Measurement of (Interference) Fragmentation Functions in e^+e^-

and Di-Hadron Correlations at SIDIS and p+p

Anselm Vossen

Transversity 2011
Veli Lošinj, Croatia, 29 August - 2 September 2011

arXiv:1104.2425

PRL **107**, 072004(2011)

INDIANA UNIVERSITY

Motivation & Outline

- Transverse spin dependent fragmentation functions are necessary to extract quark transversity
- Interference Fragmentation Function best way to extract transversity in p+p
 →Opens new kinematic domain of high x_{Bi} and z
- In SIDIS: Di-hadron Correlations provide independent approach to extract transversity with some theoretical advantages
- Measurement of Interference and Collins Fragmentation Functions at
- Results from di-hadron correlations at

• Outlook: Unpolarized and more "exotic" Fragmentation functions

Parton Distribution Functions

The three leading order, collinear PDFs

unpolarized PDF

quark with momentum $x=p_{quark}/p_{proton}$ in a nucleon

well known – unpolarized DIS

helicity PDF

quark with spin parallel to the nucleon spin in a longitudinally polarized nucleon known – polarized DIS

transversity PDF

quark with spin parallel to the nucleon spin in a transversely polarized nucleon

chiral odd, poorly known
Cannot be measured inclusively
Extract from semi-inclusive
measurements

Transversity is Chiral Odd

Transversity base:

Difference in densities for \uparrow , \downarrow quarks in \uparrow nucleon

- Helicity base: chiral odd
-see previous talks
- Does not couple to gluons ⇒different QCD evolution than g₁(x)
- Valence dominated⇒ Tensor charge comparable to Lattice calculations
- We want to extract tensor charge $g_T = \int_{-1}^1 h_1(x) dx$

Chiral odd Fragmentation Functions

Belle Fragmentation Function Measurement makes first Extraction of Transversity possible!

Belle 547 fb⁻¹ data set (Phys.Rev.D78:032011,2008.)

Together with HERMES, COMPASS First, still model dependent transversity Extraction:

Alexei Prokudin, DIS2008, update of Anselmino et al: hep-ex 0701006

Extraction of double ratios unlike sign over like sign A^{UL} and unlike over all pairs A^{UC} Gives different combinations of favored and unfavored fragmentation functions

Not direct extraction of Collins Fragmentation function: Only from global fit

First global analysis from Hermes proton-, Compass deuterium Collins asymmetries and Belle data

[1-7] models, [8] Anselmino et al., arXiv:0807.0173

 δ **d** 3: Lattice, Goekeler, PLB627 05

 First results available, still open questions from evolution of Collins FF and transverse momentum dependence

More data available now

- Cross check using interference fragmentation functions needed
- Wider kinematic reach needed

Phys.Rev.D75:054032,2007, update in Nucl.Phys.Proc.Suppl.1 91:98-107,2009

p+p increased kinematic reach in x_{Bi}, z

Kinematic reach of SIDIS data

- Kinematic reach in p+p for single pions at 3<eta<4 (RHIC@200GeV)
- Relative hadron
 momentum z for p+p
 (3<eta<4) collisions and
 SIDIS (COMPASS), only
 single hadron, di-hadron
 z₁+z₂ 'less different,

But Collins measurement hard (see STAR Talk Nikola Poljak) and theoretically hard to interpret (fact. Breaking)

Chiral odd Fragmentation Functions

Interference Fragmentation Function

Interference FF in Quark Fragmentation

 $\vec{k} : \text{quark momentum}$ $\vec{s}_q : \text{quark spin}$ $\vec{R} : \text{momentum difference } \vec{p}_{h1} - \vec{p}_{h2}$ $\vec{R}_T : \text{transverse hadron momentum difference}$ $= E_{pair}/E_q$ $= 2E_{pair}/\sqrt{s}$ $= 2E_{pair}/\sqrt{s}$: relative hadron pair momentum : hadron pair invariant mass

Interference Fragmentation Function:

Fragmentation of a transversely polarized quark *q* into two spin-less hadron *h1*, *h2* carries an azimuthal dependence:

$$\propto \left(\vec{k} \times R_T\right) \cdot \vec{s}_q$$

$$\propto \sin \phi$$

10

Interference FF vs. Collins Effect

- Independent Measurement
- Effect persists with transverse momentum integrated
- -Collinear factorization
- •No assumption about k_t in evolution
- •evolution known, collinear scheme can be used
- •Universal function: directly applicable to semi-inclusive DIS and pp
- •First experimental results from HERMES, COMPASS, PHENIX and now Belle
- Sudakov suppression in Collins case
- •Favorable in proton-proton collisions: no other contributions (no Sivers): Disentangle sources of large transverse spin asymmetries

In p+p:

No jet reconstruction necessary, better systematics: "Easier" measurement

Spin Dependent FF in e⁺e⁻: Need Correlation between Hemispheres!

- O Quark spin direction unknown: measurement of Interference Fragmentation function in one hemisphere is not possible $\sin \varphi$ modulation will average out.
- o Correlation between two hemispheres with $\sin \varphi_{Ri}$ single spin asymmetries results in $\cos(\varphi_{RI} + \varphi_{R2})$ modulation of the observed di-hadron yield.

Measurement of azimuthal correlations for di-pion pairs around the jet axis in two-jet events!

Measuring di-Hadron Correlations In e⁺e⁻ Annihilation into Quarks

Interference effect in e⁺e⁻ quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements!

Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector
- •Observable: $\cos(\varphi_{R1} + \varphi_{R2})$

modulation measures $H_1^{\angle}\overline{H}_1^{\angle}$

KEKB: $L>2.11 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$!

- Asymmetric collider
- 8GeV e⁻ + 3.5GeV e⁺
- $\sqrt{s} = 10.58 \text{GeV} (Y(4S))$
- $e^+e^- \rightarrow Y(4S) \rightarrow B$ B
- Off-resonance production: 10.52 GeV
- $e^+e^-\rightarrow q q (u,d,s,c)$
- Integrated Luminosity: > 1000 fb⁻¹
- >70 fb⁻¹ => continuum

Large acceptance, good tracking and particle identification!

Cuts and Binning

- Similar to Collins analysis, full off-resonance and on-resonance data (7-55): ~73 fb⁻¹ + 588 fb⁻¹
- Visible energy >7GeV
- PID: Purities in for di-pion pairs > 90%
- Same Hemisphere cut within pair $(\pi^+\pi^-)$, opposite hemisphere between pairs
- All 4 hadrons in barrel region: $-0.6 < \cos(\theta) < 0.9$
- Thrust axis in central area: cosine of thrust axis around beam < 0.75
- Thrust > 0.8 to remove B-events $\rightarrow < 1\%$ B events in sample
- $z_{had1,had2} > 0.1$
- $z_1 = z_{had1} + z_{had2}$ and z_2 in 9x9 bins
- $m_{\pi\pi 1}$ and $m_{\pi\pi 2}$ in 8x8 bins: [0.25 2.0] GeV
- New: Mixed binning

Systematic Errors

- Dominant:
 - MC asymmetry + its statistical error (up to % level)
- Smaller contributions:
 - PID: per mille level
 - higher moments: sub per mille level
 - axis smearing
 - mixed asymmetries: per mille level

$(z_1x m_1)$ Binning

$(m_1x z_1)$ Binning

Di-Hadron Correlations in DIS

Armine Rostomyan, Tue 10:15,

Christopher Braun, Tue 11:35, 9:40,

Hermes and Compass results on the proton

... look different still, but ...

Good agreement after correction for experiments conventions

Proton

HERMES values scaled with 1/D_{nn}

Compass measured also (very small) asymmetries from Deuterium

Direct product!

No assumption needed!

First transversity extraction from HERMES and Belle IFF data

Alessandro Bacchetta at RHIC DY workshop May 2011:

First glimpses at transversity

Collinear Framework: Point by Point extraction possible!

Bacchetta, Radici, Courtoy, arXiv:1104.3855

• SIDIS asymmetries A_{UT} are $\propto H^{\perp} \cdot h_1$

First transversity extraction from HERMES and Belle IFF data

Alessandro Bacchetta at RHIC DY workshop May 2011:

First glimpses at transversity

Collinear Framework: Point by Point extraction possible!

New result

Bacchetta, Radici, Courtoy, arXiv:1104.3855

- Early studies indicate little effect of evolution in Collins function,
- Preliminary data by Compass and PHENIX not used

First transversity extraction from HERMES and Belle IFF data

Alessandro Bacchetta at RHIC DY workshop May 2011:

First glimpses at transversity

Collinear Framework: Point by Point extraction possible!

Consistent
 with
 Extraction by
 Anselmino
 et.al.

New result

Bacchetta, Radici, Courtoy, arXiv:1104.3855

Interference Fragmentation Function in p-p

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} (\phi_{S} - \phi_{R}) = A_{UT} \sin(\phi_{S} - \phi_{R}) \qquad A_{UT} \propto h_{1} \otimes H_{1}^{<}$$

 ϕ_s : Angle between polarisation vector and event plane

 ϕ_R : Angle between two hadron plane and event plane

Definition of Vectors and Angles

p+p c.m.s. = lab frame

 \vec{P}_A . \vec{P}_B : momenta of protons

 \vec{P}_{h1} . \vec{P}_{h2} : momenta of hadrons

$$\vec{P}_C = \vec{P}_{h1} + \vec{P}_{h2}$$

$$\vec{R}_C = (\vec{P}_{h1} - \vec{P}_{h2})/2$$

 \vec{S}_B : proton spin orientation

hadron plane: \vec{P}_{h1} , \vec{P}_{h2}

scattering plane: \vec{P}_C , \vec{P}_B

 ϕ_R : from scattering plane to hadron plane

 ϕ_S : from polarization vector to scattering plane

PHENIX Detectors used for IFF Analysis

- @RHIC, 200 GeV p+p
- Use 2 separate spectrometer arms at central rapidity, |η| < 0.35
- Azimuthal coverage: 90° + 90°
- Electromagnetic Calorimeters
 - PbSC + PbGl
 - High granularity $\Delta \eta \times \Delta \phi = 0.01 \times 0.01$
- Tracking of charged particles

Little p t dependence of x at mid rapidity, low x

Results: John Koster, Wed. 9:40

vs Invariant Mass of the Pair

First measurement of IFF in pp

Di-Hadron correlations measurements at

- Di-Hadron correlations measurements with current detector
 - Need different charged hadrons
 - π^0 in Barrel and Endcap, π^+ $/\pi^-$ inTPC

Full azimuth spanned with nearly contiguous electromagnetic calorimetry from -1<η<4

⇒ approaching full acceptance detector

One Scenario for a STAR forward upgrade

nucleus

Transverse spin effect dominated by valence quarks accessed in forward direction

Forward instrumentation optimized for p+A and transverse spin physics

- Charged Tracking upgrade covering FMS will enable di-hadron measurements and jet measurements
- Star decadal plans calls additionally for PID (e.g. RICH) and pi0/gamma separation (preshower)

Projections for Belle Measurements of IFF Channel: $(\pi^+\pi^0)$ $(\pi^+\pi^0)$ relevant for p+p

• Errors one order of magnitude smaller than average asymmetry in $(\pi^+\pi^-)$

Hadron pair in second hemisphere: 0.77 GeV <M_{inv}< 1.2 GeV

Unpolarized Fragmentation functions

 At leading order sum of unpolarized fragmentation functions from quark and antiquark side

LO
$$F^{h}(z,s) = \frac{\sum_{q} e_{q}^{2} [D_{q}^{h}(z) + D_{q}^{h}(z)]}{\sum_{s} e_{q}^{2}}$$
 NLO $F^{h}(z,s) = \sum_{i} \int_{z}^{1} \frac{dz'}{z'} C_{i}(s;z'\alpha_{s}) D_{q}^{h}(z)$

Unpolarized Fragmentation Functions at

- Precision Measurement of unpolarized FFs important for almost all extractions of PDFs
- But this is a hard measurement, at Belle
 - Extensive systematic studies for PID effects: calibration & deconvolution/ correction
 - further corrections for momentum smearing, acceptance effects,

Projections: Unpolarized Fragmentation Functions-

Measurement will give precision data set for low Q² and high z:

In the future: include k_t dependence and measure di-hadron FFs needed for transversity extraction from di-hadron correlations

Summary and Outlook

- Interference Fragmentation can be used to measure transversity in di-hadron correlations in p+p
 - First Belle and PHENIX results
 - More measurements at STAR, Belle and PHENIX planned
 - Relatively easy measurement in proton-proton collisions
 - Access high x, z necessary to extract tensor charge
- In SIDIS transversity can be accessed in an independent way and in the collinear framework
 - COMPASS and HERMES results
 - First extraction of transversity in collinear framework
- Theory Calculations for pi⁰/pi^{+/-} and p+p underway
- Measurement of pi⁰/pi^{+/-} at Belle and Phenix/STAR
- Jlab with 12 GeV upgrade plans to measure IFF
- Belle plans to measure related quantities:
 - Collins Asymmetries for vector mesons
 - Collins Asymmetries for Kaons
 - di-hadron unpolarized FF: e.g. needed for denominator
 - P-odd fragmentation functions
 - Lambda FFs
 - **–** ...

Unpolarized and Collins FF measurements at BaBar: Isabella Garzia (next talk)

Belle Fragmentation activity

	RIKEN/RBRC	Illinois	Indiana	Titech
Unpol FFs e⁺e⁻→hX:	Neutral hadrons: (π^0, η^0)	Charged hadrons (π,K,P) :		
e⁺e⁻→(hh)X, (h)(h)X,hhX:	John Koster Charged di- hadrons: Ralf Seidl	Martin Leitgab	Green: ong	out to start going shed
Unpol k _T dependence:		Martin Leitgab		
Collins FFs $e^+e^- \rightarrow (h)(h)X$: k_{T} dependence:	$\pi\pi^0$: John Koster $\pi\rho^0$: Ralf Seidl $\pi\pi$: Ralf Seidl $\pi\pi^0$: John Koster	πK,KK: Francesca Giordano Francesca Giordano	πρ [±] : ?	
Interference FF: e⁺e⁻→(hh)(hh)X	Charged $\pi\pi$: Ralf Seidl		Charged $\pi\pi$: Anselm Vossen $\pi\pi^0$: Anselm Vossen	Charged πK, KK: Nori-aki Kobayas
Local $ hickspace P$: Λ (polFF,SSA):			Anselm Vossen	38

Jet-jet asy:

Upgrade to

- Belle II is a significant upgrade to Belle and will sample 2 orders of magnitude higher luminosity
- High precision data will enable measurement of
- -P-odd FFs
- -Transverse momentum dependent FFs
- -Charm suppression possible
- IU develops FEE for Barrel KLM detector crucial for high precision FF measurement of identified particles

Subprocess contributions (MC)

 $9x9 z_1 z_2$ binning

```
tau contribution (only significant at high z)
Neutral B (<2%)
charm(20-60%, mostly at lower z)
uds (main contribution)
```

Subprocess contributions (MC)


```
charged B(<5%, mostly at higher mass)
Neutral B (<2%)
charm( 20-60%, mostly at highest masses)
uds (main contribution)
```

Charm Asymmetries in simulated data consistent with zero! To be checked with charm enhanced sample

Combined Analysis: Extract Transversity Distributions

Transversity properties

- Helicity flip amplitude
- Chiral odd
- Since all interactions conserve chirality one needs another chiral odd object
- Does not couple to gluons
 ⇒different QCD evolution than
 ∆q(x)
- Valence dominated

 Comparable to Lattice calculations, especially tensor charge

$$q(x) = q_{+}(x) + q_{-}(x) \sim Im(\mathcal{A}_{++,++} + \mathcal{A}_{+-,+-})$$

$$\Delta q(x) = q_{+}(x) - q_{-}(x) \sim Im(\mathcal{A}_{++,++} - \mathcal{A}_{+-,+-})$$

$$\delta q(x) = q_{\uparrow}(x) - q_{\downarrow}(x) \sim Im\mathcal{A}_{+-,-+}$$

Positivity bound:

$$\left|\delta q(x)\right| \le q(x)$$

Soffer bound:

$$\left|\delta q(x)\right| \le \frac{1}{2} \left(q(x) + \Delta q(x)\right)$$

Zero tests: MC

- A small asymmetry seen due to acceptance effect
- Mostly appearing at boundary of acceptance
- Opening cut in CMS of 0.8 (~37 degrees) reduces
 acceptance effect to the sub-per-mille level

$$\frac{P_h \bullet \hat{n}}{|P_h|} = \cos(P, n)$$

 P_h

H. Wollny, CERN-THESIS-2010-108

Results incl. sys. errors: (z₁x z₂) Binning

(m₁x m₂) Binning

Transversity dq(x)

Transverse spin information at leading twist

$$A_{_{UT,\phi}}^{_{h_{_{1}},h_{_{2}}}}=rac{\sigma_{_{\phi}}^{^{\uparrow}}-\sigma_{_{\phi}}^{^{\downarrow}}}{\sigma_{_{\phi}}^{^{\uparrow}}+\sigma_{_{\phi}}^{^{\downarrow}}}$$

 $= \frac{\sigma_{\phi} - \sigma_{\phi}^{*}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$ Measure dq X Interference Fragmentation functions

Transversity extraction will become possible with Interference Fragmentation Function - BELLE has shown first observation of IFF asymmetries

Exploring analysis with hadrons in forward region

Comparison to Theory Predictions

Initial model description by Bacchetta, Checcopieri, Mukherjee, Radici: Phys.Rev.D79:034029,2009.

Leading order,

Mass dependence: Magnitude at low masses comparable, high masses significantly larger (some contribution possibly from charm)

Z dependence : Rising behavior steeper

However: Theory contains parameters based on HERMES data which already fail to explain COMPASS well

Transversity from di-Hadron SSA

Physics asymmetry
$$A_{UT} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \frac{\sigma_{UT}}{\sigma_{UU}}$$

QED, QCD Preserve Helicity

QED and QCD interactions (and SM weak interactions) conserve helicity:

Cannot measure h₁ inclusively

Helicity base: chiral odd

Need chiral odd partner => Fragmentation function

Collins Extraction of Transversity: model dependence from Transverse Momentum Dependences!

$$A_{UT}^{Collins} = \frac{\sum_{q} e_{q}^{2} \int d\phi_{S} d\phi_{h} d^{2}k_{\perp} \delta q(x_{\perp}, k_{\perp}) \frac{d(\Delta \sigma)}{dy} H_{1,q}^{\perp}(z, p_{\perp}) \sin(\phi_{S} + \phi + \phi_{q}^{h}) \sin(\phi_{S} + \phi_{h})}{\sum_{q} e_{q}^{2} \int d\phi_{S} d\phi_{h} d^{2}k_{\perp} q(x_{\perp}, k_{\perp}) \frac{d(\Delta \sigma)}{dy} D_{q}^{h}(z, p_{\perp})} \frac{D_{q}^{h}(z, p_{\perp})}{\partial y_{R} \partial y_{R}} dy_{R} dy_{R}$$

k⊥ transverse quark momentum in nucleon p_{\(\pi\)} transverse hadron momentum in fragmentation Anselmino, Boglione, D'Alesio, Kotzinian, Murgia, Prokudin, Turk Phys. Rev. D75:05032,2007

The transversse momentum dependencies are unknown and difficult to obtain experimentally!

Why is transversity so difficult to measure?

- Chiral odd: Inclusive asymmetries suppressed
 - Cannot be measured inclusively
 - Instead: Use semi inclusive asymmetries
 - Measure transverse polarisation of fragmenting quarks

Alexei Prokudin, DIS2008, update of Anselmino et al: hep-ex 0701006

Measuring Light Quark Fragmentation Functions on the $\Upsilon(4S)$ Resonance

- small B contribution (<1%) in high thrust sample
 - >75% of X-section continuum under Υ (4S) resonance
- 73 fb⁻¹ → 662 fb⁻¹

Thrust:
$$T = \frac{\sum_{i} |p_{i} \cdot \hat{n}|}{\sum_{i} |p_{i}|}$$

57

Zero tests: Mixed Events

Positivity and soffer bound

$$|h_1(x)| \le f_1(x)$$

$$|h_1(x)| \leq \frac{1}{2} (f_1(x) + g_1(x))$$

Interference Fragmentation—thrust method

•
$$e^+e^ (\pi^+\pi^-)_{jet1}(\pi^-\pi^+)_{jet2}X$$

- •Find pion pairs in opposite hemispheres
- •Theoretical guidance by papers of Boer, Jakob, Radici[PRD 67, (2003)] and Artru, Collins [ZPhysC69(1996)]
- •Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)]

Model predictions by:

- •Jaffe et al. [PRL **80,**(1998)]
- Radici et al. [PR**D 65,** (2002)]

$$A \propto H_1^{\angle}(z_1, m_1)\overline{H}_1^{\angle}(z_2, m_2) \cos(\varphi_1 + \varphi_2)$$

Definition of Vectors and Angles

p+p c.m.s. = lab frame

 \vec{P}_A . \vec{P}_B : momenta of protons

 \vec{P}_{h1} . \vec{P}_{h2} : momenta of hadrons

$$\vec{P}_C = \vec{P}_{h1} + \vec{P}_{h2}$$

$$\vec{R}_C = (\vec{P}_{h1} - \vec{P}_{h2})/2$$

 \vec{S}_B : proton spin orientation

hadron plane: \vec{P}_{h1} , \vec{P}_{h2}

scattering plane: \vec{P}_C , \vec{P}_B

 ϕ_R : from scattering plane to hadron plane

 ϕ_S : from polarization vector to scattering plane

2. Unpolarized Fragmentation Functions-Current Extractions

- NLO pQCD fits of e⁺e⁻ annihilation, **SIDIS** and **pp** data with uncertainties (**global analysis**): de Florian, Sassot, Stratmann (**DSS**), <u>Phys. Rev. D **75**,114010 (2007)</u>
- Little constraint on gluon fragmentation functions- remedied by precision measurement at low Q²

