Theory opportunities at future colliders

Anke Biekötter - JGU Mainz

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Future Colliders for Early-Career Researchers - CERN - 27 September 2023

Theory wishlist

- Dark matter candidate
- Explanation of flavor hierarchy
- Explanation of matter-antimatter asymmetry
- Solution to strong CP problem (axion)
- Explanation of fine-tuning problems

Theory wishlist

- Dark matter candidate
- Explanation of flavor hierarchy
- Explanation of matter-antimatter asymmetry
- Solution to strong CP problem (axion)
- Explanation of fine-tuning problems

"No-lose theorem" - guaranteed deliverables More modest expectations Unbiased exploration potential Focus on EW+Higgs

Higgs physics

What we know

 $V = -\mu^{2} \, |\phi|^{2} + \lambda \, |\phi|^{4}$

Higgs physics What we actually know

 $V = -\mu^2 \, |\phi|^2 + \lambda \, |\phi|^4$

Anke Biekötter - JGU Mainz

Higgs physics What we actually know

 $V = -\mu^2 |\phi|^2 + \lambda |\phi|^4$

Anke Biekötter - JGU Mainz

Good reasons to believe that the Higgs is related to BSM physics

[Dawson et al. (<u>2209.07510</u>)]

Higgs physics at e+e- colliders

Anke Biekötter - JGU Mainz

[CLIC (<u>1608.07537</u>)]

Higgs physics at e+e- colliders

Anke Biekötter - JGU Mainz

[CLIC (<u>1608.07537</u>)]

Deviations from SM predictions at low energies could be an indirect hint of new physics at higher energy scales

Deviations from SM predictions at low energies could be an indirect hint of new physics at higher energy scales

[Dawson et al. (<u>1310.8361</u>)]

odel	κ_V	κ_b	κ_γ
Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
DM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
ng MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
posite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Higgs self-couplin

 $V = -\mu^2 \, |\phi|^2 + \lambda \, |\phi|^4$

From single-Higgs

Anke

[Macullauah (1210 2200)] The trilinear Higgs self-couplin

Two runs needed for good sensitivity to κ_{λ}

- All FCC-cc myys measurements are important in this fit
- Mast ECC as EW precision measurements are equally important

Higgs self-couplin

 $V = -\mu^2 \, |\phi|^2 + \lambda \, |\phi|^4$

From single-Higgs

Anke

[Macullauah (1210 2200)] The trilinear Higgs self-couplin

- Additiona CEPPP add FCCglobal EFI fit (J.
 - All FCC-cc myys measurements are important in this fit
 - Mast ECC as EW precision measurements are equally important

Higgs self-coupling II

$V = -\mu^{2} |\phi|^{2} + \lambda |\phi|^{4}$

From di-Higgs

Possible for NP to first show [Durieux et al. (2209.00666)] up in Higgs self-coupling

Anke Biekötter - JGU Mainz

[McCullough (<u>1312.3322</u>)] [Di Vita et al. (<u>1711.03978</u>)] [Mangano et al. (2004.03505)] [AB et al. (<u>1811.08401</u>)]

Exploration: Higgs - exotics

[Liu, Wang, Zhang (<u>1612.09284</u>)]

 10^{-1} BR(h→Exotics) 10^{-2} 10^{-3} 10^{-4} 10⁻⁵ $ME_{T} (bb) + ME_{T} (ij) + ME_{T} (TT) + ME_{T} bb + ME_{T} ij + ME_{T} (TT) + ME_{T} (bb)(bb) (cc)(cc)$

Anke Biekötter - JGU Mainz

11

More BSM exploration potential [Bernardi et al. (2203.06520)]

Axion-like particles

Anke Biekötter - JGU Mainz

Heavy neutral leptons

12

Exciting times ahead if a future collider is built!

- Guaranteed deliverables:
 - Precision measurements
 - Higgs self-coupling
- Potential direct discoveries

Exciting times ahead if a future collider is built!

- Guaranteed deliverables:
 - Precision measurements
 - Higgs self-coupling
- Potential direct discoveries

Thank you for your attention!

Anke Biekötter - JGU Mainz

Backup

References

- HL-LHC [Cepeda et al. (<u>1902.00134</u>)]
- ILC [Adachi et al. (<u>2203.07622</u>)]
- CLIC [Robson, Rologg (<u>1812.01644</u>)]
- FCC [Bernardi et al. (2203.06520)]
- CEPC [Cheng et al. (2205.08553)]
- MuC [Forslund, Meade (2203.09425)], [de Blas, Gu, Liu (2203.04324)]

- Lepton colliders [de Blas et al. (<u>1907.04311</u>)]
- Global SMEFT fits at future colliders [de Blas et al. (2206.08326)]
- HE-LHC [AB et al. (<u>1811.08401</u>)]
- HepFit [de Blas et al. (<u>1910.14012</u>)]

Higgs couplings fits: ESU2020 → Snowmass

Snowmass: Summary of collider scenarios considered in the SMEFT studies

Machine	Pol. (e^{-}, e^{+})	Energy	Luminosity
HL-LHC	Unpolarised	14 TeV	3 ab^{-1}
ILC		$250 { m GeV}$	2 ab^{-1}
	$(\mp 80\%, \pm 30\%)$	$350 \mathrm{GeV}$	$0.2 \ {\rm ab}^{-1}$
		$500 \mathrm{GeV}$	4 ab^{-1}
	$(\mp 80\%, \pm 20\%)$	1 TeV	8 ab^{-1}
CLIC	$(\pm 80\%, 0\%)$	380 GeV	$1 {\rm ~ab^{-1}}$
		$1.5 { m TeV}$	2.5 ab^{-1}
		3 TeV	5 ab^{-1}
FCC-ee	Unpolarised	Z-pole	150 ab^{-1}
		$2m_W$	$10 {\rm ~ab^{-1}}$
		240 GeV	5 ab^{-1}
		$350 \mathrm{GeV}$	$0.2 {\rm ~ab^{-1}}$
		$365 \mathrm{GeV}$	$1.5 {\rm ~ab^{-1}}$
CEPC	Unpolarised	Z-pole	100 ab^{-1}
		$2m_W$	6 ab^{-1}
		240 GeV	$20 {\rm ~ab^{-1}}$
		$350 { m GeV}$	0.2 ab^{-1}
		$360 { m GeV}$	$1 {\rm ~ab^{-1}}$
MuC	Unpolarised	$125 \mathrm{GeV}$	0.02 ab^{-1}
		3 TeV	3 ab^{-1}
		10 TeV	$10 {\rm ~ab^{-1}}$

Jorge de Blas Univ. of Granada

Anke Biekötter - JGU Mainz

MUonE experiment @ CERN

$$a_{\mu}^{\text{HLO}} = \frac{\alpha_0}{\pi} \int_0^1 \mathrm{d}x \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)]$$

Will shed light on muon g-2 anomaly

[Matteuzzi et al. (MUonE)]

$\mu e \rightarrow \mu e$

