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o NASA Apollo missions







Apollo 13

A~ \ APOLLO

/ ' Y SPACECRAFT

INSTRUMENT UNIT

Weight: About
4,100 pounds

THIRD STAGE

Power: One J-2 engine, 200,000 pounds
thrust

Propellants: Liquid hydrogen, 66,900
gallons

Liquid oxygen, 20,400 gallons
Fueled weight of stage: 265,000 pounds

SECOND STAGE

Power: Five J-2 engines with a combined
thrust of 1,000,000 pounds

Propellants: Liquid hydrogen, 267,700
gallons

Liquid oxygen, 87,400 gallons

Fueled weight of stage: 1,064,000 pounds

FIRST STAGE
Power: Five F-1 engines with combined
thrust of 7.5 million pounds

Propellants: RP-1 kerosene, 214,200
gallons

Liquid oxygen 346,400 gallons

Fueled weight of stage: 5,028,000 pounds
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SATURN V

APOLLO SPACECRAFT

COMMAND MODULE

SERVICE 'MODULE

LUNAR MODULE
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o Digital Twin Industries

Space
Applications

Power plants

Aircraft
Production

Automobile
Manufacturing



o What is a Digital Twin?

A digital twin is a virtual representation of an object or
system helping in decision-making and prediction. It
takes in real-time data and keeps track of the lifecycle

of the object or system.



o Digital Twin of UAV

Control inputs:

Actions or decisions that
influence the physical asset

Physical State:
Parametrized state of the
physical asset

\

Observational data:
Available information describing
the state of the physical asset



Digital Twin of UAV

Control inputs:
Actions or decisions that
influence the physical asset

Ut

Physical State:
Parametrized state of the

physical asset

Digital State:
Parameters (model inputs) that

define the computational models
comprising the digital twin

\

Observational data:
Available information describing
the state of the physical asset

Reward:
Quantifies overall
performance of the

asset-twin system

Quantities of Interest:
Quantities describing the asset,
estimated via model outputs
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o Digital Twin of UAV
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o Digital Twin of UAV
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Creating and evolving a structural digital twin
for an unmanned aerial vehicle
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Observation
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calibrate
material properties, e

= “load-displacement test”
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Experimental datasets
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Dynamic
data-driven
digital twin

dynamic estimation of
structural health, 2
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— Aggressive flight path
—-== Conservative flight path

« Aircraft undergoes in-flight NS,
structural health degradation

* 24 wing-mounted sensors ‘ LU
provide noisy strain data B

\

* Digital twin is dynamically
updated and used to drive
mission re-planning

* Scenarios are simulated
in ROS
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o Digital Twin of Patient
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o Digital Twin of Patient
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o interTwin overall objective

Co-design and implement the prototype of an interdisciplinary Digital Twin Engine.

Digital Twin Engine
» [tisan based on open standards.

» |t offers the capability to integrate with

» Its functional specifications and implementation are based on
®* a
¢ conceptual model of a DT for research -
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o Consortium Overview
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Associated partner

EIROs

£ ECMWF
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EGI Foundation as coordinator

Participants, including 1 affiliated
entity and 2 associated partners
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Providers

cloud, HTC , HPC
resources and
access to
Quantum systems
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Technology
providers

delivering the
DTE infrastructure
and horizontal
capabilities
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Community
representants

from 5 scientific
areas;
requirements and
developing DT
applications and
thematic modules



o Link with Destination Earth

»
Demonstrators of data handling across
interTwin and DestinE DTs for the Extremes and
Climate in production-type configurations.

»

Development of common software architecture
concepts that are also applicable to other major
DTs initiatives.

A DIGITAL REPLICA
OF OUR PLANET

Destination Earth (DestinE) aims to develop
a highly accurate digital model of Earth to monitor

the effects of natural and human activity on our planet,

anticipate extreme events and adapt policies
to climate-related challenges.

[[7] cecvwr @esa @ EUMETSAT
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EMP2; Environmental Modelling and prediction platform

First proof-of-concept of a machine-learning based global environmental model trained on terabytes of
observational data

Spatio-temporal representation
of atmospheric dynamics

ERAS reanalysis

Q Downscaling
<
o \/’f\/
A /
[ ] @ Predictability .
. e Visual
. . interfac
e °
e/ Classification
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Missing data
Iar‘ge scale' Model
machine learning given by the trained
l neural network
Disaster
Transformers architecture R&D at Juelich SSC: support

4x10% GPU hours granted
& in 2023 Applications
CIPEA | D ml i,

@) JiLicH (@)
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Why CERN?
CRRNE Solve common scientific challenge(s) in high-energy
o physics and weather/climate science using Al/ML

Model complex, nonlinear phenomena and improve
current simulations
Access multi-scale dependencies of a given process

Earth science: eg. better understand convection phenomena
CERN: eg. particle-jet showers reconstruction

Computer Earth
scientists scientists
........................................................................... " . Bl st ) 6 O e e T o
Condense dataset information in a '; § scientific applications @
a : : o
174 compact representation : : Extract new information directly from data @
AN better handle the information in : § eg. learn unknown correlation patterns
downstream applications. Earth science: eg. early detection of extreme events
eg. condense the info in a few GB rather than TB .f :‘4 CERN: eg. anomaly detection
Common Goal:
o Develop a proof of concept of representation learning for scientific applications based on observations
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The DTE shall enable handling stream of
data larger than 10MB/s

The DTE shall to able to
transmit/receive data synchronically
(at least aperiodically) between different
HPC providers

The DTE shall support HPO frameworks
(RayTune, etc).

DTE shall enable homogeneous
security and access policies, resource
accounting to HPC, HTC and cloud
providers

The DTE shall be usable by sciences with
vast differences in compute/storage
needs
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interTwin components

DTE
Thematic Modules

DTE
Core Modules

DTE
Infrastructure
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o Digital Twin Engine

DTE PaaS

[Software system]

DT developer it it Authenticates: = = = = = = — >

[Person] ) . Paas on fop of which DT

!f.l. test, monitor,_ _ _ _ > applications are developed

Defines use case-specific DT )T applicatior (itis a PaaS for the DT dev).
'WPS5 + WP + WP7

I

Digital Twin Engine
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Digital Twin Engine (2)

DTE PaaS

————— Authen [Software system]

DT developer

[Person]

‘PaaS on fop of which DT

‘apphcations are developed
(itis a PaaS for the DT dev).
WPS5 + WP + WPT

build, test, monitor, _
y DT applicatior -

Defines use case-specific DT

! t \ ~

hJ training) ’
.

4 < v »

Digital Twin Engine
! [System context]

37



o Digital Twin Engine (3)

DTE SaaS
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T developer

[Person]

Defines use case-specific DT

Zoomable version:
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application

DTE PaaS

[Software system]
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deploy DT appli (itis a PaaS for the DT dev).
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o Digital Twin Engine (4)

DTE PaaS

The DTE core

WPS5 + WP6 + WPT
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DT workflow composition

DT developer

\ Workflow

orchestrator
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workflow composi

Scientist

[Parsan]

[container]

Prvalos e usor wi AL ML
ok 1 porform desrbated ML
minig and HPO
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DTE core
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workflow composi

Scientist

[Parsan]

Data fusion
and visualization
(Container] [contatner]

Prvalos e usor wi AL ML
ok 1 porform desrbated ML
minig and HPO

DTE core
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Scientist

[Parsan]
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for current D

Quality
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Zoomable version:


https://cernbox.cern.ch/s/iwrUvElbJxYxgww

Thank you!
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