt;
}

// Attention: this is before b-jet corrections
 double sumpt = computeSumPt(signalJets, forwardJets);
 m_tree->sumPtJets = sumpt / 1e3;

Scalar sum of the pT of jets

21

200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

dH
TB

oo
st

ed
σd

p-value(test, MCb):2.2E-09
p-value(MCa, MCb):2.8E-112

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

HTBoosted [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

H
TB

oo
st

ed
σd

p-value(test, MCb):5.6E-03
p-value(MCa, MCb):1.1E-41

MGPy8 (2jets)
Sherpa (2jets)
Sherpa(testing_2jets) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

HTBoosted [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

dH
TB

oo
st

ed
σd

p-value(test, MCb):7.7E-03
p-value(MCa, MCb):2.0E-46

MGPy8 (3jets)
Sherpa (3jets)
Sherpa(testing_3jets) * NN
(Test+MCb)Stat Unc.

200 400 600 800 1000 1200 1400 1600 1800 2000

HTBoosted [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

 HTBoosted

All jets

2 jets 3 jets

//CxAODReader_VHbb
//vector boson pt: VVec.Pt()
//const std::vector<const xAOD::Jet *> fatJets
//const int nAdditionalCaloJets, const float pTAddCaloJets

m_tree->HTBoosted = VVec.Pt() / 1e3 + fatJet.Pt() / 1e3 +
pTAddCaloJets;

Scalar sum of the pT of all the objects

22

The display of the DSNN model structure

23

 Observables Performance

0 1 2 3 4 5 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

dd
R

BBσd

p-value(test, MCb):1.9E-27
p-value(MCa, MCb):7.6E-293

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MCb)Stat Unc.

0 1 2 3 4 5 6

dR(jet,jet)
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

0 200 400 600 800 1000 1200 1400 1600 1800 20000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

dp
TVσd

p-value(test, MCb):1.4E-12
p-value(MCa, MCb):1.5E-113

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MCb)Stat Unc.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pTV [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

50 100 150 200 250 300 350 400 450 5000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

dm
BBσd

p-value(test, MCb):1.0E-03
p-value(MCa, MCb):0.0E+00

MGPy8
Sherpa
Sherpa(testing) * NN
(Test+MCb)Stat Unc.

50 100 150 200 250 300 350 400 450 500

m(jet,jet) [GeV]
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w
.r.

t M
G

Py
8

all-jets

24

Accuracy

argmax()

YTrue =

2

4
[0, 1]
[0, 1]
[1, 0]

3

5

YPred =

2

4
[0.45, 0.55]
[0.65, 0.35]
[0.53, 0.47]

3

5 [[0,1], [1,0],[1,0]]

➤Compare the predicted labels with the true labels event by event to calculate the
accuracy for each epoch.

Acc = the number of correctly predicted / total number of events

➤ argmax() function may be the reason causing accuracy drops because it may
not be the best way to convert the predicted probabilities given Sherpa and
Madgraph used to describe physics processes are similar.

