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Recap: the key features of Quantum Computing 
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Quantum Superposition State Quantum Entanglement
(here: Bell state)



Recap: the key features of Quantum Computing 
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Quantum Superposition State Quantum Entanglement
(here: Bell state)

Can enable speed-up 
though highly parallel 

computations  

Also, non-classical 
correlations may 

speed-up computations  



Interlude: Bell at CERN
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Source: https://physicsworld.com/a/saved-by-bell/

John Stewart Bell commenting on the famous
Bell’s inequalities at CERN in 1982.



Recap: Basic one qubit gates 
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Nielsen, Michael A., and Isaac L. Chuang. Quantum computation 
and quantum information. Cambridge university press, 2010.



Recap: Basic two qubit gate 
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Nielsen, Michael A., and Isaac L. Chuang. Quantum computation
and quantum information. Cambridge university press, 2010.



Aim of Quantum Computing 
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Do classically intractable computations 
efficiently on a Quantum Computer 
leveraging Quantum Effects 



Applications of Quantum Computing 
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One may successfully leverage quantum effects for: 

• Efficient sampling, search and optimization (e.g., Grover’s 
search algorithm)

• Linear algebra, matrix computations and machine learning 
(e.g., HHL-algorithm) 

• Algorithms and protocols for Cryptography and 
Communication (e.g., Shor’s algorithm, Quantum Key 
distribution)

Based on previous year‘s talk

https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf


What is Quantum Machine Learning?
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Fields in Quantum Computing
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Fields in Quantum Computing
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CC CQ

QQQC

Type of algorithm

Ty
pe

 o
f d

at
a

Source: Qiskit Textbook

Simulation of Quantum 
Systems using classical ML

Simulation of Quantum 
Systems using a Quantum 
Computer



Fields in Quantum Computing
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CC CQ

QQQC

Type of algorithm

Ty
pe
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Here: focus on quantum algorithm 
with classical input data

Source: Qiskit Textbook



Fields in Quantum Machine Learning (QML) 
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

Source: Qiskit Textbook



Fields in Quantum Machine Learning (QML) 
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

e.g., Quantum GAN: aims 
to learn the underlying 
probability distribution 𝜋(𝑦) 
of a given data set and 
generates samples from it 
using quantum network

e.g., Quantum Classifier: 
aims to learn input-output 
relation of labeled dataset 
𝑓: 𝑥!" ↦ 𝑥#$% by optimizing 
quantum network

e.g., Quantum Reinforcement Learning: 
find policy for agent that maximizes reward 

(expected reward computed using QC) 

Source: Qiskit Textbook



Supervised Learning in Quantum Computing: 
Quantum Classifiers
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Goal: learn input-output relation of labeled data

Classical Neural Network Parametrized Quantum Circuit 



Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Initialization:

      initialize qubits in 
computational basis state
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Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Evolve initial state:

      Apply set of unitary gates 
that may encode classical 
input data x and include 
parametrized gates
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Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Quantum Measurement

      retrieve a classical 
output distribution 𝑥 Ψ !

of classical output states
 
(with 𝑥 ∈ 0,1 !) according to 
Born rule
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Parametrized Quantum Circuits – the data processing pipeline 
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Classical Dimensionality Reduction

𝓛 𝒙

Classical Optimization

(Classically) compress 
possible high-
dimensional data and 
extract features

Encode (classical) 
data in Quantum 
state

Apply a variational 
quantum circuit as e.g., 
quantum classifier 

Retrieve classical output 
via quantum 
measurement

Compute Loss function

Classically optimize 
variational circuit parameters

𝜃%&' ⟵ 𝜃% − 𝜂∇(ℒ(𝑥)



Embedding classical information in a Quantum Circuit
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Angle encoding:
- Classical input encoded using rotational gates (e.g., 𝑅((𝜃))
- Constant depth wrt. to encoded features
- Number of qubits scales linearly in number of features

Amplitude encoding:
- Classical input encoded as amplitudes of the quantum state
- 𝑁-dimensional data point 𝑥 is encoded by a 𝑛-qubit quantum state with 𝑁 = 2"
- Much deeper circuit depth for encoding, see scaling:

Tradeoff between depth of input encoding quantum circuit 
and exponential compression of classical input data 

Schuld, Maria, and Francesco Petruccione. Supervised learning with
quantum computers. Vol. 17. Berlin: Springer, 2018.
Image source: Nielsen, Michael A., and Isaac Chuang. "Quantum 
computation and quantum information." (2002).



Quantum Classifier example: Quantum Tree Tensor Network

21QML and Optimization – Carla Rieger31.07.23

Apply QTTN as binary classifier: 
measure one qubit 

We encode our 
classical input features 

here

Quantum Tree Tensor Network with generic 
single-qubit unitary gates 𝑈(𝜃, 𝜙, 𝜆)

Variational part
See: Grant, Edward, et al. 
"Hierarchical quantum classifiers." npj
Quantum Information 4.1 (2018): 65.



Parameter optimization
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Source: https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift
https://pennylane.ai/qml/demos/tutorial_spsa

The parameter-shift rule (gradient-based)

     Compute partial derivative of variational circuit parameter 𝜃, 
alternative to analytical gradient computation and classical finite 
difference rule (numerical errors and resource cost considerations)

Evaluate Quantum Circuit twice at shifted 
parameters to compute gradient 



Parameter optimization
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- Kiss O., Grossi M. et all., Conditional Born machine for Monte Carlo events 
generation, Phys. Rev. A 106, 022612 (2022)

- https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift
- https://pennylane.ai/qml/demos/tutorial_spsa

Simultaneous perturbation stochastic approximation (SPSA)
(gradient-free)

      If gradient computation not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 
      Gradient is approximated by two sampling steps and parameters are perturbed in 
all directions simultaneously 

Iterative update rule 
comparable to classical 
stochastic gradient descent 



Challenges when using Parametrized Quantum Circuits
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• Efficient data handling and data embedding

• Find balance: Generalization and representational power vs. Convergence

• Problem of barren plateaus and vanishing gradients in optimization landscape 

• How well can we survey the Hilbert space (expressibility)?

• Current hardware limitations 

• Limited number of qubits and connectivity 

• Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

• Efficient interplay between classical and quantum computer

• ….

 



What is Quantum Advantage in QML?
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Multiple considerations:

1. Runtime speed-up 

2. Sample complexity

3. Representational power 

This includes considerations regarding classical intractability: 

Focus on Quantum Circuits that are not efficiently simulable classically

Bloch sphere: only the marked points 
are produced by the Clifford operators 
acting on a computational basis state

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum
kernels." Advances in Neural Information Processing Systems 34 (2021): 12661-12673.
- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9



Interlude: Efficient classical simulation of Clifford circuits
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A quantum circuit build up of Clifford gates can be 
efficiently simulated on a classical computer. 
(Qubit preparation and measurement in 
computational basis.)

Even highly entangled states can be simulated efficiently classically. 

The Gottesman-Knill theorem

There are more 
detailed 
considerations of 
cases with different 
computational 
complexities.

Generating set of the Clifford group:  ⟨𝑯, 𝑺, 𝑪𝑵𝑶𝑻	⟩
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Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-
ph/9807006 (1998).



What is Quantum Advantage in QML?
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Multiple considerations:

1. Runtime speed-up 

2. Sample complexity

3. Representational power 

Practical advantage      Practical implementations on NISQ devices

     Need for performance metrics and fair comparisons to classical models

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in 
Neural Information Processing Systems 34 (2021): 12661-12673.
- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9
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CERN 
use-cases
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Quantum Circuit Born Machine for Event Generation
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Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Outgoing muon

Muonic force carriers (MFC)

Incoming muon

MFCs are bosons which appear in beyond-
the-standard-model theoretical frameworks
and are candidates for dark matter

Muon fixed target scattering experiment 

Monte Carlo calculations are expensive in 
time and CPU consumption



Quantum Circuit Born Machine for Event Generation
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Born machine:
Produces statistics according to Born’s measurement rule 
using parametrized quantum circuit |𝜓 𝜃 ⟩

𝑝B 𝑥 = 𝑥 𝜓 𝜃 C, 𝑥 ∈ 0,1 DE

Parametric Quantum Circuit 

Generate discrete PDFs 
(continuous in the limit 
increasing no. of qubits)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Transversal 
momentum

Pseudorapidity

Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Muon fixed target scattering experiment 



Quantum Circuit Born Machine for Event Generation
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• Generate samples of discrete PDFs with Born machine

• Train using Maximum Mean Discrepancy loss function:

MMD(P,Q) = 𝔼"~$
%~$

K X, Y + 𝔼"~&
%~&

K X, Y − 2𝔼"~$
%~&

K X, Y

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Gaussian 
kernel

efficient way to generate multivariate 
(and conditional) distributions with only
linear connectivity, suitable for NISQ 
devices (suggested by numerical evidence)
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Quantum Reinforcement Learning (RL)

Beam Target Steering Task

• Action: (discrete) deflection angle 
• State: (continuous) BPM position 
• Reward: integrated beam intensity 

on target
• Optimality: fraction of states for

which the agent takes the right 
decision

Formulate as RL problem:

Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044

tune here measure state 



Quantum Reinforcement Learning (RL)
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Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044Task: Beam optimization in linear accelerators

      Use Reinforcement Learning (sample efficient) 

Agent interacts with environment
• Follow policy 𝝅(𝒂𝒕|𝒔𝒕)
• Goal: Find policy that maximizes reward

Expected reward is estimated by value function 𝑸(𝒔, 𝒂)
• DQN: Deep Q-learning (NN-based)
• FERL: Free energy-based RL (clamped Quantum 

Boltzmann Machine)
Schema of iterative Feedback-loop in RL

Structure of the Quantum RL scheme:
• Agent is classical
• 𝑄-function is computed as the energy of a qubit system
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Quantum Reinforcement Learning (RL)

Structure of clamped Quantum Boltzmann Machine (QBM)

Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044

Weights of QBM can be learned iteratively 
(analogous to classical Q-learning)

Transverse Field Ising model Convergence Study for one-dim. beam target steering task

Quantum RL converges much 
faster than classical Q-learning (8±2 
vs. 320±40 steps with e. r.)

Quantum 
Annealing



Outlook on QML and summary
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Research on QML applications in High Energy Physics is producing a large number of prototypical 

algorithms for potential future use-cases
• Current focus on algorithms for data processing in a controlled environment for current hardware

• Preliminary hints for advantage in terms of representational power of quantum states

• Mostly, algorithm performance is as good as the classical counterpart

• Need more robust studies to relate architecture of quantum computational model and its 

performance to data sets

• Identify use-cases where quantum approach is provably more efficient than classical model 

• Studying QML algorithms today links Quantum computing and Learning Theory and draw 

separation between classical and quantum learner

Based on previous year‘s talk

https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf
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Thank you, 
are there any
questions?

QML and Optimization – Carla Rieger31.07.23

carla.sophie.rieger@cern.ch


