

Introduction to particle detectors

Taking pictures of particles

Clara Nellist

Radboud University and Nikhef

(she / her)

International Teacher Weeks Programme

8th August 2023

Introduction to me

- Particle physicist working on the ATLAS experiment
- Science communicator

My career path

The University of Manchester

Masters on the D0 at Fermilab

Top quark cross-section measurement

PhD in particle physics working on the ATLAS Experiment at CERN

Research on 3D silicon pixel detectors for the Insertable B-Layer upgrade of ATLAS

GEORG-AUGUST-UNIVERSITÄT Göttingen

Postdoctoral research positions: LAL, France & Göttingen, Germany

Hardware: Research planar pixel detectors for the ATLAS ITk upgrade project

Analysis: Higgs -> TT cross-section measurement Top quark: ttH, ttV and ttZ, tt production cross-section, tttt production cross-section

Currently: Radboud University

Radboud Excellence Initiative Fellow

Top quark: tttt production cross-section, elastic top production with forward protons.

Machine learning: Anomaly detection to search for new physics (potentially dark matter).

Operations: ATLAS Control Room Operations for Run 3.

Voyage into the world of atoms

Standard Model Production Cross Section Measurements

Status: July 2021

But what are	e we lo	okina [.]	for?

$-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - \underline{g}_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}\underline{g}^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$	
$\frac{1}{2}ig_{s}^{2}(\bar{q}_{j}^{a}\gamma^{\mu}q_{j}^{\sigma})g_{\mu}^{a} + G^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}G^{a}G^{b}g_{\mu}^{c} - \partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - g_{\mu}G^{a}G^{b}G^{b}G^{a}G^{b}G^{b}G^{a}G^{b}G^{b}G^{b}G^{b}G^{b}G^{b}G^{b}G^{b$	
$M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}\partial_{\mu}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0} - \frac{1}$	
$\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M}{g^{2}} + \frac{1}{2}m_{h}^{2}H^{2}] + \frac{1}{2}m_{h}^{2}H^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}$	
$\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^\nu - \psi^\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^\mu - \psi^\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^\mu - \psi^\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^\mu W^\mu - \psi^\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^\mu W^\mu - \psi^\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^\mu W^\mu - \psi^\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^\mu W^\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^\mu W^\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^\mu] + \frac{2M^4}{g^2}\alpha_h - i$	
$\frac{W_{\nu}^{+}W_{\mu}^{-}}{V_{\nu}^{-}} - \frac{Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})}{V_{\mu}^{-}} + \frac{Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+})}{V_{\nu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+})}{V_{\mu}^{-}} + \frac{Z_{\mu}^{0}(W_{\mu}^{+})}{V_{\mu}$	
$W_{\nu} O_{\nu} W_{\mu})] - igs_{w} [O_{\nu} A_{\mu} (W_{\mu} W_{\nu} - W_{\nu} W_{\mu}) - A_{\nu} (W_{\mu} O_{\nu} W_{\mu} - W_{\nu} W_{\nu} + W_{\nu} W_{\nu} - W_{\nu} W_{\mu})]$	
$a^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}W^{-}_{\nu}) + a^{2}s^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\nu}A_{\nu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\mu}A_{\mu}W^{+}_{\mu}A_{\mu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\mu}A_{\mu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}) + a^{2}s^{2}s^{2}_{w}(A_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}A_{\mu}$	
$W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] -$	
$\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+ + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^- +$	
$gMW^+_{\mu}W^{\mu}H - \frac{1}{2}g\frac{M}{c^2_w}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^ \phi^-\partial_{\mu}\phi^0) -$	
$W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}) - W_{\mu}^{-}(H\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}$	
$ \phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) + ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) + ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) + ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}$	
$igs_w MA_\mu (W^+_\mu \phi^ W^\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^ \phi^- \partial_\mu \phi^+) +$	
$igs_w A_\mu (\phi^+ \partial_\mu \phi^ \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] -$	
$\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2} + (\phi^{0})^{2} + 2(2s_{w}^{2} - 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-} + \phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{$	
$W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{*}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{-}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-}$	l
$W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}\phi^{-}\phi^{-}\phi^{-}\phi^{-}\phi^{-}\phi^{-}\phi^{-}\phi^{-$	
$\frac{g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-}}{2} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{j}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{j}^{\lambda} - \frac{\bar{v}^{\lambda}}{2}(\gamma\partial + m$	
$\frac{d_j^{\gamma}(\gamma \mathcal{O} + m_d^{\gamma})d_j^{\gamma} + igs_w A_{\mu}[-(e^{\gamma}\gamma^{\mu}e^{\gamma}) + \frac{z}{3}(u_j^{\gamma}\gamma^{\mu}u_j^{\gamma}) - \frac{1}{3}(d_j^{\gamma}\gamma^{\mu}d_j^{\gamma})] + \frac{ig}{3}\frac{2}{3}\left[(\overline{u_j^{\gamma}\gamma^{\mu}}d_j^{\gamma}) + (\overline{u_j^{\gamma}\gamma^{\mu}}d_j^{\gamma})\right] + \frac{ig}{3}\frac{2}{3}\left[(\overline{u_j^{\gamma}\gamma^{\mu}}d_j^{\gamma}) + (\overline{u_j^{\gamma}\gamma^{\mu}d_j^{\gamma})\right] + \frac{ig}{3}\frac{2}{3}\left[(\overline{u_j^{\gamma}\gamma^{\mu}d_j^{\gamma}) + (\overline{u_j^{\gamma}\gamma^{\mu}d_j^{\gamma})\right] + \frac{ig}{3}\left[(u_j$	
$\frac{1}{4c_w} Z_{\mu} [(\nu^{-\gamma}\gamma^{\mu}(1+\gamma^{2})\nu^{-\lambda}) + (e^{-\gamma}\gamma^{\mu}(4s_w^{-1}-\gamma^{2})e^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(\frac{1}{3}s_w^{-\lambda} - \frac{1}{3}s_w^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(1+\gamma^{2})\nu^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(\frac{1}{3}s_w^{-\lambda} - \frac{1}{3}s_w^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(1+\gamma^{2})\nu^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(\frac{1}{3}s_w^{-\lambda} - \frac{1}{3}s_w^{-\lambda}) + (u_{j}^{-\gamma}\gamma^{\mu}(1+\gamma^{2})\nu^{-\lambda}) + (u_{j}^{-$	
$\frac{1 - \gamma}{2\sqrt{2}} u_j + (u_j \gamma (1 - \frac{1}{3}s_w - \gamma) u_j) + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right] + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \left[(\nu \gamma (1 + \gamma) e) + \frac{1}{2\sqrt{2}} v_\mu (1 + \gamma) e \right$	
$(u_j^*\gamma^{\mu}(1+\gamma^{\mu})C_{\lambda\kappa}u_j)] + \frac{1}{2\sqrt{2}}W_{\mu}\left[(e^{-\gamma}\gamma^{\mu}(1+\gamma^{\mu})D^{\mu}) + (u_j^*C_{\lambda\kappa}\gamma^{\mu}(1+\gamma^{\mu})D^{\mu})\right]$	
$\frac{\gamma^{(j)}(u_j^{(j)})}{2\sqrt{2}} + \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} e^{\lambda} \right) \right] \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) \nu^{(j)} e^{\lambda} \right) \right] \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) \right] - \frac{2g}{2\sqrt{2}} \frac{m_e}{M} \left[-\phi^+ \left(\nu^{(1-\gamma^{(j)})} e^{\lambda} \right) + \phi^- \left(e^{\lambda} (1+\gamma^{(j)}) e^{\lambda} \right) \right] \right]$	
$\frac{\frac{g}{2}}{\frac{m_e}{M}} \left[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda}) \right] + \frac{ig}{2M\sqrt{2}}\phi^+ \left[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + \right]$	
$m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{\imath g}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(d_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(d_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(d_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(d_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^$	
$[\gamma^5)u_j^\kappa] - rac{g}{2}rac{m_u^\lambda}{M}H(ar u_j^\lambda u_j^\lambda) - rac{g}{2}rac{m_d^\lambda}{M}H(ar d_j^\lambda d_j^\lambda) + rac{ig}{2}rac{m_u^\lambda}{M}\phi^0(ar u_j^\lambda\gamma^5 u_j^\lambda) - rac{g}{2}rac{m_u^\lambda}{M}\phi^0(ar u_j^\lambda\gamma^5 u_j^\lambda + rac{g}{2}rac{m_u^\lambda}{M}\phi^0(ar u_j^\lambda\gamma^5$	
$\frac{ig}{2}\frac{m_{d}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2}-M^{2})X^{+} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{A$	
$\frac{M^2}{c_w^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_\mu(\partial_\mu \bar{X}^0 X^ \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^ \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu(\partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y} X^0) + igs_w W^+_\mu(\partial_\mu \bar$	
$\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$	
$\partial_{\mu}YX^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + ig$	
$\partial_{\mu}X^{-}X^{-}) - \frac{1}{2}gM[X^{+}X^{+}H + X^{-}X^{-}H + \frac{1}{c_{w}^{2}}X^{0}X^{0}H] +$	
$\frac{1-2c_w}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^-] + \frac{1}{2c_w}igM[$	
$igMs_w[X^0X^-\phi^+ - X^0X^+\phi^-] + \frac{1}{2}igM[X^+X^+\phi^0 - X^-X^-\phi^0]$	I.D. Gutierrez

Studying nature's building blocks and the forces that govern them

By colliding heavy ions in the LHC, also recreate the conditions in the early Universe and an exotic form of matter known as quark-gluon plasma.

The Big Questions

Image: Jorge Cham / PhD Comics

The discovery of a new boson!

The Higgs boson – a major success of the first LHC run.

and musified

6

min

View o

minite

S ME STORE

-

-17

Colliding protons

We wanted to explore a high range of masses: from 50 GeV to 1 TeV

ATLAS Installation in the cavern

ATLAS Installation in the cavern

Albania Hong Kong Philippines Algeria Hungary Argentina Iceland Poland Armenia India Portugal Australia Indonesia Austria Iran Saudi Arabia Azerbaijan Bangladesh Ireland Belarus Israel Slovakia Bosnia and Slovenia South Africa Botswana Kazakhstan South Korea Brazil Bulgaria Latvia Sudan Canada Lebanon Swaziland Lithuania Luxembourg Switzerland Madagascar Taiwan Malaysia Malta Thailand Montenegro Finland Netherlands New Zealand Uzbekistar Zimbabwe

Ser.

ATLAS Collaboration member nationalities

SE.

Over 5500 members of 103 nationalities

DE

0

Principles of particle interaction

Ionisation

Pair production

 γ e^{-} e^{+} (a)

Compton scattering

The inner detector

- This is the closest part of the detector to the collision point.
- Tracking
 - Momentum and positions of charged particles.
- Millions of channels to provide multiple hits.
- Needs to be radiation hard.

The pixel detector

How a pixel detector works

Research on pixel detectors for the ATLAS IBL

upgrade

Transition Radiation Tracker

Calorimeters

Calorimeters: LAr

Calorimeters: Hadronic

Muon Spectrometer

- Subsections of the Muon System:
- Thin Gap Chambers
- Resistive Plate Chambers
- Monitored Drift Tubes
- Cathode Strip Chambers

Muon Spectrometer

Toroid barrel

Forward detectors: AFP

- When one or both protons remain intact.
- Due to the lower energy after interaction, protons are bent more by the LHC and are detected in AFP, 210m away.
 - Silicon pixel detectors are installed 2mm from the proton beam.

Forward detectors: FASER

- ForwArd Search ExpeRiment
- Search for new, undiscovered, light and weakly interacting particles
 - E.g. dark photons, axion-like particles and sterile neutrinos
 - If low mass, can be produced in rare decays of hadrons.

600 million collisions every second

Have only taken ~ 10% of planned data so far

The LHC schedule

Upgrades

Future upgrades

Nik hef

Introduction to particle detectors

Taking pictures of particles

UNIVERSITEIT VAN AMSTERDAM

Thank you!

Clara Nellist

UvA and Nikhef

(she / her)

