

interTwin

Digital Twins: Introduction and Use Cases

Summer Student Lectures 2023

Alexander Zöchbauer, Matteo Bunino, Kalliopi Tsolaki

Maria Girone Alberto Di Meglio, Sofia Vallecorsa, CERN-IT-GOV-INN

NASA Apollo missions

SATURN V

INSTRUMENT UNIT

Weight: About 4,100 pounds

THIRD STAGE

Power: One J-2 engine, 200,000 pounds thrust Propellants: Liquid hydrogen, 66,900 gallons Liquid oxygen, 20,400 gallons Fueled weight of stage: 265,000 pounds

SECOND STAGE

Power: Five J-2 engines with a combined thrust of 1,000,000 pounds Propellants: Liquid hydrogen, 267,700 gallons Liquid oxygen, 87,400 gallons Fueled weight of stage: 1,064,000 pounds

FIRST STAGE

 Power:
 Five
 F-1
 engines
 with combined

 thrust of 7.5
 million
 pounds
 pounds
 pounds
 propellants:
 RP-1
 kerosene,
 214,200
 gallons
 jallons
 julid oxygen 346,400
 gallons
 Fueled weight of stage:
 5,028,000
 pounds
 stage
 stage

Space Applications

Power plants

Aircraft Production

Automobile Manufacturing

A digital twin is a virtual representation of an object or system helping in decision-making and prediction. It takes in real-time data and keeps track of the lifecycle of the object or system.

Graph represents joint probability distribution:
$$p\left(D_0, \dots, D_{t_p}, Q_0, \dots, Q_{t_p}, R_0, \dots, R_{t_p}, U_{t_c+1}, \dots, U_{t_p} \mid o_0, \dots, o_{t_c}, u_0, \dots, u_{t_c}\right)$$
²⁶

Creating and evolving a structural digital twin

for an unmanned aerial vehicle

Observation

[1] Willcox K. et al., Predictive Digital Twins, CIS Digital Twin Days, 2021

[1] Willcox K. et al., Predictive Digital Twins, CIS Digital Twin Days, 2021

20

- Aircraft undergoes in-flight structural health degradation
- 24 wing-mounted sensors *Ot* provide noisy strain data
- Digital twin is dynamically updated and used to drive mission re-planning
- Scenarios are simulated in ROS

23

Digital Twin of Patient

24

InterTwin

interTwin overall objective

Co-design and implement the prototype of an interdisciplinary Digital Twin Engine.

Digital Twin Engine

• It is an open-source platform based on open standards.

- It offers the capability to integrate with application-specific Digital Twins.
- Its functional specifications and implementation are based on
 - a co-designed interoperability framework
 - conceptual model of a DT for research the DTE blueprint architecture.

Consortium Overview

EGI Foundation as coordinator

Participants, including 1 affiliated entity and 2 associated partners

Consortium at a glance

10 Providers cloud, HTC , HPC resources and access to Quantum systems

11 Technology providers delivering the DTE infrastructure and horizontal capabilities 14 Community representants

from 5 scientific areas; requirements and developing DT applications and thematic modules

Link with Destination Earth

Collaboration with ECMWF

Demonstrators of **data handling across interTwin and DestinE DTs** for the Extremes and Climate in production-type configurations.

Collaboration with DestinE

Development of **common software architecture concepts** that are also **applicable to other major DTs initiatives**.

Cyclone Classification

Early Flood Warnings

Fire Hazard Map Generation

Drought Prediction

EMP²: Environmental Modelling and prediction platform

First proof-of-concept of a machine-learning based global environmental model trained on terabytes of observational data

Why CERN?

Computer scientists

Condense dataset information in a compact representation better handle the information in downstream applications.

eg. condense the info in a few GB rather than TB

Solve common scientific challenge(s) in high-energy physics and weather/climate science using AI/ML

Model complex, nonlinear phenomena and improve current simulations

Access multi-scale dependencies of a given process Earth science: eg. better understand convection phenomena CERN: eg. particle-jet showers reconstruction

Explore potential of unsupervised learning for scientific applications

Extract new information directly from data eg. learn unknown correlation patterns Earth science: eg. early detection of extreme events CERN: eg. anomaly detection

Common Goal:

Develop a proof of concept of representation learning for scientific applications based on observations

Radio Astronomy

Quantum Field Theory

High Energy Physics

Requirements

Online Learning

The DTE shall enable handling **stream of data** larger than 10MB/s

Federated Learning

The DTE shall to able to **transmit/receive data synchronically** (at least **aperiodically**) between different HPC providers

Hyperparameter Optimization

The DTE shall support HPO frameworks (RayTune, etc).

Unified access to infrastructure

DTE shall enable **homogeneous security and access policies**, resource accounting to HPC, HTC and cloud providers

Bridge difference in infrastructure needs

The DTE shall be usable by sciences with **vast differences in compute/storage** needs

interTwin components

Digital Twin Engine (2)

Digital Twin Engine (3)

Digital Twin Engine (4)

Digital Twin Engine (4)

DT workflow composition

DT workflow composition (2)

DT workflow composition (3)

DT workflow composition (4)

DT workflow composition (5)

UNA

DT workflow composition (6)

DT workflow composition (7)

Thank you!

- [1]: Sharma, Angira, Edward Kosasih, Jie Zhang, Alexandra Brintrup, and Anisoara Calinescu. 'Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions'. *Journal of Industrial Information Integration* 30 (1 November 2022): 100383. <u>https://doi.org/10.1016/j.jii.2022.100383</u>.
- [2]: [EPFL] Predictive Digital Twins: From Physics-Based Modeling to Scientific Machine Learning, n.d. https://www.youtube.com/watch?v=ZuSx0pYAZ_I&ab_channel=CenterforIntelligentSystemsCISEPFL