Azimuthal distributions of pions inside a jet in hadronic collisions *

Cristian Pisano

Università di Cagliari

Transversity 2011 Third International Workshop on Transverse Polarization Phenomena in Hard Scattering Veli Lošinj, Croatia, 29 August – 2 September 2011

- Study of $p^{(\uparrow)}p \to \text{jet } \pi X$ within the generalized parton model
- Azimuthal asymmetries attributed to TMD pdfs and FFs
- Phenomenology for RHIC kinematics
- Test of the process dependence of the Sivers function

^{*} In collaboration with U. D'Alesio (Univ. & INFN Cagliari) and F. Murgia (INFN Cagliari)

Kinematics

• We consider the process

$$A(P_A; S_\perp) + B(P_B) \rightarrow \text{jet}(P_j) + h(P_h) + X$$

in the c.m. frame of the two spin 1/2 hadrons A, B; with the jet in the xz plane

• A is polarized with transverse spin $S_{\perp} = (0, \cos \phi_S, \sin \phi_S, 0)$

D'Alesio, Trento 2007

F. Yuan, PRL 100 (2008) 032003

 ϕ_h^H : azimuthal distribution of hadron h inside the jet, around the jet axis

- ϕ_h : azim. angle of h's intrinsic transv. momentum w.r.t. the jet direction
- ϕ_h^H : same angle, but measured in the H frame, where the jet is along z

$$\tan \phi_h^H = \tan \phi_h \cos \theta_j$$

The two frames are related by a rotation around y by θ_j , polar angle of the jet D'Alesio, Murgia, CP, PRD 83 (2011) 034021

The TMD generalized parton model (GPM)

- Spin and intrinsic parton motion effects in initials hadrons and in the fragmentation Phenomenological assumption: factorization holds for large p_T jet production
- SSA and azimuthal asymmetries are generated by TMD polarized pdfs and FFs Most relevant ones: f[⊥]_{1T} (Sivers), h[⊥]₁ (Boer-Mulders), H[⊥]₁ (Collins) Anselmino, Boglione, D'Alesio, Leader, Melis, Murgia, PRD 73 (2006) 014020; Notation: Meissner, Metz, Goeke, PRD 76 (2007) 034002

 Factorization proven in a more simplified theoretical scheme: intrinsic parton motion only in the fragmentation process. Only Collins effect for quarks is at work F. Yuan, PRL 100 (2008) 032003; PRD 77 (2008) 074019

• The present, more general, scheme requires a severe scrutiny by comparison with experimental results to clarify the validity of factorization and, related to this, the relevance of possible universality-breaking terms for the TMD distributions

 SSA in p p[↑] → π X, due to Collins and Sivers effects, cannot be disentangled Anselmino, Boglione, D'Alesio, Leader, Murgia, PRD 71 (2005) 014002; Anselmino, Boglione, D'Alesio, Leader, Melis, Murgia, PRD 73 (2006) 014020
 while in p p[↑] → jet π X, Collins, Sivers and other contributions involving different combinations of TMD pdfs and FFs can be singled out

- Jets coming from quark or gluon fragmentation could be identified without ambiguity, since the pion azimuthal distribution is different in the two cases:
 - symm. pion distribution for the fragmentation of an unpolarized parton jet (D_1)
 - $\cos \phi_{\pi}^{H}$ distribution for a transversely polarized quark parton jet $(H_{1}^{\perp q})$
 - $\cos 2\phi_{\pi}^{H}$ distribution for a linearly polarized gluon parton jet $(H_{1}^{\perp g})$
- Complex measurement, but feasible and under active consideration at RHIC R. Fersch [STAR Coll.], JP Conf. Ser. 295 (2011) 012048

$$E_{j} \frac{\mathrm{d}\sigma}{\mathrm{d}^{3} \boldsymbol{P}_{j} \mathrm{d}z \mathrm{d}^{2} \boldsymbol{k}_{\perp \pi}} = \sum_{a,b,c,d} \int \frac{\mathrm{d}x_{a} \mathrm{d}x_{b}}{16\pi^{2} x_{a} x_{b} s} \mathrm{d}^{2} \boldsymbol{k}_{\perp a} \mathrm{d}^{2} \boldsymbol{k}_{\perp b} \Sigma(S)^{ab \to cd} \delta(\hat{s} + \hat{t} + \hat{u})$$

- sum over all allowed partonic subprocesses $ab \rightarrow cd$; $s = E_{c.m.}^2 = (P_A + P_B)^2$
- $x_{a,b}$, $k_{\perp a,b}$: initial parton light-cone momentum fractions and intr. transv. momenta z, $k_{\perp \pi}$: analogous variables for the observed pion w.r.t. the jet direction (parton c)
- Partonic kernel:

$$\begin{split} \Sigma(S)^{ab \to cd} &= \sum_{\{\lambda\}} \rho_{\lambda_a \lambda'_a}^{a/A,S} \hat{f}_{a/A,S}(x_a, \boldsymbol{k}_{\perp a}) \rho_{\lambda_b \lambda'_b}^{b/B} \hat{f}_{b/B}(x_b, \boldsymbol{k}_{\perp b}) \\ &\times \hat{M}_{\lambda_c, \lambda_d; \lambda_a, \lambda_b} \hat{M}^*_{\lambda'_c, \lambda_d; \lambda'_a, \lambda'_b} \hat{D}^{\pi}_{\lambda_c, \lambda'_c}(z, \boldsymbol{k}_{\perp \pi}) \end{split}$$

- { λ }: sum over partonic helicities; $\rho_{\lambda_a \lambda_a'}^{a/A,S}$: hel. density matrix of parton a
- Soft terms: ρ^{a/A,S}_{λa} f̂_{a/A,S} → leading twist-TMD pdfs D̂^π_{λc},λ'_c → only two indep. leading-twist TMD FFs: D₁, H[⊥]₁
 Hard terms: M̂_{λc},λ_d;λ_a,λ_b, pQCD LO hel. amplitudes for the process ab → cd

• Eight distinct partonic channels contribute to the cross section

in the first line q stays for both quarks and antiquarks in all allowed combinations

- $qq \rightarrow qq$: max number of terms (similar structures for $gg \rightarrow gg$ with $\phi_{\pi}^{H} \rightarrow 2\phi_{\pi}^{H}$)
 - Unpolarized cross section:

$$2d\sigma^{\mathrm{unp}}(\phi_{\pi}^{H}) \sim d\sigma_{0} + d\sigma_{1}\cos\phi_{\pi}^{H}$$
$$d\sigma_{0} \sim f_{1}f_{1}D_{1} \quad h_{1}^{\perp}h_{1}^{\perp}D_{1}$$
$$d\sigma_{1} \sim h_{1}^{\perp}f_{1}H_{1}^{\perp} \quad f_{1}h_{1}^{\perp}H_{1}^{\perp}$$

• Numerator of the SSA: $\mathcal{N} \equiv d\sigma(\phi_S, \phi_\pi^H) - d\sigma(\phi_S + \pi, \phi_\pi^H)$ $\mathcal{N} \sim d\Delta\sigma_0 \sin\phi_S + d\Delta\sigma_1^- \sin(\phi_S - \phi_\pi^H) + d\Delta\sigma_1^+ \sin(\phi_S + \phi_\pi^H)$ $d\Delta\sigma_0 \sim f_{1T}^\perp f_1 D_1 \quad h_1 h_1^\perp D_1 \quad h_{1T}^\perp h_1^\perp D_1$ $d\Delta\sigma_1^- \sim h_1 f_1 H_1^\perp \quad f_{1T}^\perp h_1^\perp H_1^\perp$ $d\Delta\sigma_1^+ \sim h_{1T}^\perp f_1 H_1^\perp \quad f_{1T}^\perp h_1^\perp H_1^\perp$

• Neglecting intrinsic motion of initial partons, only $f_1f_1D_1$ and $h_1f_1H_1^{\perp}$ contribute

• General structure of the single transverse polarized cross section

$$2d\sigma(\phi_S, \phi_\pi^H) \sim d\sigma_0 + d\Delta\sigma_0 \sin\phi_S + d\sigma_1 \cos\phi_\pi^H + d\sigma_2 \cos 2\phi_\pi^H + d\Delta\sigma_1^- \sin(\phi_S - \phi_\pi^H) + d\Delta\sigma_1^+ \sin(\phi_S + \phi_\pi^H) + d\Delta\sigma_2^- \sin(\phi_S - 2\phi_\pi^H) + d\Delta\sigma_2^+ \sin(\phi_S + 2\phi_\pi^H)$$

• Unpolarized cross section:

$$d\sigma(\phi_S, \phi_\pi^H) + d\sigma(\phi_S + \pi, \phi_\pi^H) \equiv 2d\sigma^{\rm unp}(\phi_\pi^H) \sim d\sigma_0 + d\sigma_1 \cos\phi_\pi^H + d\sigma_2 \cos 2\phi_\pi^H$$

• Average values of appropriate functions $W(\phi_S, \phi_\pi^H) = 1$, $\cos \phi_\pi^H$, $\cos 2\phi_\pi^H$

$$\langle W(\phi_S, \phi_\pi^H) \rangle = \frac{\int \mathrm{d}\phi_S \mathrm{d}\phi_\pi^H W(\phi_S, \phi_\pi^H) \mathrm{d}\sigma(\phi_S)}{\int \mathrm{d}\phi_S \mathrm{d}\phi_\pi^H \mathrm{d}\sigma(\phi_S)}$$

single out $d\sigma_0$, $d\sigma_1$, $d\sigma_2$ respectively

• Numerator of the single spin asymmetry:

$$d\sigma(\phi_S, \phi_\pi^H) - d\sigma(\phi_S + \pi, \phi_\pi^H) \sim d\Delta\sigma_0 \sin\phi_S + d\Delta\sigma_1^- \sin(\phi_S - \phi_\pi^H) + d\Delta\sigma_1^+ \sin(\phi_S + \phi_\pi^H) + d\Delta\sigma_2^- \sin(\phi_S - 2\phi_\pi^H) + d\Delta\sigma_2^+ \sin(\phi_S + 2\phi_\pi^H)$$

• Appropriate azimuthal moments, with $W(\phi_S, \phi_\pi^H) = \sin \phi_S$, $\sin(\phi_S - \phi_\pi^H)$, ... $A_N^W \equiv 2\langle W(\phi_S, \phi_\pi^H) \rangle = 2 \frac{\int d\phi_S d\phi_\pi^H W(\phi_S, \phi_\pi^H) [d\sigma(\phi_S) - d\sigma(\phi_S + \pi)]}{\int d\phi_S d\phi_\pi^H [d\sigma(\phi_S) + d\sigma(\phi_S + \pi)]}$

will single out the different contribusions (analogy with SIDIS)

- ⟨W⟩ (A_N^W) calculated for p^(↑) p → jet π X at √s = 200 GeV
 Other energies (√s = 62.4, 500 GeV) considered, not shown here D'Alesio, Murgia, CP, PRD 83 (2011) 034021
- $\langle W \rangle$ and A_N^W given as function of P_{jT} and η_j ; one can integrate over all other variables, in particular we take $0.3 \le z \le 1$
- Assumption for TMDs: $\mathcal{F}^{q,g}(x, \mathbf{k}_{\perp}^2) = f^{q,g}(x)g(\mathbf{k}_{\perp}^2)$, with $g(\mathbf{k}_{\perp}^2)$ being a flavor independent Gaussian-like function
- Over-maximized scenario: all TMDs are maximized in size by imposing natural positivity bounds (Soffer bound for h_1^q) and *the relative signs* of all active partonic contributions are chosen so that they sum up additively

Advantage: upper bound on the absolute value of any effect playing a role in the asymmetries. All the effects being already marginal in this scenario may be directly discarded in subsequent refined phenomenological analyses

• Parameterizations of the usual collinear LO pdfs (GRV98, GRSV2000) and FFs (Kre) evolved at the scale $\mu = P_{jT}$

Weighted cross sections for $pp \rightarrow jet \pi^+ X$: upper bounds

• DSS set of FF instead of kre: $\langle \cos \phi_{\pi}^{H} \rangle$ smaller, still sizeble at $\eta_{j} = 3.3$ $\langle \cos 2\phi_{\pi}^{H} \rangle$ slightly larger, with $\langle \cos 2\phi_{\pi}^{H} \rangle \geq \langle \cos \phi_{\pi}^{H} \rangle$ for $P_{jT} \leq 4$ GeV at $\eta_{j} = 0$

Collins(like) asymmetries in $p^{\uparrow}p \rightarrow \text{jet } \pi^+ X$: upper bounds

•
$$A_N^{\sin(\phi_S + \phi_\pi^H)} \sim \left[f_{1T}^{\perp q} h_1^{\perp q} \oplus h_{1T}^{\perp q} f_1 \right] H_1^{\perp q}$$
 (and $A_N^{\sin(\phi_S + 2\phi_\pi^H)}$ for gluons) ≈ 0

• DSS set of FF: similar results, but quark (gluon) contributions to A_N^W are slightly smaller (larger). The same holds true for the Sivers asymmetry

. – p.11/17

Collins asymmetry in $p^{\uparrow}p \rightarrow jet \pi X$: parameterizations

SIDIS 2

 $A_N^{\sin(\phi_S - \phi_\pi^H)}$ estimated using param. of h_1^q , $H_1^{\perp q}$ from SIDIS and e^+e^- data by Anselmino *et al*: SIDIS 1 PRD 75 (2007) 054032 SIDIS 2 NP (Proc. Suppl.) 191 (2009) 98

SIDIS 1

• Predictions reliable only for $x_F \leq 0.3$ (region covered by present SIDIS data)

• Measurements useful to constrain h_1^q and $H_1^{\perp q}$ in a new kinematic region!

Sivers asymmetry in $p^{\uparrow}p \rightarrow \text{jet } \pi^+ X$: upper bounds

 $A_N^{\sin\phi_S} \sim f_{1T}^{\perp} f_1 D_1$

- At $\eta_j = 0$, $A_N^{\sin \phi_S}$ is dominated by the gluon contribution at the lowest P_{jT} . A large $A_N^{\sin \phi_S}$ around $P_{jT} = 4 6$ GeV: indication for a sizeble gluon contribution
- At $\eta_j = 3.3$, the quark contribution dominates for $P_{jT} \ge 4 \text{ GeV}$
- $A_N^{\sin \phi_S}$ has also been studied in $p^{\uparrow}p \to \text{jet } X$, similar results

D'Alesio, Murgia, CP, PRD 83 (2011) 034021

Sivers asymmetry in $p^{\uparrow}p \rightarrow jet \pi X$: parametrizations

- Upper bound on $f_{1T}^{\perp g}$ from analyses of SSA in $p^{\uparrow}p \rightarrow \pi X$ at midrapidity (updated) Anselmino, D'Alesio, Melis, Murgia, PRD 74 (2006) 094011
- $A_N^{\sin(\phi_S \phi_\pi^H)}$ in $p^{\uparrow} p \to \text{jet } X$ similar to the one in $p^{\uparrow} p \to \text{jet } \pi^0 X$
- Measurements will provide indications on the size of $f_{1T}^{\perp q}$ for $x_F \ge 0.3$

Color gauge invariant (CGI) generalized parton model

- In the GPM: the Sivers function is assumed to be *universal*, $f_{1T}^{\perp q} \equiv f_{1T}^{\perp q}$, SIDIS
- In the CGI (GPM): the Sivers function is non-universal

L. Gamberg, talk at Transversity 2011

- Initial and final state interactions (ISIs/FSIs) considered between the struck parton and the spectators from the polarized hadron through gluon exchange
- ISIs/FSIs depend on the scattering process \implies A different $f_{1T}^{\perp q}$ has to be used for each partonic subprocess $a \ b \rightarrow c \ d$ contributing to $p^{\uparrow} \ p \rightarrow \text{jet} \ \pi \ X$
- The process dependent Sivers function $f_{1T}^{\perp q, ab \to cd}$ is known for $p^{\uparrow} p \to \pi X$ Gamberg, Kang, PLB 696 (2011) 1009

GPM vs CGI at $\sqrt{s} = 500 \text{ GeV}$

D'Alesio, Gamberg, Kang, Murgia, CP, arXiv:1108.0827

SIDIS1: $A_N^{\sin(\phi_S - \phi_\pi^H)}$ [GPM] $\approx -A_N^{\sin(\phi_S - \phi_\pi^H)}$ [CGI]; the same holds true for SIDIS2

- change of sign due to the dominant channel at forward rapidity, $qg \rightarrow qg$
- $x_F \leq 0.3$: optimal region to discriminate between the two approaches

At $\sqrt{s} = 200$ GeV, similar results with larger asymmetries, but narrower range of P_{jT}

- We have studied the process $p^{(\uparrow)}p \rightarrow \text{jet } \pi X$, which is under present active investigation at RHIC, within a TMD generalized factorization scheme
- We have identified the observable leading-twist azimuthal asymmetries related to both quark and gluon-originated jets (in principle distinguishable)
- In contrast to single inclusive pion production and in analogy with SIDIS, one can discriminate among different effects by taking moments of the asymmetries
- Measurements of a sizeable Collins asymmetry could give an indication on the size and sign of transversity and the Collins function in a new kinematic region
- Test of the universality properties of the Sivers function: the Sivers asymmetry should change sign if we take into account the effects of ISIs/FSIs
- From the phenomenological point of view, the measurement of such types of asymmetries would be a crucial test for the TMD factorization approach!