Basics of quantum computing

 openlab Summer Student Lectures(a)
QUANTUM
TECHNOLOGY
INITIATIVE

Quantum computing?

Superposition : What is a Qubit?

Classical bit

Quantum bit

photonics
ion trap

neutral atom

Each "classical state" is an "axis"

$$
\begin{aligned}
& |0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|\uparrow\rangle \\
& |1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}|\downarrow\rangle
$$

Each Quantum state is a vector in that space

Measurement : Born rule

Each Quantum state is a 2D vector

The coordinates tell us the probabilities of getting a result. The sum of probabilities is always equal to 1 .

$$
|\psi\rangle=\cos (\theta)|0\rangle+e^{i \varphi} \sin (\theta)|1\rangle
$$

Born Rule

$$
p_{0}=|\langle\psi \mid 0\rangle|^{2}
$$

Entanglement : Several quits

What happens when I have two quits next to each other?

$$
|1\rangle_{a} \otimes|0\rangle_{b}=|10\rangle_{a b}=|2\rangle_{a b} \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

In quantum the bits can be entangled, always giving the same results

What would be the state for always different results ?

$$
\frac{|01\rangle}{\sqrt{2}}+\frac{|10\rangle}{\sqrt{2}}
$$

How many "axis" for three quits?

Big dimension - Small result

For n qubits :

How many dimensions ("axis") ?

How many bits per answer ?

For 260 qubits :

Dimension

$$
\begin{aligned}
& 2^{n} \text { numbers } \\
& \text { n bits }
\end{aligned}
$$

~ number of atoms in the known universe

IBM Osprey 433 qubits

Answer
$=260$ bits of information ~16x16 B\&W image

|a)

Gates: Manipulating qubits

Properties : Conserve norms (more generally dot products)

Can you think of something that conserve dot products ? Rotations!

Unitary matrices : $\cup \bigcup^{+}=\bigcup^{+} U=I$

$$
\begin{aligned}
& \text { Pauli } x-x \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right): \begin{array}{l}
|0\rangle \rightarrow|1\rangle \\
|1\rangle \rightarrow|0\rangle
\end{array} \quad \text { "NOT" gate } \\
& \text { Pauli }-z \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): \begin{array}{l}
|1\rangle \rightarrow-|1\rangle \\
|+\rangle=|0\rangle+|1\rangle \rightarrow|0\rangle-11\rangle \rightarrow|-\rangle
\end{array} \\
& \text { Pauli } Y \text { - } y \\
& \left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right):|0\rangle \rightarrow-i|1\rangle \\
& \text { Hadamard }-\mathrm{H} \text { - } \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right): \begin{array}{ll}
|0\rangle & \rightarrow|+\rangle \\
|1\rangle & \rightarrow|-\rangle
\end{array} \\
& \text { Parameterized gates: } \\
& \binom{\cos \theta}{-\sec \theta} \\
& \left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right) \quad|0\rangle
\end{aligned}
$$

CNOT

when qubit a is in the $|1\rangle$ state apply a NOT (Pauli X) gate to qubit b

$$
\begin{aligned}
& |0\rangle_{a}|0\rangle_{b} \rightarrow|0\rangle_{a}|0\rangle_{b} \\
& |0\rangle_{a}|1\rangle b \rightarrow|0\rangle_{a}|1\rangle b \\
& |1\rangle_{a}|0\rangle_{b} \rightarrow|1\rangle_{a}|1\rangle_{b} \\
& |-1\rangle_{a}|1\rangle_{b} \rightarrow|-1\rangle_{a}|0\rangle_{b}
\end{aligned}
$$

$$
\left[\begin{array}{ll|ll}
1 & 0 & & \\
0 & 1 & 0 & \\
\hline 0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Quantum circuits : Bell state preparation

$$
|t\rangle \otimes|0\rangle \quad(10\rangle|0\rangle+|1| 1\rangle) \frac{1}{\sqrt{2}}
$$

Bell state preparation

(1)
$|0\rangle \otimes 1$
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$

Bra-Ket notation
t : conjugate transpose $=$ dagger
ket: $|\cdot\rangle \quad|\psi\rangle=\left[\begin{array}{c}a+i b \\ c+i d\end{array}\right] \quad$ bra: $\langle\cdot|=|\cdot\rangle^{+} \quad\langle\psi|=[a-i b, c-i d]$
dot product: $\langle\cdot \mid \cdot\rangle\langle\psi \mid \psi\rangle=a^{2}+b^{2}+c^{2}+d^{2}=\|\psi\|_{2}^{2}$
Matrix : $|\cdot\rangle\langle\cdot| \quad|0\rangle\langle 0|+|1\rangle\langle 1|=\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array} 00\right]+\left[\begin{array}{ll}0 & 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$

Orthonormal basis: $\{|k\rangle\}_{1 \leqslant k \leqslant n}$

$$
\{|0\rangle,|1\rangle\}
$$

$$
\begin{aligned}
& \langle i \mid j\rangle=\delta_{i j}\left\{\begin{array}{l}
1 i=\dot{\gamma} \\
0 i \neq j
\end{array}\right. \\
& |\psi\rangle=\sum_{k=1}^{n}\langle k \mid \psi\rangle|k\rangle \\
& I=\sum_{k=1}^{n}|k\rangle\langle k|
\end{aligned}
$$

Closing question

Who here thinks that the following statement is true :

"Quantum Computers can compute things that Classical Computers cannot compute"

Closing question

In fact the following statement is true :

"Quantum Computers can efficiently compute things that Classical Computers cannot compute efficiently"

Thank you for your attention

|a|
QUANTUM
TECHNOLOGY
INITIATIVE

