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The dawn of GW astronomy

ritational
cetime perturbations
e Almost free streaming
e The ultimate cosmological probe

1.0 LIGO Hanford Data  predicted
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Why GWs are interesting?
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Finally detected (GW150914)! (7}

t + Some detectors are active now
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1.0/ IGO Hanford Data

More will join in the next years
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Unveil new details on gravity

* Figures from https://www.nasa.gov/sites/default/files/thumbnails /image/ns_gw_art.jpg

and https://www.ligo.org/detections/images/ligoGW150914signals-lg.jpg
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Exploring the cosmic history with GWs
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« First Stars & Galaxies Form

Cosmic Microwave Back

0.01s 3 min 380,000 yrs 200 Million yrs 13.8 Billion yrs
Age Of the Unlverse BICEP2 Collaboration/CERN/NASA

GWs decouple much earlier than photons and neutrinos!

Could bring info on scales we cannot access in any other way

* Figure from https://home.cern/news/series/lhc-physics-ten/recreating-big-bang-matter-earth 4/16
BICEP2 Collaboration/CERN/NASA
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Present and future GW detectors

Different types of detectors will probe different frequency bands (and sources)
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Individual GW sources

Individual (and possibly resolvable) sources

Signals having a predictable morphology in time and frequency

Hanford, Washington (H1) Livingston, Louisiana (L1)
Loud sources can
be seen individually
(like LVK detectors do) - o I
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* Figure from LIGO Scientific and Virgo Collaborations B.P. Abbott et al.,
Phys.Rev.Lett. 116 (2016) 6, 061102, ArXiv: 1602.03837.
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Individual GW sources

Some aspects we can probe with individual sources
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* LISA Collaboration, K.G. Arun et al. Living Rev.Rel. 25 (2022) 1,
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the unknown...

4, ArXiv: 2205.0159

Massive Gravitons
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Individual GW sources
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Stochastic Gravitational Wave Backgrounds (SGWBs)

SGWABs detection and characterization

SGWBs are:
e Stochastic signals from the whole sky
e Either cosmological or astrophysical origin
e Invaluable source of information (HEP!)
e A target for all future detectors
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Detection prospects?
@ At least two SGWB components (SOBBHs and CGBs) are guaranteed signals for LISA!
@ LIGO/Virgo/KAGRA + future Earth-based interferometers (LIGO-India, ET, CE, ...)
@ Millisecond pulsars timing to detect GWs (hints for SGWB detection..)

Isotropy / Anisotropy
Stationary / Non-stationary
Polarized / Unpolarized
Statistical properties
Frequency shape

Few characteristics
to classify SGWBs:

l
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* Figure from: https://sci.esa.int/web/planck/-/60500-plancks-view-of-the-cosmic-microwave-background
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Stochastic Gravitational Wave Backgrounds (SGWBs)

Sources for SGWBs of cosmological origin

GW Energy Density vs Detector Sensitivity
|
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The detection of any of these signals could unveil signatures from HEP:
@ Inflaton’s coupling to other particles?

@ Occurrence of first order phase transitions in the ealy Univer?

@ Generation (and interactions within networks of) cosmic strings?

* Figure from LISA Cosmology Working Group WP, P. Auclair et al., Living Rev.Rel. 26 (2023) 1, 5, ArXiv: 2204.05434 9/16



SGWB detection to constrain HEP
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Inflation

Minimal realization of inflation: ~ — S = [d'xy/=g (& + & — V(¢)).
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GWs from slow-roll inflation are too feeble to be detected!
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GWs from slow-roll inflation are too feeble to be detected!

Things change dramatically in non-minimal scenarios:
(see, e.g., N. Bartolo et al., JCAP 12 (2016) 026, ArXiv: 1610.06481)

@ Axion inflation: £ D 4/\(DFF
@ Spectator fields: £ D P(c,0)
@ Symmetry breaking: my # 0

]
* Figures from Baumann, ArXiv: 0907.5424 10/16
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Cosmic Strings

CS might form in the early Universe Evolution turn long strings into loops
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GWs from CS form a (loud?) SGWB (and also produce bursts)!

v
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Evolution turn long strings into loops
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GWs from CS form a (loud?) SGWB (and also produce bursts)!
107 EPTA 10
10- 107 boda LISA
& 1071°
=}
£ 100
1072
10! 1014
107 ' 1[7 O l‘l; ° et “l?)i a - 1‘5 T E— “llj)" et
f[Hz

frequency (Hz)

* Figures from Ringeval, Adv.Astron. 2010 (2010) 380507, ArXiv: 1005.4842, Shellard and Vilenkin 1994,
Gouttenoire, Servant and Simakachorn JCAP 07 (2020) 032, ArXiv: 1912.02569, 11/16

Auclair et al. JCAP 04 (2020) 034, ArXiv: 1909.00819, Cui, et al. Phys.Rev.D 97 (2018) 12, 123505, ArXiv:1711.03104.
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First order phase transitions

First order
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Bubble collisions, sound waves in plasma, and MHD turbulence contribute to SGWB!
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First order phase transitions

FOPT — Bubble nucleation

First order Second order
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Bubble collisions, sound waves in plasma, and MHD turbulence contribute to SGWB!
In SM both EW and QCD PTs should be second order = D

etection implies BSM!
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JCAP 03 (2020) 024, ArXiv: 1910.13125, 12/16

* Figures from Rubakov ArXiv:1804.11230, Caprini et al.,
Auclair et al. Living Rev.Rel. 26 (2023) 1, 5, ArXiv:2204.05434
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Conclusions and outlook

Some general conclusions:
@ GWs have a great potential to probe High Energy Physics (HEP)
@ Individual sources — direct way to test modifications of gravity

@ SGWBs of cosmological origin — new window on BSM!
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Some general conclusions:
@ GWs have a great potential to probe High Energy Physics (HEP)
@ Individual sources — direct way to test modifications of gravity

@ SGWBs of cosmological origin — new window on BSM!

New ideas and tools will be necessary:
@ Cross-correlations with other probes (CMB, LSS, ...?7)

@ lIdentification of “smoking-gun" observables for the different mechanisms
(chirality, anisotropy, time modulations, statistical properties, ...)

@ Data analysis techniques to fully exploit the data

More detectors to cover all frequencies:
@ More Earth-based detectors (also new generation) will join the network
@ First space-based detectors: LISA + (maybe ?) Taiji/TianQin
@ Others?

13/16
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High frequency GWs?

What about high
frequency GWs?? o
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What about high
frequency GWs??

Several mechanisms predict
signals at high frequency
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* Figures from https://cerncourier.com/a/exploring-the-early-universe-with-gravitational-waves/
N. Aggarwal et al. Living Rev.Rel. 24 (2021) 1, 4, ArXiv: 2011.12414
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“Ultra-high frequency
gravitational waves:
where to next?”

Workshop @ CERN,
Dec 4 - 8, 2023
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Other probes?

Some astro/cosmo DM probes:

e Detection of X-rays and ~-rays e CMB (anistropies/distorsions/...)
e High-energy neutrinos searches e 21-cm line at high redshift

e Charged cosmic rays e Lyman-« forest

e Axion Indirect Detection e Gravitational lensing

o ... L]

21 cm

[Dwarf galaxies cosmic dawn)

I' High-Energy Photon Landscape

21 em Hw0
dark ages

Lyman —a forcst

CMB anisotropy

CMB lensing

LHAASO >

* Figures from Snowmass2021 Theory Frontier White Paper, ArXiv:2203.06380 15/16
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Last Slide

The end

Thank you for your attention
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