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» Digital Twin developed for a
thermal system [2]

« maintaining proper thermal
conditions for the operation
of the Silicon Tracking
Detectors

« DT approach to help in the design
and the extension of the
hardware and software objects

« Development of a control
system using digital twins
approach for a gas system
delivering a specific mixture of
gases to the multipurpose
detector (MPD) [3]



LHC & Particle Detectors in a nutshell

(LHC) is the
world’s largest and most powerful
particle accelerator

The CERN accelerator complex
Complexe des accélérateurs du CERN

27 km ring of superconducting
magnets

2 high-energy particle beams travel at
close to the speed of light in opposite
directions, before they are made to
collide
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https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://home.web.cern.ch/about/how-detector-works
https://home.web.cern.ch/about/experiments/atlas
https://home.web.cern.ch/about/experiments/cms
https://home.web.cern.ch/about/experiments/alice
https://home.web.cern.ch/about/experiments/lhcb

Detector simulation - WLCG Overview

Simulation of particle transport through matter is fundamental
for interpreting the results of HEP experiments

» Particles undergo complex interactions while traversing the

detector material with stochastic outcomes

* These processes are modelled with Monte Carlo (MC)
technigques that rely on repeated random sampling

« MC simulation meets the theoretical predictions with a high
degree of precision but is time and resource intensive

 Worldwide LHC Grid has currently more than 50% of its
resources focused only to simulation [4]
 WLCG provides global computing resources for the
storage, distribution and analysis of the data generated
by the LHC wWLCG
» future High Luminosity LHC will require 100 times more Worldwide LHC Computing Grid
simulated data [5]



https://www.home.cern/science/computing/grid

Detector simulation - Geant4 overview

Geant4 is an open-source toolkit that enables
simulating particle passage through matter

written in C++

toolkit means that there is no main program provided
provides all the necessary components needed to
describe and to solve particle transport simulation
problems in the form of user interfaces

provides necessary tools for users to write their
simulation applications

Thu Jun 2 12:11:52 2016

problem definitions/description: geometry, particles,
physics, etc.
problem solution: step-by-step particle transport : 4
computation based on MC methods -

exampleB1

each simulation problem requires different configuration
that the user needs to define

Visualization capabilities using OpenGL & GEant4d oo

A SIMULATION TOOLKIT

cccccccc


https://geant4.web.cern.ch/

Detector simulation - Motivation overview

Detector Volume

Motivation

» The detailed (full) particle MC simulation is inherently slow, as well as a complex multi-
dimensional problem

» Simulation takes substantial part of computing resources ——

» Calorimeters are the sub-detectors that are most time-consuming [6] Puo

Solution

« HEP community is therefore highly motivated to explore fast alternatives, often trading
some accuracy for speed

« Fast simulation is a set of established techniques that replaces parts of the detailed MC
simulation with alternative approaches e \\

» Here we are leveraging a generative adversarial network approach developed at our lab [1]

How?

« HEP detectors can be described as 3D cameras, taking pictures of particle collisions

« Calorimeters detect particles by measuring the energy deposited in interactions with matter  tvacker

« Calorimeters consist of arrays of active sensor material and passive dense layers, which [6]
ensure that the incoming (primary) particle will deposit most of its energy inside their
volume

* energy depositions in calorimeter cells can be compared to the monochromatic pixel Tt
intensities of a 3D image 7




DT Particle Detector application - Scope
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Particle Detector DT Workflow composition

Particle detector simulation
framework ML (GAN) framework
[Software System: GEANT4/C++ [Software System: Python environment]
environment]

Data pre-processing, Traing, Optimizes and
Performs full (Monte Carlo) or fast (ML based) Validates the ML model.
particle simulations

FullSim GEANT4 Data

[Component: GEANTS appiication] Data Pre-processing

[Component: Python script]
Creating original data through Monte Carlo

calculations, on which the ML model is trained. e

Data Converter
[Software System : Python script]

ROOT to HDF5 data format convertion.

C++ Model Inference ML Model Training
[Component: GEANT4 application] [Component: Python script]

Integration of ML inference within a GEANT4 GAN model training using Tensorflow 2
application and oplimization.

Model Converter
[Software System : Python environment] Optimization
[Python soript]
Converts saved models into LWTNN or

ONNXRuntime format.

FastSim ML Data

[Component. GEANT4 application] Validation / HPO Model Tuning

[Component: Pythen script]
Producing data leveraging ML model that replicate
Monte Carlo simulated data.

GOAL: Data-driven tool that simulates the

output of a particle detector:

Train ML/DL models for generating data “similar” to
training data, that exhibits the same physical
properties

CERN’s application will bring data-driven
prototypes to production level by:

* integrating Monte Carlo based solutions

« establishing a flexible and detailed validation
process

DT components:

* the simulation component that incorporates the
Monte Carlo-based simulation framework
(GEANTA4)

« the deep learning (3D Generative Adversarial
Network) component, which will produce deep
learning models based on a specified particle
detector set up.



Fast detector simulation training and inference workflows

Generate input data for training
Run Monte Carlo simulations locally using GEANT4 software = Output:

m flles ~ ~ - -Interactive parameter tuning
. . . Training workflow _--"" T~
Pre-process ROOT files before feeding the data into the ML model I N )
Input: ROOT files = Output: HDF5 files (decreased volume " 3DGAN | S
p P HDES e ’ Fold e EE
. PO tuning \
Store input and output data ] |
Object or local storage ¢
. . e e . . \\Fést )
Distributed training with multiple GPUs Simdated data
Trained models | —1

GANs, to be tested: Transformer-based models Inference workflow R
\ E comparison _‘/:’:7\

Model inference ’ o
Validation/Quality Check e > ceATe mice ,
based)

Comparing generated data with Monte Carlo data
\_ = o

Sample-based metrics
Continuous re-training ~ , o
S Interactive parameter tuning (modifying

Current state of use case (as described in proposal) is a static syn . model conditions)
model of a detector.

Exploring of extending to an application capable of modelling in real
time the detector’s output in different operation conditions (beams and
accelerator configurations) = continuous re-training on real data

3DGAN
inference
(GEANTY

10


https://root.cern.ch/
https://en.wikipedia.org/wiki/Hierarchical_Data_Format

CERN 3DGAN approach

» For the ML component of CERN’s thematic module, a Generative Adversarial Network based model is being leveraged

« 3DGAN: Simulation of a future high granularity calorimeter output as three dimensional images (51x51x25 pixels)*

» Three orders of magnitude speedup with respect to GEANT4

« Calorimeter cells are represented as monochromatic pixelated images with the cell energy depositions being the pixel intensities

* Our approach uses 3D convolution layers to represent the 3 spatial dimensions of the calorimeter images

« 3DGAN consists of 2 networks, the generator and discriminator

Latent
vector

*Fast Simulation of a High
Granularity Calorimeter by
Generative Adversarial Networks.
Gul Rukh Khattak et al.
https://arxiv.org/abs/2109.07388 DOI:

https://doi.org/10.48550/arXiv.2109.0 Image

7388
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Example of a GEANT4 electron event (left) vs. an event generated by GAN
(right) for the same initial conditions
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https://arxiv.org/abs/2109.07388
https://doi.org/10.48550/arXiv.2109.07388

DT capabilities and requirements

The designing process of our digital twin application and its capabilities led to identify application
technical requirements, that were presented during past months and reported in D7.2

* The optimized 3DGAN model replicates the selected dataset (i.e. Monte Carlo simulation data).
® GPUs are required for the training phase.
¢ Tools for parallel training and hyper parameter optimization will be modified to accommodate the adversarial training process if needed.

e Integration of the GAN models with the MC-based framework (GEANT4) will be implemented.

¢ The pre-trained model is stored and used for inference taking into account the data transformations between MC output and model input and
vice versa.

* The implementation of complex multivariate distributions based on a large range of input conditions.

e Infrastructure to implement continuous training approach, updating the model configuration whenever new data becomes available.
* The convergence of the model should be monitored and the accuracy of the generated data.

e Customizable validation framework will be developed in collaboration with HEP community experts 12



Fast simulation with GAN

*Objectives

*Optimizing the Generative Adversarial Network (GAN)-based model developed for a selected set of detector geometries.

Integrating tools for distributed training and hyperparameter optimization.

sImplementing validation techniques capable of assessing different performance aspects, such as accuracy and comparison to classical
Monte Carlo, uncertainty estimation, coverage of the support space. This activity will be contributing to the development of an agreed

validation standard among the HEP community.

*Task background / overview
*GEANTA4: simulation toolkit that performs particle physics simulations based on Monte Carlo methods (C++ framework)

«Set of components including geometry and particle propagation descriptions, detector response modelling, event management,
user interfaces and more...

*Faster alternatives to Monte Carlo, including deep learning based techniques

*Generative models (used in similar HEP applications) are able to combine deep learning with statistical inference and probabilistic

modelling
*deep learning fast simulation generates directly the detector output, without reproducing, step by step, each single particle that

interacts with the detector material

13


https://geant4.web.cern.ch/

Implemented components until now

Particle detector simulation
framework
[Software Sy ;. GEANTA/C++
environment]

T6.1 Workflow composition
and processing
[Software System]

Performs full ( fast (ML based)
simulations

ML (GAN) framework

[Softwar em: Python environment]

Data pre essing, Trains, Optim
falidates the ML model.

Executes thematic rnud.lle—--:
|
' FullSim GEANT4 Data

|
| [Component: GEANT4 application]
Stores Monte Carlo simulated data and metadata

Creating original data through Monte Carlo
calculations, on which the ML model is trained.

Data Converter

Retriewes ROOT data

C++ Model Inference
[Component: GEANT4 application]
Data / Model Storage
Integration of ML inference within a GEANT4
application and opfimization.

[Container: e.g. Local, Cloud, Object]

Storing related data and models.
Nogel converter

ONNXRuntime format.

Stores ML simulated data

FastSim ML Data
[Component: GEANT4 application]

T T

Producing data leveraging ML model that replicate
Monte Carlo simulated data.

Retrieves trained model

[Software System : Python environment]

Converts saved models into LWTNN or

Data Pre-processing
[Component: Python script]

e.g. modeling, scaling

[Software System : Python script]

ROOT to HDF5 data format convertion.

ML Model Training
[Component: Python script]

'GAN model training using Tensorflow 2

Optimization
[Python soript]

Validation / HPO Model Tuning
[Component: Python script]

WPT T7.7 Fast particle detector simulationwith GAN thematic module
[Container]

Stores optimi

trained models:

T6.2 Validation framework
[Software System]

Walidates ML models

T6.4 Visualization
[Software System]

T6.5 Al Workflow
[Software System]

Plots and visualizes results-

WP5 DTE Infrastructure
[Software System]

14



Next steps and challenges

Particle detector simulation
T6.1 Workflow composition framework ML (GAN) framework
and processing [Software System: GEANTA/C++
iranment]
[Software System] cessing, Trains, Optimizes and

Performs full (Monte Cario) or fast (ML based) Validates the ML model

* Implementation of validation
techniques capable of
assessing different aspects of
performance, including
accuracy and comparison to
classical Monte Carlo

[Software System: Python environment]

particle simulations

. T6.2 Validation framework
Data Pre-processing [Software System]
[Component: Python script]

e.g. modeling, scaling

FullSim GEANT4 Data
[Component: GEANT4 application]

Stores Monte Carlo data and

Creafing original data through Mente Carlo
calculations, on which the ML model is trained.
- - Data Converter

[Software System : Python scripf]

ROOT to HOF5 data format convertion. 2 ML models

C++ Model Inference ML Model Training

[Component: GEANT4 application] [Component; Python script] T6.4 Visualization

[Software System]

« Challenge: the creation
of an agreed validation
standard at the
community level

Data / Model Storage
[Container: e.g. Local, Cloud, Objeci]

Integration of ML inference within a GEANT4. GAN model training using Tensorflow 2
application and optimization.
Storing related data and models.

[Software System : Python environment] it
[Python soipt]

Converts saved models into LWTNHN or
'ONNXRuntime format,

Stores ML simulated data

FastSim ML Data o .
[Component: GEANT4 application] Validation / HPO Model Tuning
[Component: Python scripf]

T6.5 Al Workflow
[Software System]

[Producing data leveraging ML model that replicate
Monte Carlo simulated data.

ieves trained

=

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
| Modael converer
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|

P7 T7.7 Fast particle detector simulationwith GAN thematic module
[Container]

| WP5 DTE Infrastructure
[Software System]
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Next steps and challenges cont'd

Particle detector simulation
T6.1 Workflow composition NO n HL GAN) framework

and processing ystem: Python environment]
[Software System]

 Integration of 3DGAN model
to MC-based framework
(GEANT4) and optimization of
the data transformation
pipelines

* The stored pre-trained model
Is used during inference
inside GEANT4 - generation
of fast simulation ML data

Executes thematic mudule—b»:

. T6.2 Validation framework
Data Pre-processing [Software System]
[Component: Python script]

e.g. modeling, scaling

! FullSim GEANT4 Data
[Component: GEANT4 application]

Creafing original data through Mente Carlo
«calculatiens, on which the ML model is trained.

Stores Monte Carlo data and

Data Converter
[Software System : Python scripf]

ﬁs—\ ROOT to HOF5 data fermat convertion.

C++ Model Inference ML Model Training .

[Component: GEANT4 application] [Companent: Python script] T6.4 Visualization

Integration of ML inference within a GEANT4. GAN mode! training using Tensarflow 2
application and optimization.

Data / Model Storage
[Container: e.g. Local, Cloud, Objeci]

[Software System]

Storing related data and models.
Modael vonverter
[Software System : Python environment]

Converts saved models into LWTNHN or
'ONNXRuntime format,

Stores ML simulated data

FastSim ML Data
[Component; GEANT4 appication] Validation / HPO Model Tuning Py T6.5 Al Workflow

« Challenge: attentive data
transformations between
MC output and model
Input and vice versa

[Companent: Python script] [Software System]
[Producing data leveraging ML model that replicate
Monte Carlo simulated data.

/

N " 4 ieves trained

=

P7 T7.7 Fast particle detector simulationwith GAN thematic module

| WP5 DTE Infrastructure
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