

An introduction to RL and its
applications at CERN
Matteo Bunino (matteo.bunino@cern.ch) - Fellow @ CERN openlab

21 Jul 2023

Acknowledgements
RL theory: Sutton and Barto book
“Reinforcement Learning: an introduction”, Prof.
David Silver lectures, Prof. Marios Kountouris
(EURECOM) notes, Felix Wagner.

RL use cases at CERN: M. Schenk, J. Wulff, N.
Bruchon, B. Goddard, S. Hirlander, V. Kain, N.
Madysa, G. Valentino, F. Velotti, CERN Openlab,
and the ML Community Forum.

If you find some of your materials without the
proper credits, let me know and I will update the
slides accordingly. Send me an email to
matteo.bunino@cern.ch

321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

http://incompleteideas.net/book/the-book-2nd.html
https://www.davidsilver.uk/teaching/
https://indico.cern.ch/event/1208723/contributions/5229962/

 421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Image credits

https://www.researchgate.net/figure/The-main-types-of-machine-learning-Main-approaches-include-classification-and_fig1_354960266

Use cases motivating reinforcement learning (RL)
Examples from Sutton and Barto book:

• A master chess player makes a move. The choice is informed both by planning – anticipating possible replies
and counterreplies - and by immediate, intuitive judgments of the desirability of particular positions and moves.

• An adaptive controller adjusts parameters of a petroleum refinery’s operation in real time. The controller
optimizes the yield/cost/quality trade-off on the basis of specified marginal costs without sticking strictly to
the set points originally suggested by engineers.

• A gazelle calf struggles to its feet minutes after being born. Half an hour later it is running at 20 miles per hour.

• A mobile robot decides whether it should enter a new room in search of more trash to collect or start trying to
find its way back to its battery recharging station. It makes its decision based on the current charge level of its
battery and how quickly and easily it has been able to find the recharger in the past.

521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

RL in games

621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

“AlphaStar” wins Starcraft against
99.85% of human players (2019).

“AlphaGo” winning against
the Go world champion (2016).

https://www.nature.com/articles/s41586-019-1724-z

https://www.nature.com/articles/nature16961

Look for “AlphaGo’s move 37” on the web...

https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/nature16961

Reinforcement learning concepts

In a nutshell: learn a policy which maximizes the total expected reward
over time.

Multistage decision-making process: the learner is not told which
actions to take - it discovers which actions yield the most reward by trying
them.

Not supervised learning: the agent learns from its own experience, not
from representative examples.

Not unsupervised learning: maximize a reward signal instead of trying to
find hidden structure in data.

Reinforcement learning (RL) peculiarities:

- Learn by trial-and-error search
- Delayed reward

721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

…similar to human learning

Reinforcement learning concepts

Goal: learn the optimal policy which maximizes the total
expected reward over time.

Environment: can be accessible only partially. Some dynamics
may remain obscure, and we get only what we can observe.

Interpreter: that’s defined by us. Sort of pre-processing. It builds
the state based on the history of previous observations and
interactions. It also implements the reward function.

State: describes the environment. It belongs to the states space

Reward (scalar number) is the only feedback the agent receives,
which describes the “goodness” of the trajectory so far.

Action: sampled by the agent from the actions space

Interaction defines trajectories:

821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Observation

Reinforcement learning concepts

Goal: learn the optimal policy which maximizes the total
expected reward over time.

Policy is a mapping from perceived states of the environment to
actions to be taken:

State value function: value of a state = total amount of reward an
agent can expect to accumulate over the future, starting from that
state (specifies what is good in the long run).
It estimates how good is for an agent to be in a given state.

921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Observation

Reinforcement learning concepts - example

Goal: learn the optimal policy which maximizes the total expected
reward over time.

State: tuple (ball_x, ball_y, cursor_h, opponent_cursor_h), for each t.

Action: up or down of 1cm. {‘up’, ‘down’}

Reward: e.g., scored points, or +1 if agent scored, -1 if opponent scored, 0
otherwise. The design of the reward function is often tricky and shall be
tuned.

Optimal policy: find the best mapping between the state and the action
to take. E.g., go up when the ball is coming top right.

State value function (informal): how many points am I expecting to score
given that now I am in state ?

1021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Atari’s “Pong”

Reinforcement learning challenges
• Often a long sequence of actions before we discover consequences of the actions.

• e.g., win or lose game only after moves are complete.

• Never see the result of actions not taken.

• Never told what the best action was.

• The outcome of our actions may be uncertain.

• We may not be able to perfectly sense the state of the world.

• The reward may be stochastic or delayed.

• We may have no clue (model) about how the world responds to our actions.

• We may have no clue (model) of how rewards are being paid off.

• World may change while you try to learn it: dynamic environment.

• How much time for exploration (of an uncharted territory) before exploitation of what we have learned?

1121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Foster innovative
solutions, e.g.,
“AlphaGo’s move 37”

 v

Markov Decision Process

21 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Maths prerequisites

1321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Markov Decision Process (MDP)
The environment can be modeled as an MDP when the
following are known:

● Action space:
● State space:
● Reward space:
● MDP dynamics:

The MDP/env dynamics fully describes the MDP under
analysis, allowing for analytical solutions.
MDP is finite if are finite sets.
Under this formulation, we say that the agent interacts with
the environment by performing some action , transitioning
to a new state and receiving a scalar feedback called
reward .
This results in a trajectory:
(where is the terminal state).
Markov property:

1421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Random variables

Environment dynamics
When the environment dynamics function is known, we can compute everything else one may want to know
about the environment:

• State-transition probabilities

• Expected rewards for state-action pairs

• Expected rewards for state-action-next-state triples

1521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Episodic and continuing tasks
Continuing tasks:

- The agent-environment interaction could go on
forever.

- There is no terminal state.
- Trajectories can reach infinite length.
- Examples: thermostat keeping the room

temperature stable, steering the beam in the LHC.

Episodic tasks:
- The agent-environment interaction is limited in

time.
- At some point a terminal state is reached.
- Examples: board games, video games, robotic arm

manipulating objects.

1621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Return
The goal of the agent is to find the optimal policy: “what is the best action I should take in state St?”
To assess the “goodness” of a state (an action), the agent tries to estimate the cumulative future reward of a
trajectory starting from that state (and taking that action). More formally, we call this property return, and we define it
as the cumulative future reward:

 is the discount factor. For continuing tasks , thus the discount factor has to be for the sum to
converge.

1721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Policy
A policy describes the behavior of the RL agent, mapping from state to probabilities of selecting each possible action.
Policy

Example:

The first step to find the optimal policy is to assess how good is the current one…

1821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

p(a1) p(a2)

State s1 0.7 0.3

State s2 0.1 0.9

S1

S2
a1

a2

a1

a2

0.7

0.3

0.1

0.9

Value Functions
Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

1921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

How to generalize this?

Value Functions
Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

2021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Still not so useful… What do we
do with ?

Value Functions
Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

2121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Interesting recursive relationship
to “remove” the return… thus the

explicit dependency on the
future.

Value Functions
Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

2221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

When is finite, we can solve it directly as a linear system in unknowns:

Where R is the immediate expected reward and P is the state transition matrix.
However, this is expensive also for small MDPs!

Value Functions

2321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

The state-action value function is the expected return when starting in state , taking action , and following
thereafter:

Value Functions

2421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Very similar to the state value function…
but not recursive

Allow to assess the “goodness” of some policy .
The state value function is the expected return when starting in state and following thereafter:

The state-action value function is the expected return when starting in state , taking action , and following
thereafter:

Value Functions

2521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

So far, we “evaluated” some policy by computing its associated value functions and .
How can we compute directly the optimal policy ?

The optimal policy is the one which maximizes the expected cumulative future reward in each state .

Bellman optimality equations

2621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

The goal of the RL agent is to find the optimal
policy which maximizes the

value functions.

a.k.a. value function

State value functions:

State-action value functions:

Bellman optimality equations

2721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

In both cases, we replace the expectation
with a max over the action space

The optimal policy is the policy that assigns non-zero probabilities only to the actions that maximize the the value
function in some state, for all states.

Optimal policies

2821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

a1 a2 a3

s1 20 30 30.1

s2 15 15 3

Optimal state-action value function

Pr(a1) Pr(a2) Pr(a3)

s1 0 0 1.0

s2 0.5 0.5 0

Optimal policy #1

Pr(a1) Pr(a2) Pr(a3)

s1 0 0 1.0

s2 0.99 0.01 0

Optimal policy #2

Pr(a1) Pr(a2) Pr(a3)

s1 0 0 1.0

s2 1.0 0 0

Optimal policy #3

Pr(a1) Pr(a2) Pr(a3)

s1 0 0 1.0

s2 0 1.0 0

Optimal policy #4

Greedy policies

In some situations, we can assume that the environment can be modeled as a Markov decision process.
The environment dynamics are fully known as a common function.
In the discrete case, you can imagine p as a 4-dimensional lookup table for probabilities.
This allows us to easily compute Bellman equations and Bellman optimality equations:

These recursive equations can be solved
- As system of (non)linear equations
- Iteratively by means of dynamic programming (e.g., policy iteration, value iteration algorithms). Not covered in

this lecture.
From the Bellman optimality equations, it is easy to obtain the optimal policy which maximizes future rewards.

MDP summary

2921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

 3021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

 v

Sample-based methods

21 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Sample-based methods
When the environment dynamics are not known, we can
simulate them by interacting directly with the environment.
Again we can have episodic and continuing tasks.
In this case, episodes are characterized by trajectories of finite
length, terminated by some terminal state :

• The longer we interact with the environment,
• the more data we collect,
• the better our estimate of the underlying dynamics will

be precise…
…at the cost of taking very long time.

Sample efficiency (informally): how many interactions with the
environment do we need before being able to exploit the gained
knowledge for our goals?

3221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Observation

Monte Carlo methods
Base on experience: sample sequences of states, actions and rewards from actual or simulated interactions with the
environment:
“Monte Carlo” replace expectation on the return with average:

 is known only at the end of an episode, thus we can only apply Monte Carlo
methods to episodic tasks, which terminate at some point (reach some terminal state).
Therefore, value functions and policies are updated only at the end of each episode. Monte carlo is incremental in an
episode-by-episode sense, but not in a step-by-step sense (on-line):

3321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Monte Carlo prediction

3421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Prediction = estimating the value function

Monte Carlo prediction - example

3521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Observation

Interact with the env…

p(a1) p(a2)

State s1 0.7 0.3

State s2 1.0 0

S1

S2
a1

a2

a1

a2

0.7

0.3

1.0

0

…according to some policy.

Q(s,a) a1 a2

State s1 ??? ???

State s2 ??? ???

Initial Q table:

Q(s,a) a1 a2

State s1 23.1 12.09

State s2 2.57 ???

Resulting Q table:

Upon convergence

We never visited (s2, a2)!

Exploration v. exploitation
When the env dynamics are not known, we need
to sample from the environment, at the risk of
incurring in bias.
Exploration requires devoting some
interactions budget to low-rewarding
interactions, however in the long run it can
result in better rewards.
Exploiting too early can lead to suboptimal
policies, which are too shortsighted. They prefer
small immediate rewards versus big delayed
rewards.
Too few exploration in favour of exploitation may
bias the agent, with the risk of locking him
sub-optimal policies forever!
To find the best policy, the agent may have to
explore a lot before, at a greater computational
cost. Trade-off!

3621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Maintaining exploration
In practice, a popular way to maintain exploration is resorting to -greedy policies.

 Is usually small (e.g., 0.1) and < 1 .
Example, given 3 actions a1, a2, a3 where A*=a3:

3721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

(Greedy action)

1-

1/3

1/3

1/3

a1

a2

a3

a3

Pr(a1) = /3

Pr(a2) = /3

Pr(a3) = /3 + (1 -)

Let’s visualize it with
the help of a

probability tree…

Monte Carlo control

3821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Control = improving the current policy

Novelty

Monte Carlo control- example

3921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Observation

Interact with the env…

p(a1) p(a2)

State s1 /2 + 1 - /2

State s2 /2 + 1 - /2

S1

S2
a1

a2

a1

a2

0.7

0.3

1.0

0

…according to some policy.

Q(s,a) a1 a2

State s1 ??? ???

State s2 ??? ???

Initial Q table:

Estimate Q table

Loading…

Machine learning
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum commodo diam nec ex dignissim mollis. Nunc posuere risus eu orci
ultrices, sed cursus orci malesuada. Maecenas lectus nnc, scelerisque et pharetra at, condimentum sed purus. Fusce ac massa et orci
euismod auctor. Proin et hendrerit justo. Nulla facilisi. Quisque eros augue, vehicula ac cursus a, rhoncus vitae leo. In eu tortor id urna pretium
feugiat.

Quisque et convallis mauris, aliquet iaculis diam. Morbi eu iaculis ipsum. Aenean justo massa, aliquam eget metus non, sodales pharetra elit.
Curabitur sed varius leo. Donec volutpat purus vel molestie congue. Morbi congue commodo massa in viverra. Curabitur et hendrerit ipsum.
Cras condimentum iaculis libero nec imperdiet. Integer elit nulla, mollis eget porta accumsan, semper at tellus. Duis egestas, ligula a gravida
elementum, enim magna bibendum turpis, ut pretium arcu purus et urna. Pellentesque facilisis sapien eu tellus ultricies aliquet.

4021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

MC has high variance + off-line -> slow learning

Monte Carlo control- example

4121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Q(s,a) a1 a2

State s1 ??? ???

State s2 ??? ???

Initial Q table:

Q(s,a) a1 a2

State s1 23.1 12.09

State s2 2.57 42.5

Resulting Q table:

Upon convergence
Red: max action value

p(a1) p(a2)

State s1 /2 + 1 - /2

State s2 /2 + 1 - /2

Initial policy:

p(a1) p(a2)

State s1 /2 + 1 - /2

State s2 /2 /2 + 1 -

Final policy:

Control

Red background: preferred action

Monte Carlo (MC) - summary
The return is known only at the end of an episode, thus we can only apply Monte
Carlo methods to episodic tasks, which terminate at some point (reach some terminal state).
Therefore, value functions and policies are updated only at the end of each episode. Monte carlo is incremental in an
episode-by-episode sense (off-line), but not in a step-by-step sense (on-line):

Drawbacks:
- Off-line method: policies and value functions can be updated only at the end of an episode -> Low sample

efficiency: need many interactions with the environment to converge.
- Not applicable to continuing tasks.
- it is subject to relatively high variance, since it estimates the expected return as the (weighted) sum of the

rewards (random variables):

4221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

End of first episode. The second starts.

TD(0) methods
How to improve sample efficiency of MC methods?
Idea: turn off-line into on-line!
Recall that the expression of the return can be rewritten recursively:

Now, at each step (interaction) estimate the return by means of bootstrapping:

The incremental update is possible as soon as are available.

Don’t need to wait for the end of the episode to update value functions and policies.

4321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be

temporal-difference (TD) learning.”
– Barto-Sutton RL book.

TD(0) methods
Don’t need to wait for the end of the episode to update value functions and policies.
The on-line update rule becomes, for some small learning rate 0< < 1 :

In both cases, the new estimate of the value function is a linear combination of the previous estimate and the “TD
error”.

4421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

TD(0) control - SARSA

4521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

It estimates the expected return for state-action pairs assuming the current policy continues to be followed:
on-policy update for Q.

TD(0) control - Q-learning

4621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

It estimates the expected return for state-action pairs assuming a greedy policy were followed despite the
fact that it's not necessarily following a greedy policy: off-policy update for Q.

More generally, off-policy
means that the return is
computed using a different
policy from the one used to
choose the next action (i.e.,
the policy through which we
“explore” the environment).

TD(0) summary
Pros (on-line method):

- Improved sample efficiency: converges faster than MC.
- Applicable to continuing tasks.

Cons (due to bootstrapping):
- Biased estimate of the return.
- Difficult to propagate sparse rewards through bootstrapped returns.
- More susceptible to the violation of Markov property. Harder to reconstruct the whole interactions “storyline”.

SARSA vs. Q-learning:

4721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Model-based methods
The interaction with the environment may be expensive:

- Slow to respond (e.g., human)
- Costs of operating the environment (e.g., LHC)
- Env can be hardly reachable (e.g., Mars)

…how can we train our agent well, without interacting too much?
Keep a model of the environment and sample (also) from it!

4821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

General idea:
1. Interact with the real env:
2. Update Q(s,a) based on real env
3. Update the model
4. For N times:

a. Sample from model:
b. Update Q(s,a) based on model

Tabular Dyna-Q
Model: store previous interactions with the environment. Can only sample state-action pairs visited previously.

4921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Tabular Dyna-Q
Model: store previous interactions with the environment. Can only sample state-action pairs visited previously.

5021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Model-based methods - summary
Pros:

- Improve sample efficiency: reduce the number of costly interactions with the environment.

Cons:
- The model may be wrong or outdated (non-stationary environment). How often update the model?

5121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

 v

Function approximation

Limitations of tabular methods
Tabular methods encountered: Monte Carlo, SARSA, Q-learning, tabular Dyna-Q.

- State space and action space must be discrete: define rows and columns in the Q-table.
- Q-table values are learned independently: requires many interactions and cannot infer the value from a “similar”

state: there is no generalization across similar states (or state-action pair).
- Don’t scale to problems with a large number (millions) of states.

5321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

How do we represent this in a table?
One entry for each unique combination
of the colors of all pixels?

.

.

.

 . . .

. Can we find a
better way?

Atari’s “Pong”

Function approximation - value function
Function approximation shifts the task of learning the values for each state or state-action pair to learning a
parameterized version of the value functions that minimizes a given objective.

The parametric state value function is with parameters .
The objective to minimize is the Mean Squared Error in the approximation of by .

where is the proportion of times state s was visited.
The objective above can be minimized by means of Stochastic Gradient Descent (SGD), obtaining the update rule:

A similar reasoning holds for the parametric state-action value function:

5421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Function approximation - value function
Since the value function is unknown, we substitute it with an unbiased estimator of it: .

- Monte Carlo:

- TD(0): . Is bootstrap legit???

5521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Depends on the
trainable
parameters!

Function approximation - value function
Since the value function is unknown, we substitute it with an unbiased estimator of it: .

- Monte Carlo:

- TD(0): performs a semi-gradient update (do not use the full gradient information).

5621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Nice but… how to put everything together?

- Gradient update
- RL interactions
- Policy update

Function approximation - value function
Example of on-policy control with function approximation: SARSA.

5721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Function approximation - DQN
Train RL agent to play Atari games. Feature extractor: convolutional neural network (CNN). Reward: +1 if scored a
point, -1 otherwise.

Example of off-policy control with function approximation. The Q function is approximated with a neural network

5821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Image credits.Image credits.

Experience replay DQN

Image credits.

Gameplay

Off-policy: DQN is updated using “old” transitions sampled from the replay buffer

https://miro.medium.com/v2/resize:fit:1400/1*wfKvMsVMkUhEGz1YH7kCQA.png
https://wpumacay.github.io/research_blog/imgs/img_dqn_exp_replay_buffer.png
https://static.onecms.io/wp-content/uploads/sites/6/2013/01/atari-ms-pac-man_510x380.jpg

Function approximation - DQN
Continuous state space: embedding vector produced by the feature extractor (CNN, part of DQN).

Discrete actions space: depends on the specific game.

Experience replay:

- Similar idea as Dyna-Q for model-based RL.
- Improves sample efficiency: DNNs are data hungry.
- Decorrelates samples in the training batch. Good for convergence properties and training stability.

5921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Q(s, a1)

Q(s, a2)

Q(s, a3)

Q(s, a4)

State features
Image credits.

https://www.analog.com/-/media/images/analog-dialogue/en/volume-57/number-1/articles/training-convolutional-neural-networks-what-is-machine-learning-part-2/491280-fig-01.svg?w=435

Function approximation - DQN
Update rule:

1. Sample a batch of B transitions from the replay buffer (hereafter #B=1).
2. Compute the loss:

3. Gradient update:

6021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

“Target” network

-

“Policy” network

Function approximation - DQN
Target and policy networks visualized:

6121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Image credits.

Copy
parameters

every K
steps

Policy network

https://miro.medium.com/v2/resize:fit:0/1*99Su482PJlvtkji_4n0A_Q.png

So far we obtained the optimal greedy policy from the (approx) optimal value function
However, in some cases it would be more convenient to learn directly the policy!

- State space may be “complex”, whereas the policy could be “easy” (e.g., always go left)
- -greedy is generally suboptimal: with probability take random action.
- Continuous action space (e.g., robotic arm control).
- Greedy policy may be suboptimal (e.g., “rock, paper, scissor”).

Function approximation - policy gradient

6221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

A greedy policy is easily exploited by
the opponent.

Example:
Always draw paper

Write the policy as a parametrized function:

For instance:

Define an objective, for instance:

And the corresponding param. update rule:

Function approximation - policy gradient

6321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Is called actions preferences. Can by a neural network.

Episodic case

Function approximation - policy gradient

6421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

REINFORCE is based on MC -> high variance.
Adding a “baseline” leaves the expected value of the update unchanged, but it can have a large effect on its variance.

Function approximation - policy gradient

6521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN Image from Barto-Sutton book

For instance:

REINFORCE with baseline

Function approximation - policy gradient

6621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN Image from Barto-Sutton book

Kind of “loss”, depends on Gt

Function approximation - actor-critic
REINFORCE based on MC -> off-line.
Solution: substitute MC return with its bootstrapped version. Becomes on-line.
Keep using value function as a baseline:

Update rules become:

6721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Value function params (critic) Policy function params (actor)

Note: they may use different alphas.

Function approximation - actor-critic

6821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Episodic case because for
the continuing case we
need to change the
objective function
(out of the context of this
lecture)

 v

RL for particle accelerators

Problem: difficult to accelerate electrons in the LHC. Due to curvature, they emit radiation and lose energy. Since the
circumference of the LHC is finite, it can provide a finite amount of energy to the particles. This results in a dynamic
equilibrium.
A possible solution could be using linear/larger accelerators (e.g., FCC), or improving how we accelerate particles.
Wakefield Acceleration Experiment: experimental beamline exploring innovative acceleration techniques.
Use two beams in the same line:
e-e-e-e-e- p+p+p+p+p+

Go through a plasma cell:
- The protons ionise the plasma, creating a wakefield:

this corresponds to a very strong electric field.
- The electrons “surf” the wakefield like a wave, receiving

a very strong acceleration.

Wakefield acceleration could replace current RF cavities in
the far future.

AWAKE - background

7021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

e-

q+

wakefield

AWAKE - beam steering
RL problem: keep the electrons beam within the beamline
and steer them into the plasma to best exploit the
wakefield.

States: readouts from 10 sensors (BPMs)
Actions: 10 correctors

Simulation of the beamline available: train the agent in
simulation and fine-tune it on the real machine.
…remember the expensive agent-environment interactions
mentioned before?

7121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Beam-time is expensive:
the agent has to learn fast!
Sample efficiency is critical.

AWAKE - beam steering
Illustration of Q-learning: 1D beam steering

7221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

AWAKE - Q-learning with NAF
- Standard DQN only applicable to discrete action tasks

- Our control tasks: typically continuous state-action spaces

- Various ways to extend Q-learning to continuous action tasks

- Most successful: actor-critic algorithms, e.g. DDPG and extensions

- If convex problem, can use trick: assume Q-function belongs to function class that is easy to optimise,
e.g., NAF (Normalized Advantage Function)

7321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

AWAKE - train Q-learning on simulation

7421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

AWAKE - train Q-learning on simulation

7521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Further experiments improved
sample efficiency by using
model-based RL, inspired to
Dyna-Q

Bunch splitting

7621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - background
RF cavities: used to accelerated particles in the LHC

7721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

http://www.youtube.com/watch?v=MTEk39Yt55M

Bunch splitting - background
RF cavities: used to accelerated particles… but also to split bunches!
The split is done in PS to prepare beams for LHC.
We gradually change the intensity (voltage) of high harmonics in the
RF cavities: h7, h14, h21

Voltage and phase has to be dynamically adjusted for each
harmonic:

- Compensate for voltage and phase errors
- Synchronize phase with beam

Done manually: not always reproducible.
Task: RL to optimise splittings to produce uniform bunches. Good for
science!

7821 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

t

Bunch splitting - background
Animation of a bunch (triple) splitting. Note the variation of intensity per harmonics.

7921 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

https://docs.google.com/file/d/1smBnCHozRnIBbZeZSESW7IDKlN7NKXOX/preview

Bunch splitting - RL problem
Automating bunch splitting is good for reproducibility. RL-based splitting is “in production” at PS.
Challenge: reward function design. For both phase and voltage, compare bunch profiles (Means Squared
Error).
Phase profiles:

8021 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - RL problem
Automating bunch splitting is good for reproducibility. RL-based splitting is “in production” at PS.
Challenge: reward function design. For both phase and voltage, compare bunch profiles (Means Squared
Error).
Similarly, for voltage profiles:

8121 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - RL problem
Optimization of voltage profiles is based on the assumption that the phase is already optimal.
Train two RL agents:

1. SAC-Phase-Sim2Real: Trained using the phase MSE loss criteria (used to define a step-wise reward) to
optimise the phase only.

2. SAC-Volt-Sim2Real: Trained using the overall MSE loss (used to define a step-wise reward) to optimise the
voltage only, assuming phase is already optimised.

8221 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - RL problem
Optimization of voltage profiles is based on the assumption that the phase is already optimal.

8321 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - RL problem
For stability reasons, it is convenient to “bias” the agent with a prediction from a supervised CNN.
The CNN is trained on simulated data.

8421 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

CNN feature
extractor

Regression head
(phases)

Guess initial phase
values

Bunch splitting - the big picture

8521 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Bunch splitting - conclusions
Trained on simulation and applied on machine without
re-training.

Consistent good performance for:
- varying intensities (1.3e11-2.6e11)
- different beam types (72b, BCMS)

Consistently rivals experienced operators in optimisation
steps: averaging ~8.5 steps per optimisation (depending on
initial conditions).

8621 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

 8721 Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN

Questions?

Matteo Bunino | An introduction to RL and its applications at CERN

