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interTwin Physics DT 
Applications

• Lattice QCD Simulations - HEP

• Particle Detector Simulation -
HEP

• Noise Simulation for Radio 
Astronomy

• VIRGO Noise detector -
Astrophysics



DT examples 
in HEP

• Digital Twin developed for a 
thermal system [2]

• maintaining proper thermal 
conditions for the operation 
of the Silicon Tracking 
Detectors

• DT approach to help in the design 
and the extension of the 
hardware and software objects

• Development of a control 
system using digital twins 
approach for a gas system 
delivering a specific mixture of 
gases to the multipurpose 
detector (MPD) [3]



LHC & Particle Detectors in a nutshell
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• Large Hadron Collider (LHC) is the 

world’s largest and most powerful 

particle accelerator

• 27 km ring of superconducting 

magnets

• 2 high-energy particle beams travel at 

close to the speed of light in opposite 

directions, before they are made to 

collide

• beams inside LHC are made to collide 

at four locations around the accelerator 

ring → positions of four 

experiments/particle detectors –

ATLAS, CMS, ALICE and LHCb

https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://home.web.cern.ch/about/how-detector-works
https://home.web.cern.ch/about/experiments/atlas
https://home.web.cern.ch/about/experiments/cms
https://home.web.cern.ch/about/experiments/alice
https://home.web.cern.ch/about/experiments/lhcb


Detector simulation – WLCG Overview
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• Simulation of particle transport through matter is fundamental 

for interpreting the results of HEP experiments

• Particles undergo complex interactions while traversing the 

detector material with stochastic outcomes

• These processes are modelled with Monte Carlo (MC) 

techniques that rely on repeated random sampling

• MC simulation meets the theoretical predictions with a high 

degree of precision but is time and resource intensive

• Worldwide LHC Grid has currently more than 50% of its 

resources focused only to simulation [4]

• WLCG provides global computing resources for the 

storage, distribution and analysis of the data generated 

by the LHC

• future High Luminosity LHC will require 100 times more 

simulated data [5]

https://www.home.cern/science/computing/grid


Detector simulation – Geant4 overview
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• Geant4 is an open-source toolkit that enables 

simulating particle passage through matter

• written in C++

• toolkit means that there is no main program provided

• provides all the necessary components needed to 

describe and to solve particle transport simulation 

problems in the form of user interfaces 

• provides necessary tools for users to write their 

simulation applications

• problem definitions/description: geometry, particles, 

physics, etc.

• problem solution: step-by-step particle transport 

computation based on MC methods

• each simulation problem requires different configuration

that the user needs to define

• Visualization capabilities using OpenGL

https://geant4.web.cern.ch/


Detector simulation – Motivation overview
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Motivation

• The detailed (full) particle MC simulation is inherently slow, as well as a complex multi-

dimensional problem

• Simulation takes substantial part of computing resources

• Calorimeters are the sub-detectors that are most time-consuming [6]

Solution

• HEP community is therefore highly motivated to explore fast alternatives, often trading 

some accuracy for speed

• Fast simulation is a set of established techniques that replaces parts of the detailed MC 

simulation with alternative approaches

• Here we are leveraging a generative adversarial network approach developed at our lab [1]

How?

• HEP detectors can be described as 3D cameras, taking pictures of particle collisions

• Calorimeters detect particles by measuring the energy deposited in interactions with matter

• Calorimeters consist of arrays of active sensor material and passive dense layers, which 

ensure that the incoming (primary) particle will deposit most of its energy inside their 

volume

• energy depositions in calorimeter cells can be compared to the monochromatic pixel 

intensities of a 3D image

[6]

[6]



DT Particle Detector application - Scope
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• Detector Prototyping & Optimization

• Build data-driven tool that simulates
detector response and integrates 
operation conditions from experimental 
setups (test-beams)

• Online ML for Detectors

• adapt real-time detector and/or data 
acquisition configuration with respect to 
run conditions

• Quality verification & Validation 
frameworks

• model convergence and accuracy of the
generated data should be monitored

• development of sample-based validation 
framework in collaboration with HEP 
community



Particle Detector DT Workflow composition
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GOAL: Data-driven tool that simulates the 
output of a particle detector:
Train ML/DL models for generating data “similar” to
training data, that exhibits the same physical 
properties

CERN’s application will bring data-driven 
prototypes to production level by:

• integrating Monte Carlo based solutions

• establishing a flexible and detailed validation 
process

DT components:
• the simulation component that incorporates the 

Monte Carlo-based simulation framework
(GEANT4)

• the deep learning (3D Generative Adversarial 
Network) component, which will produce deep 
learning models based on a specified particle 
detector set up.



Fast detector simulation training and inference workflows
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❖Generate input data for training
❖Run Monte Carlo simulations locally using GEANT4 software→ Output: 

ROOT files

❖Pre-process ROOT files before feeding the data into the ML model
❖Input: ROOT files → Output: HDF5 files (decreased volume)

❖Store input and output data
❖Object or local storage

❖Distributed training with multiple GPUs
❖GANs, to be tested: Transformer-based models

❖Model inference

❖Validation/Quality Check
❖Comparing generated data with Monte Carlo data
❖Sample-based metrics

❖Continuous re-training
❖Current state of use case (as described in proposal) is a static synthetic 

model of a detector. 
❖Exploring of extending to an application capable of modelling in real 

time the detector’s output in different operation conditions (beams and 
accelerator configurations)→ continuous re-training on real data

https://root.cern.ch/
https://en.wikipedia.org/wiki/Hierarchical_Data_Format


CERN 3DGAN approach
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• For the ML component of CERN’s thematic module, a Generative Adversarial Network based model is being leveraged 

• 3DGAN: Simulation of a future high granularity calorimeter output as three dimensional images (51x51x25 pixels)*

• Three orders of magnitude speedup with respect to GEANT4

• Calorimeter cells are represented as monochromatic pixelated images with the cell energy depositions being the pixel intensities

• Our approach uses 3D convolution layers to represent the 3 spatial dimensions of the calorimeter images

• 3DGAN consists of 2 networks, the generator and discriminator

*Fast Simulation of a High 
Granularity Calorimeter by 
Generative Adversarial Networks.
Gul Rukh Khattak et al. 
https://arxiv.org/abs/2109.07388 DOI: 
https://doi.org/10.48550/arXiv.2109.0
7388

Example of a GEANT4 electron event (left) vs. an event generated by GAN 
(right) for the same initial conditions

https://arxiv.org/abs/2109.07388
https://doi.org/10.48550/arXiv.2109.07388


DT capabilities and requirements

12

The designing process of our digital twin application and its capabilities led to identify application 

technical requirements, that were presented during past months and reported in D7.2 

3DGAN model for fast detector calorimeter simulations

• The optimized 3DGAN model replicates the selected dataset (i.e. Monte Carlo simulation data).

• GPUs are required for the training phase. 

• Tools for parallel training and hyper parameter optimization will be modified to accommodate the adversarial training process if needed.

Integration to MC-based framework and optimization of the data transformation pipelines 

• Integration of the GAN models with the MC-based framework (GEANT4) will be implemented. 

• The pre-trained model is stored and used for inference taking into account the data transformations between MC output and model input and 
vice versa.

Implementation of multi-modal probability learning capability

• The implementation of complex multivariate distributions based on a large range of input conditions.

Continuous retraining and quality verification

• Infrastructure to implement continuous training approach, updating the model configuration whenever new data becomes available. 

• The convergence of the model should be monitored and the accuracy of the generated data.

Validation 

• Customizable validation framework will be developed in collaboration with HEP community experts



Fast simulation with GAN
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•Objectives

•Optimizing the Generative Adversarial Network (GAN)-based model developed for a selected set of detector geometries.

•Integrating tools for distributed training and hyperparameter optimization.

•Implementing validation techniques capable of assessing different performance aspects, such as accuracy and comparison to classical

Monte Carlo, uncertainty estimation, coverage of the support space. This activity will be contributing to the development of an agreed

validation standard among the HEP community.

•Task background / overview

•GEANT4: simulation toolkit that performs particle physics simulations based on Monte Carlo methods (C++ framework)

•Set of components including geometry and particle propagation descriptions, detector response modelling, event management,

user interfaces and more...

•Faster alternatives to Monte Carlo, including deep learning based techniques

•Generative models (used in similar HEP applications) are able to combine deep learning with statistical inference and probabilistic

modelling

•deep learning fast simulation generates directly the detector output, without reproducing, step by step, each single particle that

interacts with the detector material

https://geant4.web.cern.ch/


Implemented components until now
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Next steps and challenges
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• Implementation of validation

techniques capable of 

assessing different aspects of 

performance, including 

accuracy and comparison to 

classical Monte Carlo

• Challenge: the creation 

of an agreed validation 

standard at the

community level



Next steps and challenges cont’d

16

• Integration of 3DGAN model 

to MC-based framework

(GEANT4) and optimization of 

the data transformation

pipelines

• The stored pre-trained model 

is used during inference

inside GEANT4 → generation 

of fast simulation ML data

• Challenge: attentive data 

transformations between 

MC output and model 

input and vice versa
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QUESTIONS?

Contact details: 

• Kalliopi Tsolaki: kalliopi.tsolaki@cern.ch

• Sofia Vallecorsa: sofia.vallecorsa@cern.ch

• David Rousseau: rousseau@ijclab.in2p3.fr

mailto:kalliopi.tsolaki@cern.ch
mailto:sofia.vallecorsa@cern.ch
mailto:rousseau@ijclab.in2p3.fr
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