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Use cases motivating reinforcement learning (RL)

Examples from Sutton and Barto book:

A master chess player makes a move. The choice is informed both by planning - anticipating possible replies
and counterreplies - and by immediate, intuitive judgments of the desirability of particular positions and moves.

- An adaptive controller adjusts parameters of a petroleum refinery’s operation in real time. The controller
optimizes the yield/cost/quality trade-off on the basis of specified marginal costs without sticking strictly to
the set points originally suggested by engineers.

- Agazelle calf struggles to its feet minutes after being born. Half an hour later it is running at 20 miles per hour.

A mobile robot decides whether it should enter a new room in search of more trash to collect or start trying to
find its way back to its battery recharging station. It makes its decision based on the current charge level of its
battery and how quickly and easily it has been able to find the recharger in the past.
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RL in games

“AlphaGo” winning against
the Go world champion (2016).

Look for “AlphaGo’s move 37" on the web...

https:/www.nature.com/articles/nature16961
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“AlphaStar” wins Starcraft against
99.85% of human players (2019).
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https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/nature16961

Reinforcement learning concepts
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In a nutshell: learn a policy which maximizes the total expected reward
over time.

Multistage decision-making process: the learner is not told which
actions to take - it discovers which actions yield the most reward by trying
them.

Not supervised learning: the agent learns from its own experience, not
from representative examples.

Not unsupervised learning: maximize a reward signal instead of trying to
find hidden structure in data.

Reinforcement learning (RL) peculiarities:

Learn by trial-and-error search
Delayed reward

..similar to human learning
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Reinforcement learning concepts

.\O(\ I_ Goal: learn the optimal policy which maximizes the total
G(\\@\ jﬁl—i}] expected reward over time.
O\oﬁ == Environment: can be accessible only partially. Some dynamics

Environment may remain obscure, and we get only what we can observe.
Interpreter: that's defined by us. Sort of pre-processing. It builds
g the state based on the history of previous observations and
ReWard § interactions. It also implements the reward function.
Interpreter State: describes the environment. It belongs to the states space s, € S
Reward (scalar number) is the only feedback the agent receives,
(OO which describes the “goodness” of the trajectory so far. r, € R
= ) Action: sampled by the agent from the actions space a, € A
|

Interaction defines trajectories: Sy, Ay, R1, 51, A ...

Agent
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Reinforcement learning concepts

.\O(\ I_ Goal: learn the optimal policy which maximizes the total
G(\\@\ ﬁ—% expected reward over time.
ovif i

Environment . _ . :
Policy is a mapping from perceived states of the environment to

actionstobetaken: 7 : S — A
R : State value function: value of a state = total amount of reward an
Cwary

agent can expect to accumulate over the future, starting from that
state (specifies what is good in the long run). v : S —>R

Action

Interpreter
P It estimates how good is for an agent to be in a given state.
S (OO
late  \_ g/
i

Agent
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Reinforcement learning concepts - example

Atari’s “Pong”
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Goal: learn the optimal policy which maximizes the total expected
reward over time.

State: tuple (ball_x, ball_y, cursor_h, opponent_cursor_h), for each t.
Action: up or down of 1cm. 4 = {'up, ‘down’}

Reward: e.g., scored points, or +1if agent scored, -1if opponent scored, O
otherwise. The design of the reward function is often tricky and shall be
tuned.

Optimal policy: find the best mapping between the state and the action
to take. E.g., go up when the ball is coming top right.

State value function (informal): how many points am | expecting to score
giventhat now laminstate ? S
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Reinforcement learning challenges

- Often along sequence of actions before we discover consequences of the actions.
- e.g.. winorlose game only after moves are complete. \

. Never see the result of actions not taken. . )
Foster innovative

solutions, e.g.,
“AlphaGo’s move 37"

«  Never told what the best action was.
«  The outcome of our actions may be uncertain.

- We may not be able to perfectly sense the state of the world.

- The reward may be stochastic or delayed. &

«  We may have no clue (model) about how the world responds to our actions. & "or/’
- We may have no clue (model) of how rewards are being paid off.

«  World may change while you try to learn it: dynamic environment.

«  How much time for exploration (of an uncharted territory) before exploitation of what we have learned?
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Markov Decision Process
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Example:

Maths prerequisites T 0T 97

P(x)

Ep[X]=0-0.1+1-03+2-02+3-04=19

Given X, Y and Z (discrete) random variables:

Z x; p(x;) (Expectation, for some discrete probability distribution p(x))
xi~p(x)
ElaX + 8Y] = oE[X] + SE[Y] (Linearity)
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

. p(z,y)
plely) = =0, )
p(x,y) = p(z|y) p(y) (Joint probability)
p(x,y|z) = p(xly, 2) p(y|z) (Add conditional term to previous one)

L) = Z p(x,y;) Z p(x|y;) p(y;) (Marginal probability)
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Markov Decision Process (MDP)

’| Agent |

state reward

) action
S | |R p(s',r|s,a) A,
L Rt+1 (
< Environment |<—
\ e Ja 00
S o'.:'l.‘.',
°\: I’V’”/

p(s',r|s,a) = Pr{Si1 = ', Ryy1 = r|S; = s, Ay = a}

W

Random variables
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The environment can be modeled as an MDP when the
following are known:

Action space: §

State space: A

Reward space: R

MDP dynamics: p: S xS x A x R — [0, 1]

The MDP/env dynamics fully describes the MDP under
analysis, allowing for analytical solutions.

MDP is finite if S, A, R are finite sets.

Under this formulation, we say that the agent interacts with
the environment by performing some action 4,, transitioning

to a new state S, and receiving a scalar feedback called
reward ;1.

This results in a trajectory: Sy, Ay, R, S1, .
(where S; is the terminal state).

., Ry, St

Markov property:
p(s',r|s,a) = Pr{Se+1, Ri+1|St, A, St—1, Ae-1, . -
= Pr{Ssy1, Rt41|St, As}

=Y. CERN
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Environment dynamics

When the environment dynamics function p(s', r|s, a) is known, we can compute everything else one may want to know
about the environment:

State-transition probabilities p: 8 x8xA — [0, 1]

pls|s,a) = PH{S=¢" | S a—8,d y—a} = Zp(.s'.’r|s.a)
reR

Expected rewards for state-action pairs 7 : 8 x A — R

78 8) = E[R; | Sea=84s 1= = Z'/'Zp(s',ﬂsqa)

reR s'€S
Expected rewards for state-action-next-state triples r : S x A x 8§ = R

1|s a)

‘I'(.S.(l.,.S,) — E[Rt | ‘Syt—]_:'S'At—l :(l"St — 5 Z 1)
reR
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Episodic and continuing tasks

Continuing tasks:

Target

- The agent-environment interaction could go on hoibrise
forever. ‘ x
- Thereis no terminal state. — T .
- Trajectories can reach infinite length. ; [ state Tw feward
- Examples: thermostat keeping the room T adion | T :
temperature stable, steering the beam in the LHC. | ‘

Episodic tasks:

- The agent-environment interaction is limited in
time.

- At some point a terminal state S is reached.

- Examples: board games, video games, robotic arm
manipulating objects.
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Return

The goal of the agent is to find the optimal policy: “what is the best action I should take in state S,?"

To assess the “goodness” of a state (an action), the agent tries to estimate the cumulative future reward of a
trajectory starting from that state (and taking that action). More formally, we call this property return, and we define it

as the cumulative future reward:

Gi=Ris1 +yRisa+ -+ 'Ry

¢
— Z ,Yk—t—le

k=t+1
= Ri+1 +vGi+1  (recursive definition)

v € 10,1]is the discount factor. For continuing tasks]’ = oo , thus the discount factor has to bey <1 forthe sum to
converge.

=1, CERN
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Policy

A policy describes the behavior of the RL agent, mapping from state to probabilities of selecting each possible action.
Policy 7: & x A — [0, 1]
m(als) = Pr{A; = a|S; = s}

Example:

p(a,) | p(a,)

State s, 0.7 0.3

State S, 0.1 0.9

The first step to find the optimal policy is to assess how good is the current one...
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

vnls) =E; |G | Bi=s5]: V€S
= E, [Rt+1 +YRiy2 + Y’ Ripz + ... | Sp = 5’]

How to generalize this?
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

vnls) =B |G | Si=5]s V€S
=E, [Rt+1 Yl o + ’Y2Rt+3 oass | 88 = 5’]
=E,; [Rt+1 + YGt+1 | St = s] (Recursive formulation of Gy)

Still not so useful.. What do we
do with G.1?
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

vnls) =B |G | Si= 5] V€S

=E, [RH—l Fy by o + 72Rt+3 e ans |88 = 5’]
=E,; [Rt+1 +YGt+1 | St = s] (Recursive formulation of Gy)

= Z m(als) Zp(s', r
a §lir

S, a) [7* +YE; [Gis1 | St41 = s']| (Expectation properties)
?J.,:(;’)

Interesting recursive relationship
to “remove” the return... thus the
explicit dependency on the
future.
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

vnls) =B |G | Si= 5] V€S

=E, [Rt+1 Fy by o + ’72Rt+3 e ans |88 = 5‘]
=E, [Rt+1 +YGt+1 | St = s] (Recursive formulation of Gy)

= Z 7(als) Zp(s', r | s;a) [r + YEx [Gty1 | St+1 = 8']| (Expectation properties)
a gl

?J.,:(;’)
- Z m(als) Zp(s', r|s,a)[r+v:(s)], Vs €S (Bellman equation)
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

Bzls) = Z 7(als) Zp(s', r|s,a)r+vv.(s)], Vs €S (Bellman equation)

When S is finite, we can solve it directly as a linear system in |S|unknowns:

v=R"4+~P] v v={I-+P.)7'R

Where R is the immediate expected reward and P is the state transition matrix.
However, this is expensive also for small MDPs!  O(|S]?)

=1, CERN
213Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN 'l.'_' open|ab



Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

Bzls) = Z 7(als) Zp(s', r|s,a)r+vv.(s)], Vs €S (Bellman equation)

The st?te-action value function is the expected return when starting in state S, taking action a, and following 7T
thereafter:

gr(8,0) =E,.[G; | St =s,4A1=a],VsE€S,ac A
= Zp(s’,r | s,a) [r + yva(s")]

st

Very similar to the state value function..
but not recursive
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Value Functions

Allow to assess the “goodness” of some policy 7T.
The state value function is the expected return when starting in state S and following 7T thereafter:

Bzls) = Z 7(als) Zp(s', r|s,a)r+vv.(s)], Vs €S (Bellman equation)

The st?te-action value function is the expected return when starting in state S, taking action a, and following 7T
thereafter:

gr(8,0) =E,.[G; | St =s,A1=a],VsE€S,ac A
= Zp(s’,r | s,a) [r + yva(s")]

st

—Zp s | 5.4 r+’yz a'ls Vg (s",a')|, Vs € S,ae A (Bellman equation)
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Bellman optimality equations

So far, we “evaluated” some policy 7T by computing its associated value functions v-(s)and qr(s,a).

How can we compute directly the optimal policy 7T4?
a.k.a. value function

The optimal policy is the one which maximizes the[expected cumulative future reward]n each state S.

v4(8) = maxwv,(s), forall s € 8.
T

¢« (8,a) = max qr(s,a), for all s € 8§ and a € A(s).
T

The goal of the RL agent is to find the optimal
policy which maximizes the
value functions.

B
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Bellman optimality equations

State value functions:

Bl = Z w(als) Zp(s', r|s,a)r+9v.(s)], Vs €S (Bellman equation)

V() = alelljé) Z p(s',r | s,a) [r +yvi(s')], Vs €S (Bellman optimality equation)

/

In both cases, we replace the expectation
State-action value functions: with a max over the action space

— ZP(S/,T‘ | Saa)
slr

T+ Zﬂ(a’|s’)qﬁ(s', a’)] ,VseS,ae A (Bellman equation)

= Z p(s’,r| s, a) [r + 7 mj(x )q*(s ,a )} , Vse &, ae A (Bellman optimality equation)
= s/
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Optimal policies

The optimal policy is the policy that assigns non-zero probabilities only to the actions that maximize the the value
function in some state, for all states.

Optimal policy #1 Optimal policy #2
Pr(al) | Pr(a2) | Pr(a3) Pr(al) | Pr(a2) | Pr(a3)
s1 0 0 1.0 s1 0 0 1.0
Optimal state-action value function s2 0.5 0.5 0 s2 0.99 0.01 0
q+(a, s)
at a2 a3 Greedy policies
1 20 30 30.1 Optimal policy #3 Optimal policy #4
- 15 15 3 Pr(a1) | Pr(a2) | Pr(a3) Pr(a1) | Pr(a2) | Pr(a3)
s1 0 0 1.0 s1 0 0 1.0
s2 1.0 0 0 s2 0 1.0 0
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MDP summary

In some situations, we can assume that the environment can be modeled as a Markov decision process.

The environment dynamics p(s',7|s,a) = Pr{Sy1 = ', Riy1 = r|Sy = s, A, = a} are fully known as a common function.
In the discrete case, you can imagine p as a 4-dimensional lookup table for probabilities.

This allows us to easily compute Bellman equations and Bellman optimality equations:

vr(s) = Z 7(als) Zp(s', r|s,a)[r+yve(s)], Vs €S (Bellman equation)
“ st vi(s) = mj(x) Zp(s', 7| s,a)[r+yv.(s)], Vs €S (Bellman optimality equation)
acA(s ey

gr(s,a) = Zp(s',r | s,a) |r+ '}/Zw(aﬂs’)qﬂ(s’,a’) ,VseS,ae A (Bellman equation)
s’ a’

G«(s,a) = Zp(s’,r | s,a) {r + mj( )q*(s',a') ,VseS,ae A (Bellman optimality equation)
a’ € A(s’

s’.r

These recursive equations can be solved

- As system of (non)linear equations
Iteratively by means of dynamic programming (e.g., policy iteration, value iteration algorithms). Not covered in

this lecture.
From the Bellman optimality equations, it is easy to obtain the optimal policy which maximizes future rewards.
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«. SOCIETY.IF ENVIRON
DYNAMIGS WEREALWI
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Sample-based methods
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Sample-based methods

When the environment dynamics are not known, we can
simulate them by interacting directly with the environment.

>
. O(\ -
6@0\\ ? Again we can have episodic and continuing tasks.
C)‘O‘5 e In this case, episodes are characterized by trajectories of finite
Environment length, terminated by some terminal state St :
SOa AO; Rh Sla SRR RTa ST
&
Re 5 « Thelonger we interact with the environment,
Warg < - the more data we collect,
Interpreter - the better our estimate of the underlying dynamics will

be precise...
..at the cost of taking very long time.

State St

Ly Sample efficiency (informally): how many interactions with the
environment do we need before being able to exploit the gained
Agent knowledge for our goals?
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Monte Carlo methods

Base on experience: sample sequences of states, actions and rewards from actual or simulated interactions with the

environment: So, Ao, R1, 51, ..., Ry, St
“Monte Carlo” replace expectation on the return with average:

qﬂ(s,a) = Eﬂ[Gt|St =5, A = a] er StaAt ZGtz StaAt

Gi=Rii1 +7Rip2+---+7" 'Ry is known only at the end of an episode, thus we can only apply Monte Carlo
methods to episodic tasks, which terminate at some point (reach some terminal state 5;)
Therefore, value functions and policies are updated only at the end of each episode. Monte carlo is incremental in an

episode-l;y-episode sense, but not in a step-by-step sense (on-line)

\‘SO)AOaRlaSlJ?' 7ST1; SO7AO7R17517"'7ST2

~
Step

Episode

=Y. CERN
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Monte Carlo prediction

Prediction = estimating the value function

First-visit MC prediction, for estimating Q =~ ¢.

Input: a policy 7 to be evaluated

Initialize:
Q(s,a) € R (arbitrarily), for all s € S, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ao, R1,...,S57_1,Ar_1, R
G0
Loop for each step of episode, t =T—-1,T-2,...,0:
G +— vG + R4
Unless the pair S;, A; appears in Sy, Ag, S1,A1...,Si—1, A¢_1:
Append G to Returns(St, At)
Q(St, Ar) < average(Returns(St, At))

\
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Monte Carlo prediction - example

Interact with the env..

o 3
O — D
O‘Oc”e' .
Environment

] Re Warq
Interpreter

Action

Agent

..according to some policy.
m(als) = Pr{A; = a|S; = s}

p(@,) | p(a,)
State s, 0.7 0.3
State s, 1.0 0
Initial Q table:
Q(s,a) a, a,
State s, 22?2 | ???
State s, ??? | ???

213Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN
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Upon convergence
-

Resulting Q table:

Q(S,a) a, a,
State s, 23.]——rzeua-
State s, 2.51 ??7?

We never visited (s,, a,)!



Exploration v. exploitation

When the env dynamics are not known, we need
to sample from the environment, at the risk of
incurring in bias.

Exploration requires devoting some
interactions budget to low-rewarding
interactions, however in the long run it can
result in better rewards.

Exploiting too early can lead to suboptimal
policies, which are too shortsighted. They prefer
small immediate rewards versus big delayed
rewards.

Too few exploration in favour of exploitation may
bias the agent, with the risk of locking him
sub-optimal policies forever!

To find the best policy, the agent may have to
explore a lot before, at a greater computational
cost. Trade-off!
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213Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN .'I: open|ab




Maintaining exploration

In practice, a popular way to maintain exploration is resorting to €-greedy policies.

if a = A* (Greedy action)

.

l—e+e€/|A

e/|Al, otherwise

me(alSy) =

€ Is usually small (e.g., 0.1) and €< 1.

Example, given 3 actions a,, a,, a, where A'=a,:

Pr(a,) = €/3
Let's visualize it with _
the help of a Pr(az) = €/3
probability tree...

Pr(a,) = €/3+(1-€)

=¥, CERN
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Monte Carlo control

Control = improving the current policy

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) «+ empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):

Generate an episode following 7: Sy, Ag, R1,...,S7—1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =1T—-1,7—-2,...,0:

G+ YG + Riqa

Unless the pair S;, A; appears in Sy, Ag, S1, A1 ..., 51, As_1:
Append G to Returns(St, A¢)
Q(St, Ay) < average(Returns(St, At))
A* « argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
Novelty 5 1—c+e/lA(Sy)| ifa=A*
r(0lS) = { 2/ if 0 # A°
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Monte Carlo control- example

Interact with the env.. ..according to some policy.
. 6 w(als) = Pr{A, = a5, = s}

nge“‘
Environment p(a 1 ) p (82)

] HeWard
Interpreter
State s €2+1-¢€ €/2
% \GLx:',gJ 2

Agent Initial Q table:

Action

State S, €R2+1-¢ €2

Q(s,a) | & a, .
Estimate Q table

State s, 7?7 | ??7?

State s, ??? | ?7?7?
Loading...
. . . . _— =Y. CERN
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MC has high variance + off-line -> slow learning



Monte Carlo control- example

Initial Q table: Resulting Q table:
Q(s,a) a, & Q(s,a) a, a,
Upon convergence
State s, ?2?? ??? > State s, 23.1 12.09 Red: max action value
State s, ?2?? | ??7? State s, 2.57 42.5
Initial policy: Final policy:
p(a,) p(ay) p(a,) p(a,)

States, = €/2+1-¢ €l2 Control States, €/2+1-¢ €12
States, €/2+1-€ €/2 > State s, €/2 €2+1-€

Red background: preferred action
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Monte Carlo (MC) - summary

Thereturn G,=Ri1 +yRis2 + --- + 7' 'Ry is known only at the end of an episode, thus we can only apply Monte
Carlo methods to episodic tasks, which terminate at some point (reach some terminal state ).

Therefore, value functions and policies are updated only at the end of each episode. Monte carlo is incremental in an
episode-by-episode sense (off-line), but not in a step-by-step sense (on-line):

§07A07R1a51/7 o8 7ST1 ; 507A07R17517 .- '7ST2

S;gp \
e ~~ f End of first episode. The second starts.
Episode

Drawbacks:
- Off-line method: policies and value functions can be updated only at the end of an episode -> Low sample

efficiency: need many interactions with the environment to converge.

- Not applicable to continuing tasks.
- itis subject to relatively high variance, since it estimates the expected return as the (weighted) sum of the

rewards (random variables):

N
1
Qr (S, Ar) = N E (Rev1 + YRiq2 + 72Rt+3 T ’YT_IRT)i
=1
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T D O t h d “If one had to identify one idea as central and novel to
m e 0 S reinforcement learning, it would undoubtedly be
temporal-difference (TD) learning.”

How to improve sample efficiency of MC methods? - Barto-Sutton RL book.

Idea: turn off-line into on-line!

Recall that the expression of the return can be rewritten recursively:

Gi=Ri11 +YRi2+ -+~ 'Ry
= Rit1 +7Giy1  (recursive definition)

Now, at each step (interaction) estimate the return by means of bootstrapping:
V(S:) = Riy1 +7V(Si11)
The incremental update is possible as soon as S:, A¢, Ri11, Si41 are available.

Don't need to wait for the end of the episode to update value functions and policies.

=¥, CERN
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TD(0) methods

Don’t need to wait for the end of the episode to update value functions and policies.
The on-line update rule becomes, for some small learning rate 0< (< 1:

VEFL(S,) < (1 — o) VE(S:) + @ [Repr + 7V*(Set1)]
— V(S + a [Res1 + V5 (Si1) — VF(S1)]

g 7

By
TD error

Qk—i_l(st, Ap) Qk(Sm Ap) + « [Rt+1 ST ’)’Qk(St+1’ Hgid) — Qk(st’ At)]

& 7

5
TD error

In both cases, the new estimate of the value function is a linear combination of the previous estimate and the “TD
error”,

<%, CERN
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TD(O) control - SARSA

It estimates the expected return for state-action pairs assuming the current policy continues to be followed:

on-policy update for Q.
Q(St, Ay) = Riyr +vQ(Stv1, Avsr)

Sarsa (on-policy TD control) for estimating Q =~ g,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q) (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, 4)  Q(S. 4) + a[R+1Q(S', A') — Q(S. A)]
S« S A A,
until S is terminal

.
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TD(0) control - Q-learning

It estimates the expected return for state-action pairs assuming a greedy policy were followed despite the
fact that it's not necessarily following a greedy policy: off-policy update for Q.

Q(Si, Ar) = Riyr + Y max Q(Si41,a)

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

More generally, off-policy
means that the return is
computed using a different

/
Q(S, A/) < QS A) +a[R +ymax, Q(,a) = Q(S, A)] policy from the one used to
S <—.S . choose the next action (i.e.,
until S is terminal the policy through which we

“explore” the environment).
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TD(0) summary

Pros (on-line method):

- Improved sample efficiency: converges faster than MC.
- Applicable to continuing tasks.

Cons (due to bootstrapping): V(St) = Rt+1 + ’)/V(St+1)

- Biased estimate of the return.
- Difficult to propagate sparse rewards through bootstrapped returns.
- More susceptible to the violation of Markov property. Harder to reconstruct the whole interactions “storyline”.

SARSA vs. Q-learning: Sarsa £=-

=i Safer path
Sum of _50
rewards Q-learning Optimal path I 1
during

" | : \/

episode | S The Cliff G

-100 T T T T 1

0 100 200 300 400 500 R =-100
Episodes
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Model-based methods

The interaction with the environment may be expensive:

- Slow to respond (e.g., human)

- Costs of operating the environment (e.g., LHC) ROOB
- Envcan be hardly reachable (e.g., Mars) ‘a‘,,‘s‘
..how can we train our agent well, without interacting too much?
Keep a model of the environment and sample (also) from it! Q(Si, Ay),
value/policy
General idea: acting
1. Interact with therealenv: S;, A;, Ry, 1,51 planning direct
2 Update Q(s,a) based on real env RL
3. Update the model
4. For Ntimes: model experience
a. Sample from model: S;, A;, Ry 1, Siq1
b. Update Q(s.a) based on model \_/
model
learning
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Tabular Dyna-Q

Model: store previous interactions with the environment. Can only sample state-action pairs visited previously.

Initialize Q(s,a) and Model(s,a) for all s € 8§ and a € A(s)

value/policy Do foraves:
(a) S + current (nonterminal) state
| acting | (b) A + e-greedy(S, Q)
planning direct I(c) Execute action A: observe resultant reward, R, and state, S’.
AL d) Q(S, A) — Q(S,A) + a[R+ ymax, Q(5,a) — Q(S, A
\ (c) Model(3, A) « R, 3 (assuming deterministic environment)|

model experience Repeat n times:

S <+ random previously observed state
A < random action previously taken in S

R,S" «+ Model(S, A)
Q(S, A) < Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]

model
learning

B
. . . . — ="l CERN
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Tabular Dyna-Q

Model: store previous interactions with the environment. Can only sample state-action pairs visited previously.

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A « e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S. A) + a[R + ymax, Q(S'. a) — Q(S. A)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S <+ random previously observed state
A + random action previously taken in S
R,S" + Model(S, A)
Q(S.A) « Q(S,A) + a[R + ymax, Q(5,a) — Q(S, A)]
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Model-based methods - summary

Pros:
- Improve sample efficiency: reduce the number of costly interactions with the environment.

Cons:

- The model may be wrong or outdated (non-stationary environment). How often update the model?
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Function approximation



Limitations of tabular methods

Tabular methods encountered: Monte Carlo, SARSA, Q-learning, tabular Dyna-Q.

-  State space S and action space .4 must be discrete: define rows and columns in the Q-table.
- Q-table values are learned independently: requires many interactions and cannot infer the value from a “similar”

state: there is no generalization across similar states (or state-action pair).
- Don't scale to problems with a large number (millions) of states.

How do we represent this in a table?
One entry for each unique combination
of the colors of all pixels?

.......
-
Atari's "Pong” )

_ B Canwe find a
----------- better way?

o2
= "). CERN
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Function approximation - value function

Function approximation shifts the task of learning the values for each state or state-action pair to learning a
parameterized version of the value functions that minimizes a given objective.

The parametric state value function is 9(s;w) with parameters w.,
The objective to minimize is the Mean Squared Error in the approximation of v:(s)by 7(s; w).

2

P4

VE(w)= Z,u(s) I:UF(S') — 0(s; W)]

where u(s)is the proportion of times state s was visited.

The objective above can be minimized by means of Stochastic Gradient Descent (SGD), obtaining the update rule:

. 1 s 2
Wiil = Wp — §O’I‘-VW ['Uﬂ(s) — 0(s; W)]

= W} + [vﬂ(s) —0(s; W)} Vwo(s; w)

A similar reasoning holds for the parametric state-action value function: (j(5, a; W)
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Function approximation - value function

Since the value function v.(s) is unknown, we substitute it with an unbiased estimator of it: U..
Wit+1 = Wi + Ok [Ut — ﬁ(s: W)} wa'(s; W)
- Monte Carlo: U; = Gy

- TD(0): U; = Ryy1 +v0(Ses1; w) . Is bootstrap legit???

Depends on the
trainable
parameters!
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Function approximation - value function

Since the value function v.(s) is unknown, we substitute it with an unbiased estimator of it: U,.
Wit+1 = Wi + Ok [Ut — ﬁ(s: W)} wa'(s: W)

- Monte Carlo: U; = G,

- TD(0): performs a semi-gradient update (do not use the full gradient information).

W W+ a|R+70(5"w) — (S, w)| Vo(Sw)

Nice but... how to put everything together?

- Gradient update
- RLinteractions
-  Policy update
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Function approximation - value function

Example of on-policy control with function approximation: SARSA.

Episodic Semi-gradient Sarsa for Estimating ¢ ~ ¢.

Input: a differentiable action-value function parameterization ¢ : 8 x A x R — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A «+ initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S” is terminal:
w < w+a[R— (S, A w)|V§(S, A w)
Go to next episode
Choose A’ as a function of §(S’,-, w) (e.g., e-greedy)
w < w+a|[R+v4(S, A, w) — (S, A, w)|Vq(S, A, w)
S« 5
A+ A
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Function approximation - DQN

Train RL agent to play Atari games. Feature extractor: convolutional neural network (CNN). Reward: +1if scored a
point, -1 otherwise.

Example of off-policy control with function approximation. The Q function is approximated with a neural network

Gameplay Experience replay DQON
O Sample minibatch —
Store experience (uniformly) for > Q-value action 1
tuples ; training state
o @ . (1
:\'> (se sy, Tip1: 8¢11) | —— Q-value action 2
( (2) {(2) (2 q('-’) )
(s g 7@ KO) ) St 5@ 5Ty S {(\.m a® & ®) )} ~ U(D)
t 2y t+11 Ot+41 @) @3 .3 @3 Tt 27t Tt Tl —— Q-value action 3
(87 a4, 10, ¢ l+1) )

Replay Buffer (D)

Image credits.

Image credits.

Image credits.

Off-policy: DQN is updated using “old” transitions sampled from the replay buffer
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213Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN -.'_' openlab


https://miro.medium.com/v2/resize:fit:1400/1*wfKvMsVMkUhEGz1YH7kCQA.png
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https://static.onecms.io/wp-content/uploads/sites/6/2013/01/atari-ms-pac-man_510x380.jpg

Function approximation - DQN

Continuous state space: embedding vector produced by the feature extractor (CNN, part of DQN).

P Q(s. a,)
Feature Maps Feature Maps u
Input Data - FeathF Maps
Featurg Maps, Q (S' a 2)
= = g

E 4 ﬁ Q(s. a,)

32x32x3 ? 32x32x32 1616 %32 16x16 x 16 8x8x16

ColAvqution and Pooling Corll\volution and Pooling
ctivation ctivation
. Q(s. a,)
1024
Discrete actions space: depends on the specific game. Image credits.

State features
Experience replay:

- Similar idea as Dyna-Q for model-based RL.
- Improves sample efficiency: DNNs are data hungry.
- Decorrelates samples in the training batch. Good for convergence properties and training stability.
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https://www.analog.com/-/media/images/analog-dialogue/en/volume-57/number-1/articles/training-convolutional-neural-networks-what-is-machine-learning-part-2/491280-fig-01.svg?w=435

Function approximation - DQN

Update rule:

1. Sample a batch of B transitions {(s;, a;, 74, s,), ...} from the replay buffer (hereafter #B=1).
2. Compute the loss:

2
L = (r + ymax §(Sty1,a; Wy ) — q(St, A¢; Wt))) = (TD error)?
3. Gradient update:

Wil = Wi + (O [Rt+1 “f ’Ym(?X G(St+1,a, wz) — G(St, Atth)i| Vq(St, Ar, wy)

“Target” network “Policy” network
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Function approximation - DQN

Target and policy networks visualized:

Policy network

hidden layer 1 hidden layer 2 hidden layer 3

Q-Network [
State-S — =
- Q(s, a;0)
= ' 2
= | r+ymax 0(s,a";07) - 0(s,a: 0;
Copy 0ss ( yma Os'a07)— Qls,a: 0;)
parameters

every K 6 updates 6
steps every C timesteps

Target-Network |, l

State-S —>
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Function approximation - policy gradient

So far we obtained the optimal greedy policy from the (approx) optimal value function ¢.(s,a) ~ Q.(s,a)

However, in some cases it would be more convenient to learn directly the policy!

State space may be “complex”, whereas the policy could be “easy” (e.g.. always go left)
€ -greedy is generally suboptimal: with € probability take random action.

Continuous action space (e.g., robotic arm control). -
Greedy policy may be suboptimal (e.g., “rock, paper, scissor”).

A greedy policy is easily exploited by
the opponent.

Example:
Always draw paper

02
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Function approximation - policy gradient

Write the policy as a parametrized function:
7T(CL|S, 0) = Pr{At =a | St =S, Ht :0}
For instance:

eh(s,a.,' )

zb eh(s;b,*)

Define an objective, for instance:

h(S, a, 9) Is called actions preferences. Can by a neural network.

m(als,0) =

J(6) = vry (50)

And the corresponding param. update rule:

VF(At‘St, Ot)
7T(At|St7 Gt)

O:+1 = 0; + aGy
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Function approximation - policy gradient

Episodic case

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 6 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sp, Ao, R1,...,57-1, Ar_1, R, following 7(-|-, 9)
Loop for each step of the episode t =0,1,...,7T — 1:
G Zzzt_H “/k_t_le (Gt)
0 < 6+ ay'GVinm(A|St, 0)
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Function approximation - policy gradient

REINFORCE is based on MC -> high variance.
Adding a “baseline” leaves the expected value of the update unchanged, but it can have a large effect on its variance.

V’]T(At|5t, 9t>
7T(At|5t, Ht)

. C7‘(14t|5t,6’t) (7] =0, +alG; — b(S
9+ = 0; + aG t+1 t t ( t)
Bt . 4 7‘(11t|St10t) < >

10- REINFORCE with baseline o' =2

— - Al W el o S
W* s *“W*m*,' W W bt wamwwmwwwmwww o)
-201- WWWMH
“w MW REINFORCE
Go a0l | a=g
Total reward | For instance:
on episode _ A .
averaged Ever‘loo runs a5l b(St) - U(St7 W)
_80 2
_90 _I | Il 1 1 1
1 200 400 600 800 1000

Episode

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).

=% CERN
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Function approximation - policy gradient

REINFORCE with baseline

REINFORCE with Baseline (episodic), for estimating 7. ~ ,

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a” >0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sy, Ag, Ry,...,S7_1,A7r_1, Rp, following 7(-|-, )
Loop for each step of the episode t =0,1,..., T-1:
77 e
s Dk—t1V 'R (G)
0 G —0(S¢,w) < Kind of “loss”, depends on G,

W W+ aV oV (Sg,w)
0+ 60+a oVinm(AS, 0)

<%, CERN
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Function approximation - actor-critic

REINFORCE based on MC -> off-line.
Solution: substitute MC return with its bootstrapped version. Becomes on-line.

Keep using value function as a baseline: b(S;) = 0(S;; w)

T
Gy = Z YRy, > Gy = Ryy1 +70(S; w)

k=t+1

Update rules become:

Policy function params (actor)
. . 5 ) R Vr(A:|St, 0;
w W+ a[R+70(S"w) — oS W) VI(SW)  Ois =6, +aCrrer — i(Siw)) ;;; ('S o
t(~t, Ut

= R PA V’/T(Atlst, 915)
=0; + Oé(RH_l + /Z)(St+1,W) — U(St,W)> W(Atlst, 0t>

Value function params (critic)

Note: they may use different alphas.
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Function approximation - actor-critic

One-step Actor—Critic (episodic), for estimating 7. ~ 7,

Input: a differentiable policy parameterization 7(als, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a” > 0, oV >0
Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+ 1
Loop while S is not terminal (for each time step):
A~ 7(5,0)
Take action A, observe S’, R
d+ R+~o(S"\w)—0(S,w) (if S’ is terminal, then o(S’,w) = 0)

W w+ aVoVo(S,w)
0+ 60+a I0Vinn(A|S,0)
I < ~I

S+ 5

\
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RL for particle accelerators




AWAKE - background

Problem: difficult to accelerate electrons in the LHC. Due to curvature, they emit radiation and lose energy. Since the
circumference of the LHC is finite, it can provide a finite amount of energy to the particles. This results in a dynamic
equilibrium.

A possible solution could be using linear/larger accelerators (e.g., FCC), or improving how we accelerate particles.
Wakefield Acceleration Experiment: experimental beamline exploring innovative acceleration techniques.

Use two beams in the same line:
Go through a plasma cell:

- The protons ionise the plasma, creating a wakefield:
this corresponds to a very strong electric field.

-  The electrons “surf” the wakefield like a wave, receiving
a very strong acceleration.

Wakefield acceleration could replace current RF cavities in
the far future.
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AWAKE - beam steering e

—| |~ Beam position monitor (BPM)
—=m  Corrector dipole magnet
. . . - b Main dipol: t
RL problem: keep the electrons beam within the beamline MRz totlinciort
and steer them into the plasma to best exploit the Defocusing quadrupole
wakefield. |
Tareat A 0040
arge
Beam Position $ BPM.430103 ~
Monitor (BPM) k. € «, VCAWA 430104 /\[\
Dipol * s s . —
ipole c 2 4 6 10 1 14 g (m
magnet > € —\—v
S Reward  § g e f8 8 38388
) I State 1 2 g g 2% 8 55335 %
————————————————————————————————————————————————————————————— | @ e 2 2% £ 3%z 3
Action G o o @ o 0 @6 @o @G @
States: readouts from 10 sensors (BPMs) S 8= 85 35§
: s 3f I I &
Actions: 10 correctors 58 3¢ 3% 383 ¢
L] L] i | 1] L
e TT W T T T 55
Simulation of the beamline available: train the agent in - . .
simulation and fine-tune it on the real machine. Common beam line (6 m) Plasma cell (10 m)

..remember the expensive agent-environment interactions _ _ )
mentioned before? Beam-time is expensive:

the agent has to learn fast!
Sample efficiency is critical.
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AWAKE - beam steering

lllustration of Q-learning: 1D beam steering

Target
Beam Position
Monitor (BPM)
x A
Dipole
magnet

Q-net response, step 0

'/’ E ! i \_—— Action 0
* Action: deflection angle 01 : =%
! ! V# (MC)
e State: beam position at BPM 2 o0 5 i
* Reward: integrated beam = E i
intensity on target 2901 i i
N I

State, BPM pos. (mm)
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AWAKE - Q-learning with NAF

-  Standard DQN only applicable to discrete action tasks
- Our control tasks: typically continuous state-action spaces
- Various ways to extend Q-learning to continuous action tasks
- Most successful: actor-critic algorithms, e.g. DDPG and extensions

- If convex problem, can use trick: assume Q-function belongs to function class that is easy to optimise,
e.g.. NAF (Normalized Advantage Function)

1
Qy(s,a) = —5(a— 1s(s)" Py(s)(a— pg(s)) + Vo(s)
I I A= Assumption:
S— i P ; s g
— U Q(s,a) is quadratic in a
arg max Q,(s,a) = f4(s) max Q4 (s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

<%, CERN
213Jul 2023 Matteo Bunino | An introduction to RL and its applications at CERN .'I: open|ab



AWAKE - train Q-learning on simulation

Proof-of-principle: learn to correct AWAKE ¢ -line in H (10 DOF)

PER-NAF training
(on AWAKE beam line)

N
o

* Implemented NAF with Prioritised
Experience Replay (arXiv:1511.05952)

» After training for ~90 iterations, agent 5

no. iterations

- 0.0 A xR0 VA it o T A\ 79\ SRl
starts correcting well I Ui i AR R
5—0.5 A B G I | ] | i
« Any initial steering is corrected to below £-10 =l
target RMS within 1-2 steps e e
0 25 50 75 100 125 150 175 200

no. episode

-0.1
-0.2 —0.2
= ~ —03
g —0.4 g _o4
® ]
é i
g -0.6 g —06
g 5
—0.7
Rl == PPO vs. NAF P - TD3 vs. PER-NAF
_____ « (on simulation) o]~ Penef (on simulation)
0 1000 2000 3000 4000 5000 ' 100 200 300 400 500
no. episode no. episode

— (J-learning derivates more sample efficient than policy gradient algorithm (PPO)

V. Kain et al., Sample-efficient reinforcement learning for CERN accelerator control,
213Jul 2023 Matteo Bunino | An PRAB 23Y 124801 (2020)




AWAKE - train Q-learning on simulation

* Train PER-NAF agent exclusively on simulation
* For this particular task, have excellent model at hand
* Validate agent on actual beam line

# iterations
= N
U =}

e
=}

0 10

20

30

40

|
o
N

- final
initial
---- target

RMS [cm]

|
o
>

0 10
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Performance as good as if
trained directly on machine

Further experiments improved
sample efficiency by using
model-based RL, inspired to
Dyna-Q




Bunch splitting

x104

T
w

T
N

Current [A]

0 20 40 60 80
Time [ns]
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Bunch splitting - background

RF cavities: used to accelerated particles in the LHC

A voltage generator induces an electric field Protons always
inside the RF cavity. Its voltage oscillates feel a force in the
with a radio frecuency of 400 MHz. forward direction.
o —_— — —_— < —_— —_— —— —
—
" 8, E - 5 B o W

Protons in LHC

Protons never feel a force
in the backward direction.

02,
. . . . — ="l CERN
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http://www.youtube.com/watch?v=MTEk39Yt55M

213Jul 2023

Bunch splitting - background

RF cavities: used to accelerated particles... but also to split bunches!

The splitis done in PS to prepare beams for LHC.
We gradually change the intensity (voltage) of high harmonics in the

RF cavities: h,, h,,. h,,

Voltage and phase has to be dynamically adjusted for each
harmonic:

-  Compensate for voltage and phase errors
- Synchronize phase with beam

Done manually: not always reproducible.
Task: RL to optimise splittings to produce uniform bunches. Good for

science!

Triple splitting

100

120

140

150 200

=¥, CERN
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Bunch splitting - background

Animation of a bunch (triple) splitting. Note the variation of intensity per harmonics.

="1. CERN
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https://docs.google.com/file/d/1smBnCHozRnIBbZeZSESW7IDKlN7NKXOX/preview

Bunch splitting - RL problem

Automating bunch splitting is good for reproducibility. RL-based splitting is “in production” at PS.

Challenge: reward function design. mmmms) For both phase and voltage, compare bunch profiles (Means Squared
Error).

Phase profiles:

The final profile after the triple split is
extracted, bunch centers located. Isolate outer bunches

Find bunch centers

Compare profiles
0.8 0.8 0.8 ==mBunch'1
0.8 ~— Bunch 3
0.7 4 0.7 4
0.6 0.7
—— Bunch centers 0.6 1 0.6 1 0.6
—— Bunch centers |——p e
941 —— Bunch centers 0%
0.5 0.5 A g
04
0.2 0.4 0.4
0.3
0.3 0.3 4
0.0 - —— Bunch 1l —— Bunch 3 0 5 10 15 20 25 30 35 40
0 50 100 150 200 250 300 350 400 0 10 20 30 40 0 10 20 30 40
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Bunch splitting - RL problem

Automating bunch splitting is good for reproducibility. RL-based splitting is “in production” at PS.

Challenge: reward function design. mmmms) For both phase and voltage, compare bunch profiles (Means Squared
Error).

Similarly, for voltage profiles:

A) Middle profile larger than the others B) Middle profile smaller than the others C) Middle profile equal to the others

— Voltage too low! — Voltage too high! — Voltage optimised!
pl4: 0.0, p21: 0.0, v14: 0.95 pl4: 0.0, p21: 0.0, v14: 1.05 pl4: 0.0, p21: 0.0, v14: 1.0
4000 A
4000 - 4000
3500 A
3000 A
3000 - 3000
2500 1
2000 - 2000 1 S
1500 A
1000 A 1000 A 1000 A
500 A
0 01 0
(') Sb 1(30 15'0 20'0 2.":0 30’0 35':0 4(.'!0 (') 52) 160 15‘0 2(')0 2;0 360 35;0 460 (') 5;.) 1(30 15'0 260 2%0 3(;0 3.":0 40'0
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Bunch splitting - RL problem

Optimization of voltage profiles is based on the assumption that the phase is already optimal.
Train two RL agents:

1.  SAC-Phase-Sim2Real: Trained using the phase MSE loss criteria (used to define a step-wise reward) to
optimise the phase only.

2. SAC-Volt-Sim2Real: Trained using the overall MSE loss (used to define a step-wise reward) to optimise the
voltage only, assuming phase is already optimised.

=¥, CERN
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Bunch splitting - RL problem

Optimization of voltage profiles is based on the assumption that the phase is already optimal.

Voltage Agent \
Training: ~2k steps @}—

(20k to best performance)
& State | A

Performance: ~1-2 steps | .. T
in simulation e "'\ I M
10
1 JU UL
Reward: \ - Reward:
7(Ptoss (b1, b3)) 7(v0lt1os5 (b1, b2, b3)) Observation:
{bly, bls, biy, bis} {bl1, bly, blg, biy, bis, big}

/

SAC-Phase-
Sim2Real

Actions Limited: B ( i ]
b1, 6 € [-10,10] | Action:{b1, éu} v € 010,000 Action: vis /
\ v
: : ! ) - =" CERN
Matteo Bunino | An introduction to RL and its applications at CERN

SAC-Volt-
Sim2Real

Actions Limited:
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71, openlab




Bunch splitting - RL problem

For stability reasons, it is convenient to “bias” the agent with a prediction from a supervised CNN.
The CNN is trained on simulated data.

Ep. 2, step 11, datamatrix

I CNN feature | Regression head
extractor (phases)

—— Guess initial phase
values

<%, CERN
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Bunch splitting - the big picture

First acquisition

Predicted phase

e offsets: p14,p21

— First action: {-p14, -p21}

Following acquisitions I

SAC-Phase HAcuon {p14,p21}
Compute bunch
lengths/ints and ::;s:p
loss P
SAC-Volt H Action: {v14} ]
[o)
finished.
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Bunch splitting - conclusions \

A
. . . : . , BCMS. Init {10,-10,1.05}. Optimised in 5 steps.
Trained on simulation and applied on machine without / : "'{ } p'm'sev_ ki \
re_training. Eile_yiew Qption Control N e

2nd 2-

selit st 2spl g

l [P

0.2 03 0.4

Consistent good performance for:

- varying intensities (1.3e11-2.6e11)
-  different beam types (72b, BCMS)

0.5
nnnnnnnnnnnnn

wer

5€9-
s L
° 01
Average Length: 3.88ns
° s 10 15 20 25 30 35 40 a5

Consistently rivals experienced operators in optimisation B 1
steps: averaging ~8.5 steps per optimisation (depending on
initial conditions).

nnnnnnnnnnn

nnnnnnnnnnnnn

o 0 100 1o 20 2 M0 3% I " |
H.Scate: [1 |+ nspt N Samples | 400 [ V). i com-
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