

DVCS & hard exclusive meson prod. -- experimental review --

a very brief introduction

- prerequisites and methods
- from low to high x : selected results
- perspectives

all details tomorrow:

- F. X. Girod
- S. Yaschenko
- N. D'Hose
- V. Burkert

TRANSVERSITY 2011, Losinj, Croazia, Aug 29 - Sep 02, 2011

[slide by L. Pappalardo]

Quantum phase-space tomography of the nucleon

0.6

0.4

0.2

0.2

-0.4

3D picture in coordinate space

0

b_y [fm]

structure of the nucleon

Join the real 3D experience!!

A.B., F. Conti, M. Radici, PRD78 (08)

3D picture in momentum space

3D imaging of the nucleon & OAM

Wigner distribution ('mother function'):

 \rightarrow (model dependent) relations between TMDs & GPDs:

$$f_{1T}^{\perp (n)}(x) \sim E^{q(n)}(x,0,0)$$

[Burkardt 2002] [Burkardt, Hwang 2003] [Diehl, Haegeler 2005] ecc.

nucleon tomography

[transversely polarised nucleon]

TMDs

GPDs

Sivers TMD ← model dependent relation → GPD *E* --in transverse momentum coordinates-- --in impact parameter coordinates--

relations to OAM

proton helicity flipped while quark helicity is conserved

 $E^q \neq \mathbf{i}$ requires orbital angular momentum

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x \, dx \quad H^{q}(x,\xi \ t) - E^{q}(x,\xi \ t) \int_{t=0}^{-1} dx \, dx$$

TMDs

require interference of nucleon wave fct.s with different units OAM

 \rightarrow spin-orbit correlation

Q²>>, t<<

appear in factorisation theorem for *hard exclusive processes*

spin ½ target:

4 leading-tw, chiral even q & g GPDs: H, H conserve nucleon helicity

E, E involve nucleon helicity flip

+ 4 chiral odd GPDs \rightarrow connection to transversity

Q²>>, t<< appear in factorisation theorem for *hard exclusive*

processes

DVCS: most clean process, (some) flavour
 dependent info from p & n target

 \rightarrow H, \widetilde{H} , E, \widetilde{E}

Q²>>, t<<

appear in factorisation theorem for *hard exclusive processes*

- DVCS: most clean process, (some) flavour
 dependent info from p & n target
- DVMP: flavour decomposition; gluons:

Q²>>, t<<

appear in factorisation theorem for *hard exclusive processes*

- DVCS: most clean process, (some) flavour
 dependent info from p & n target
- DVMP: flavour decomposition; gluons:

BUT:

- factorisation only for σ_{L}
- meson distribution amplitude needed
- Iarge NLO & power corrections

→ H, \tilde{H} , E, \tilde{E} VM → H, E PS → \tilde{H} , \tilde{E}

constraints of GPDs

 E, \widetilde{E} : nucleon helicity flip \rightarrow don't appear in DIS

- + Lorentz invariance: polynomiality
- + lattice calculations

extracting GPDs: caveats $x + \frac{e^{-\frac{e^{-x}}{2}}}{x + \frac{e^{-\frac{e^{-x}}}{x + \frac{e^{-\frac{e^{-x}}}{2}}}{x + \frac{e^{-\frac{e^{-x}}{2}$

$$T_{\mu\nu} = \left[\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}\right](\xi, t, Q^2), \quad \mathcal{F}(\xi, t, Q^2) = \int_{-1}^{-1} dx \ C^-(\xi, x) \ F(x, \xi, t, Q^2),$$

Compton Form Factor (CFF)

x is mute variable (integrated over), needs deconvolution

 \rightarrow apart from 'cross over' trajectory (x= ξ) GPDs not directly accessible

• extrapolation $t \rightarrow 0$ model dependent

cross section & beam charge asymmetry ~ $Re(T^{DVCS})$

beam or target spin asymmetries $\sim Im(T^{DVCS})$

 \rightarrow x scan of GPDs from Q² evolution: *EIC*

the ideal experiment for measuring hard exclusive processes

high & variable beam energy

- \rightarrow ensure hard regime
- \rightarrow wide kinematic range
- \rightarrow L/T separation for ps meson prod.

high luminosity

- \rightarrow small cross sections
- \rightarrow fully differential analysis
- hermetic detectors
 - \rightarrow ensure exclusivity
 - ... doesn't exist (yet)...

experimental prerequisites

- polarised 27GeV e+/e-
- unpolarised 920GeV p
- ≈full event reconstruction

- polarised 27GeV e+/elong+transv polarised p, d targets
 unpolarised nuclear targets
- missing mass technique
- 2006/7 data taken with recoil det.

experimental prerequisites

- polarised 27GeV e+/e–
 unpolarised 920GeV p
- = unpolarised 920GeV p
- ≈full event reconstruction

- polarised 27GeV e+/elong+transv polarised p, d targets
 unpolarised nuclear targets
- missing mass/energie technique
- 2006/7 data taken with recoil det.

- highly polarised, high lumi 6GeV e-
- Iong polarised effective p, n targets

missing mass/energie technique

experimental prerequisites

- polarised 27GeV e+/e-
- unpolarised 920GeV p
- ≈full event reconstruction

- polarised 27GeV e+/e_
 long+transv polarised p, d targets unpolarised nuclear targets
- missing mass/energie technique
- 2006/7 data taken with recoil det.

- highly polarised, high lumi 6GeV e-
- Iong polarised effective p, n targets

- missing mass/energie technique
- highly polarised, 160GeV μ
- long+transv polarised effectivep, d targets
- missing mass/energie technique

COMPASS-II with recoil det.

CERN

low \rightarrow high x

low \rightarrow high x

low \rightarrow high x

exclusivity

@ the HERA collider experiments

≈ hermetic detector

 \rightarrow *p* escapes through beam pipe

LPS: *p* tagged control sample

@ the HERA collider experiments

LPS: *p* tagged data sample

@ the HERA collider experiments

full data sample

results on (off) the menu

data over wide kinematic range: HERA-collider \rightarrow COMPASS \rightarrow HERMES \rightarrow JLab

 \Box VM production \rightarrow H, E

- Iow x: gluon imaging
- high x: quarks & gluons ; role of NLO & power corrections
- low W data from Jlab $(\rightarrow X. Girod, tomorrow)$

 \Box ps meson production \rightarrow H, E

- role of transverse photons: CLAS $\pi^0, \pi^+ A_{LU}$, HERMES $\pi^+ A_{UT}$, cross sec.
- relation to transversity: $H_T \rightarrow h_1$ from $\pi^0 A_{UT}$

$\Box \text{ DVCS} \rightarrow H, E, H, E \quad ... \text{ the golden channel & most rich plate}$

- nuclear modification of DVCS amplitudes: HERMES
- models & GPDs
- hunting the OAM

VM production @low x

W & *t* dependences: probe transition from soft to hard regime

→expect δ to increase from ~0.2 to ~0.8 b to decrease from ~10 to ~4-5 GeV²

VM production @low x

two ways to set a *hard* scale: • large Q² • mass of produced VM

universality: ρ and ϕ at large Q2+M2 similar to J/ Ψ , Y

VM production @low x

gluon imaging: J/ψ

NLO corrections to VM production are large: [M. Diehl, W. Kugler (2007)]

... despite, LO GPD model (handback fact.; DD ansatz): [S. Goloskokov, P. Kroll (2007, 2010)]
 + power corrections:

... despite, LO GPD model (handback fact.; DD ansatz): [S. Goloskokov, P. Kroll (2007, 2010)]
 + power corrections:

... despite, LO GPD model (handback fact.; DD ansatz): [S. Goloskokov, P. Kroll (2007, 2010)]
 + power corrections:

Deeply Virtual Compton Scattering

 $\rightarrow H, \widetilde{H}, E, \widetilde{E}$

DVCS cross sections @ low x

$$d\sigma \propto |\mathbf{r}_{BH}|^2 + |\mathbf{\tau}_{DVCS}|^2$$

t slope provides absolute normalisation

• $FT \rightarrow$ average impact parameter

DVCS cross section

t slope measurement provides
 absolute normalisation

$$rac{d\sigma}{dt} \propto |t|$$

DVCS cross section

- t slope measurement provides
- absolute normalisation

$$\frac{d\sigma}{dt} \propto |t|$$

universality of slope parameter:
 pointlike configurations dominate

DVCS cross section

ZEUS

- t slope measurement provides
- absolute normalisation

$$\frac{d\sigma}{dt} \propto |t|$$

- universality of slope parameter:pointlike configurations dominate
- $FT \rightarrow$ average impact parameter

$$\sqrt{\langle b_T^2 \rangle} = (0.65 \pm 0.02) \, \text{fm}$$

@ $x_B = 10^{-3}$

<Q2>=8.0 GeV2

sea quark & gluon imaging

isolate interference term:

- different beam charges: e⁺ e⁻ (only @HERA, upcoming @COMPASS)
- polarisation observables

Unpolarised, Longitudinally, Transversely polarised

isolate interference term:

- different beam charges: e⁺ e⁻ (only @HERA, upcoming @COMPASS)
- polarisation observables

@kinematics of current fixed target exp.

first DVCS signals

-- interference term --

[PRL87(2001)]

 \rightarrow sin ϕ dependence indicates dominance of handback contribution

call for high statistics

call for high statistics

call for high statistics

combined analysis of charge & polarisation observables

 \rightarrow separation of interference & DVCS² amplitudes

$$\sigma_{\mathrm{LU}}(\phi; P_{\mathrm{l}}, e_{\mathrm{l}}) = \sigma_{\mathrm{UU}}(\phi) \cdot \left\{1 + P_{\mathrm{l}}A_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi) + e_{\mathrm{l}}P_{\mathrm{l}}A_{\mathrm{LU}}^{\mathcal{I}}(\phi) + e_{\mathrm{l}}A_{\mathrm{C}}(\phi)\right\}$$

$$s_{1}^{\mathrm{DVCS}}sin(\phi) \sum_{n=1}^{2} s_{n}^{\mathrm{I}}sin(n\phi) \sum_{n=0}^{3} c_{n}^{I}cos(n\phi)$$

call for new analysis methods

combined analysis of charge & polarisation observables

 \rightarrow separation of interference & DVCS² amplitudes

call for new analysis methods

combined analysis of charge & polarisation observables

 \rightarrow separation of interference & DVCS² amplitudes

recent developments (beyond VGG(1999)...)

Goloskokov, Kroll (2007):

→ LO GPD model using *DD, regge t dep., power corrections*

 \rightarrow fit to exclusive meson production data

recent developments (beyond VGG(1999)...)

Goloskokov, Kroll (2007):

- → LO GPD model using *DD, regge t dep., power corrections*
- \rightarrow fit to exclusive meson production data
- Kumericki, Müller (2010):

→ partial wave expansion of GPDs, *regge t dep., dispersion relations*

→ fit to DVCS data

recent developments (beyond VGG(1999)...)

Goloskokov, Kroll (2007):

- → LO GPD model using *DD, regge t dep., power corrections*
- \rightarrow fit to exclusive meson production data
- Kumericki, Müller (2010):
 - → partial wave expansion of GPDs, regge t dep., dispersion relations
 - → fit to DVCS data
- Goldstein, Hernandez, Liuti (2010):
 - → quark-diquark model of GPDs, *Regge ansatz for low x region & t dep.*

→ fit to DVCS data

talk by S. Liuti [tomorrow]

→ model independent extraction of CFF (GPD extr. requires model ansatz)

→ kinematic fitting of DVCS data (per experiment)

towards global analysis of GPDs

-- employ all available exclusive data (DVCS & meson production) --

attempts to constrain J^q

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x dx \quad H^{q}(x,\xi \ t) - E^{q}(x,\xi \ t) \int_{t=0}^{-1} dx$$

 \rightarrow GPD models: J^q free parameter in ansatz for E

observables sensitive to $E : = pDVCS: A_{UT} \rightarrow HERMES$ = $nDVCS: A_{LU} \rightarrow HallA$

■ meson prod. A_{UT} : $\rho^0 \rightarrow$ HERMES, COMPASS

...also $\omega, \phi, \rho^{\scriptscriptstyle +}, \mathsf{K}^{\scriptscriptstyle *0}$

-- pDVCS : transverse target-spin asymmetry --

-- nDVCS : beam-spin cross section difference --

 \rightarrow GPD models: J^q free parameter in ansatz for E

SDME values

-- ρ^0 : transverse target-spin asymmetry --

- more data coming: COMPASS, JLab12 with transv. Target
- more models: Goloskokov, Kroll

conclusions & perspectives

increasing amount and precision of experimental data

progress in model calculations, plenty of room for more work...

conclusions & perspectives

- increasing amount and precision of experimental data
- progress in model calculations, plenty of room for more work...
- bright future for GPD studies: talks by

talks by V. Burkert, N. D'Hose, F. Maas

- → JLab12
- → COMPASS-II with recoil
- \rightarrow EIC/ENC (mapping of GPDs from Q² evolution)