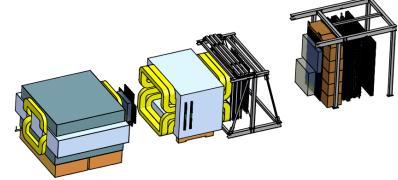

Drell-Yan Scattering at Fermilab: SeaQuest and Beyond

Wolfgang Lorenzon


(1-September-2011) Transversity2011 Workshop

Introduction

SeaQuest: Fermilab Experiment E906

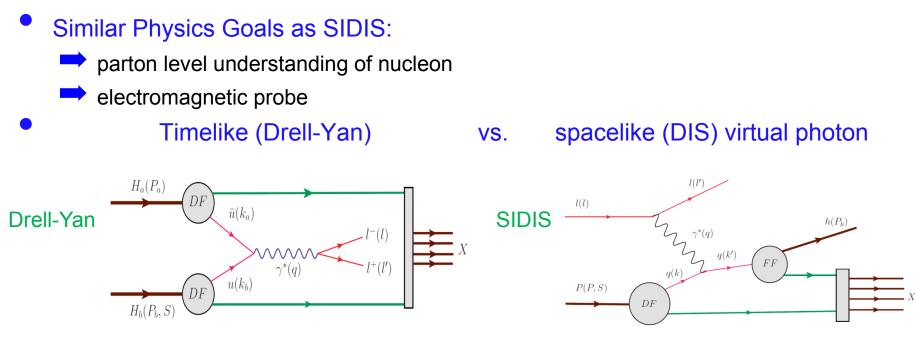
- Sea quarks in the proton
- Sea quarks in the nucleus
- other topics

Beyond SeaQuest

Polarized Drell-Yan at FNAL?

 $f_{1T}^{\perp}|_{DIS} =$

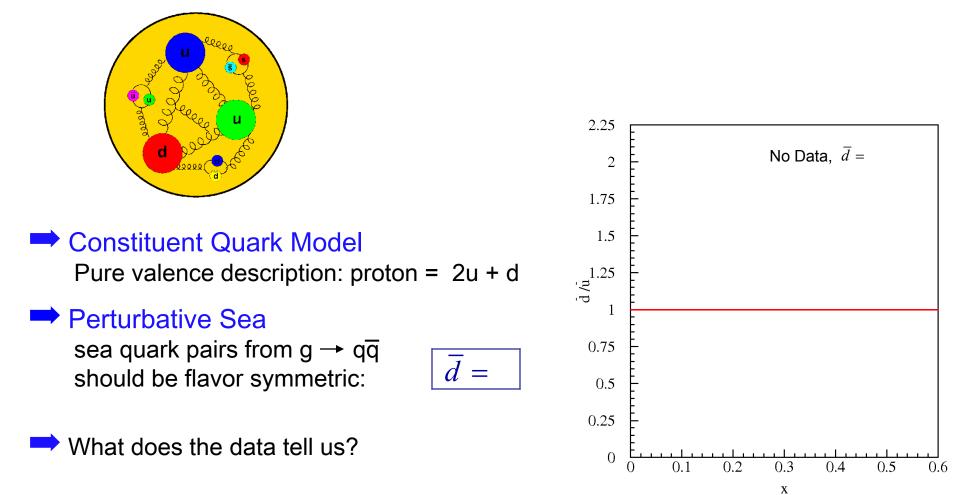
With help from Chiranjib Dutta (U-M), and Paul Reimer (Argonne)


1/)-

This work is supported by

1

Drell Yan Process

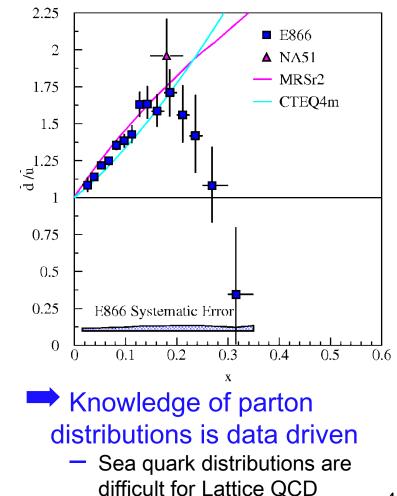

A. Kotzinian, DY workshop, CERN, 4/10

Cleanest probe to study hadron structure:

hadron beam and convolution of parton distributions

- no QCD final state effects
- no fragmentation process
- ability to select sea quark distribution
- allows direct production of transverse momentum-dependent distribution (TMD) functions (Sivers, Boer-Mulders, etc)

Flavor Structure of the Proton

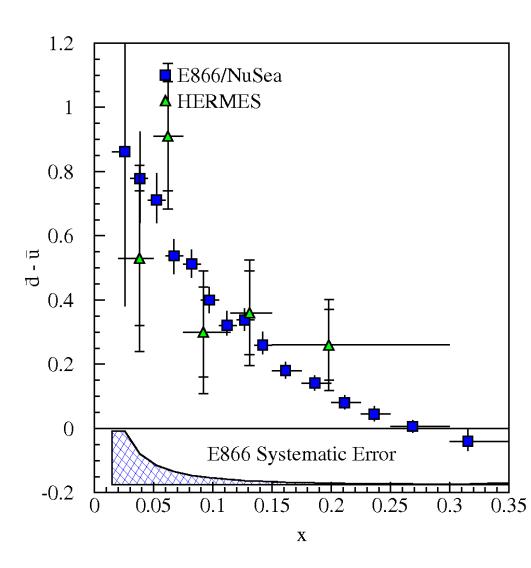


Flavor Structure of the Proton: Brief History

Perturbative Sea $\overline{d}(x) =$ NMC (inclusive DIS) NA51 (Drell-Yan) $\overline{d}(x) >$ E866/NuSea (Drell-Yan) $\overline{d}(x) >$

What is the origin of the sea

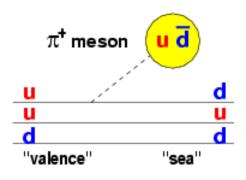
E866: $\overline{d} >$



Flavor Structure of the Proton: What creates Sea?

 There is a gluon splitting component which is symmetric

 $\overline{d}(x) =$


- <u>d</u>
 - Symmetric sea via pair production from gluons subtracts off
 - No gluon contribution at 1st order in α_s
 - Non-perturbative models are motivated by the observed difference
 - A proton with 3 valence quarks plus glue cannot be right at any scale!!

Flavor Structure of the Proton: Models

Non-perturbative models: alternate d.o.f.

Meson Cloud Models

Quark sea from cloud of 0 mesons:

Chiral-Quark Soliton Model

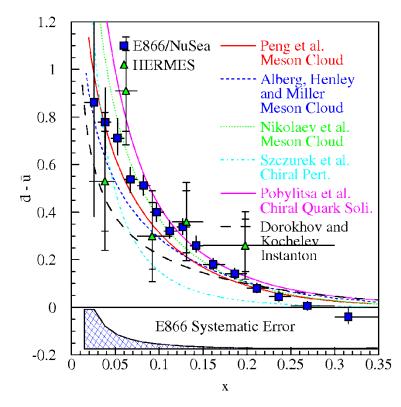
- quark d.o.f. in a pion mean-field: $u \rightarrow d + \pi^+$
- nucleon = chiral soliton
- one parameter: dynamically generated quark mass
- expand in 1/N_c:

Statistical Model

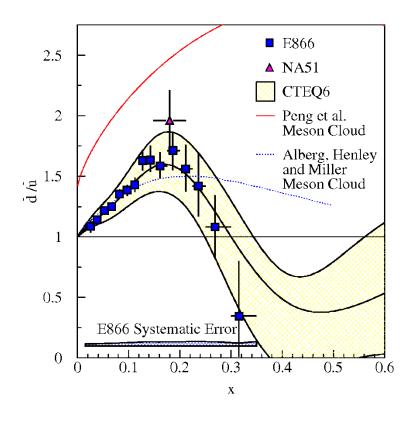
- nucleon = gas of massless partons
- few parameters: generate parton distribution functions
- input: QCD: chiral structure DIS: u(x) and d(x)

$$\rightarrow \overline{d} >$$

 \Rightarrow important constraints on flavor asymmetry for polarization of light sea


 $\overline{d} >$

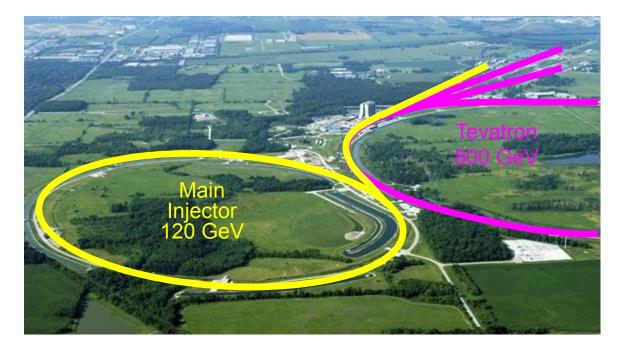
$$\Delta \simeq -\Delta >$$



Flavor Structure of the Proton: What creates Sea?

Comparison with models

- High x behavior is not explained
- Perturbative sea seems to dilute meson cloud effects at large x (but this requires large-x gluons)


- Measuring the ratio is powerful
- Are there more gluons and thus symmetric anti-quarks at higher x?
- Unknown other mechanisms with unexpected x-dependence?

SeaQuest: Fermilab Experiment E906

- E906 will extend Drell-Yan measurements of E866/NuSea (with 800 GeV protons) using upgraded spectrometer and 120 GeV proton beam from Main Injector
- Lower beam energy gives factor 50 improvement "per proton" !

Drell-Yan cross section for given x increases as 1/s

- \rightarrow Backgrounds from J/ Ψ and similar resonances decreases as s
- Use many components from E866 to save money/time, in NM4 Hall
- Hydrogen, Deuterium and Nuclear Targets

Fermilab E906/Drell-Yan Collaboration

Abilene Christian University

Donald Isenhower, Tyler Hague Rusty Towell, Shon Watson

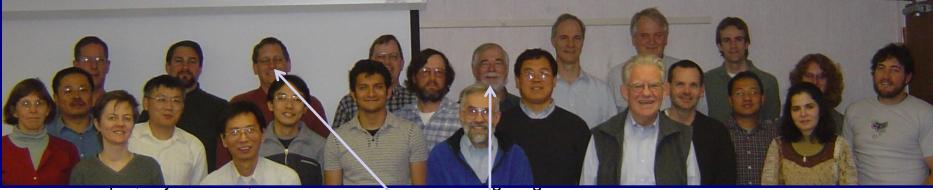
Academia Sinica Wen-Chen Chang, Yen-Chu Chen Shiu Shiuan-Hal, Da-Shung Su

Argonne National Laboratory John Arrington, <u>Don Geesaman</u>* Kawtar Hafidi, Roy Holt, Harold Jackson David Potterveld, <u>Paul E. Reimer</u>* Josh Rubin KEK Shinya Sawada

Ling-Tung University Ting-Hua Chang

Los Alamos National

Laboratory Christian Aidala, Gerry Garvey, Mike Leitch, Han Liu, Ming Liu Pat McGaughey, Joel Moss, Andrew Puckett National Kaohsiung Normal University Rurngsheng Guo, Su-Yin Wang

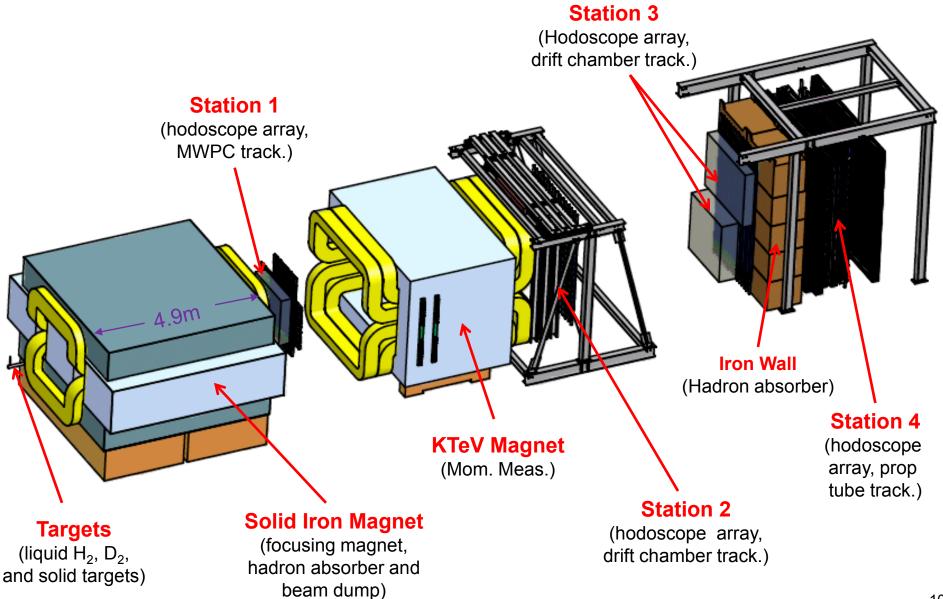

> University of New Mexico Imran Younus

RIKEN

Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa

Rutgers University

Lamiaa El Fassi, Ron Gilman, Ron Ransome, Brian Tice, Ryan Thorpe

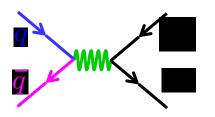

Makins, R. Evan McClellan, Jen-Chieh Peng

*Co-Spokespersons

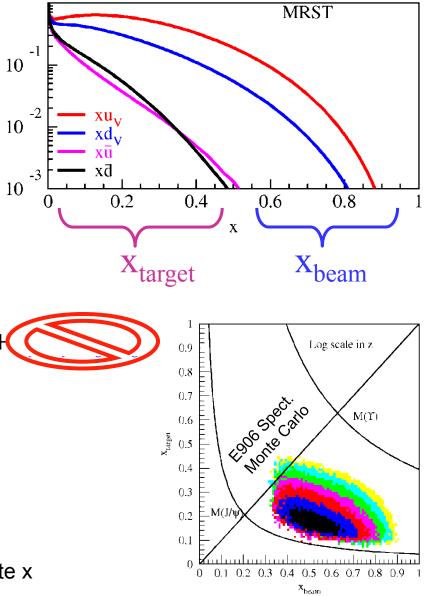
Jan, 2009

Collaboration contains many of the E-866/NuSea groups and several new groups (total 17 groups as of Aug 2011)

Drell-Yan Spectrometer for E906 (25m long)

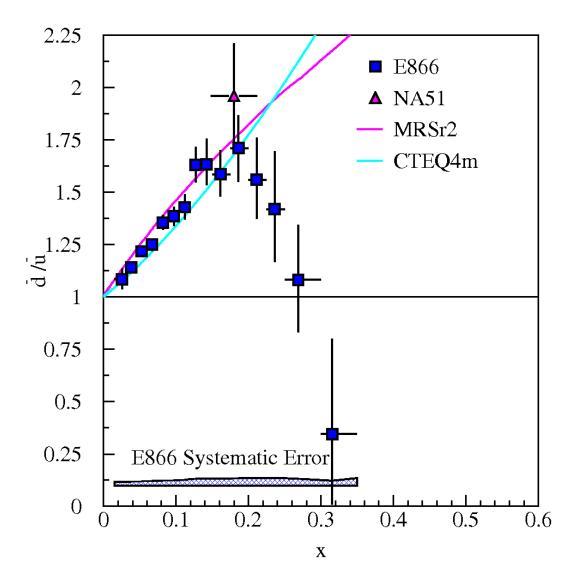


Drell-Yan Spectrometer for E906 (Reduce, Reuse, Recycle)

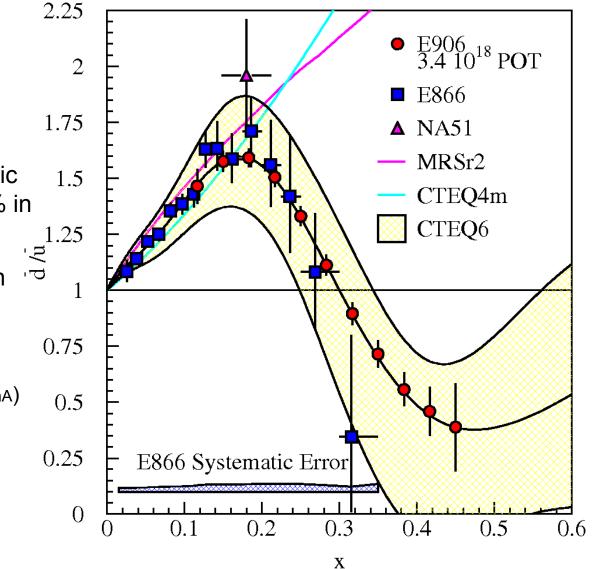


Expect to start collecting data: November 2011

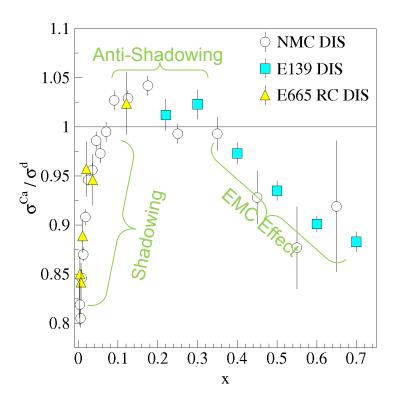
Fixed Target Drell-Yan: What we really measure

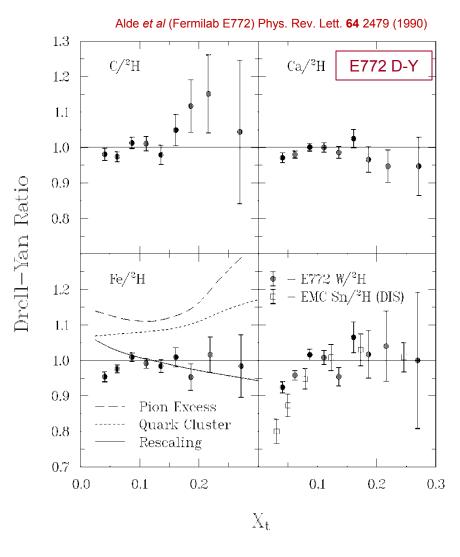

- Measure yields of μ⁺μ⁻ pairs from different targets
- Reconstruct p_{γ} , $M^2_{\gamma} = x_b x_t s$
- Determine x_b, x_t
- Measure differential cross section $\frac{d^2\sigma}{dx_b dx_t} = \sum_{\substack{x_b x_t S \ q \in}} \sum_{q \in S_{tot}} \sum_{x_b x_t S \ q \in S_{tot}} \sum_{x_b x_t S \$
- Fixed target kinematics and detector acceptance give x_b > x_t
 - $rac{rac}{rac}$ $x_{F} = 2p_{\parallel}^{\gamma}/s^{1/2} \approx x_{b} x_{t}$
 - Beam valence quarks probed at high x
 - Target sea quarks probed at low/intermediate x

Fixed Target Drell-Yan: What we really measure - II

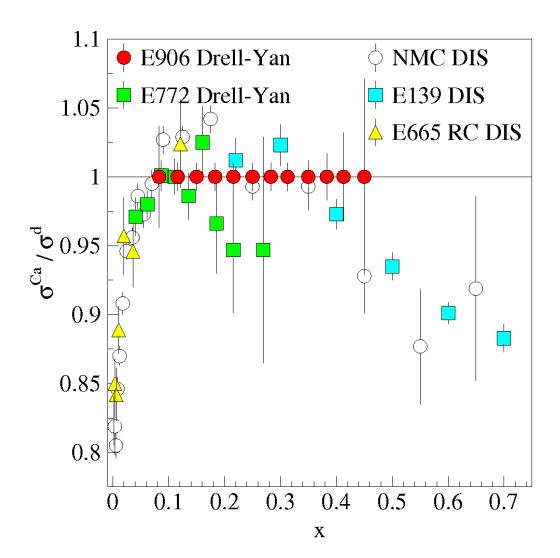

 Measure cross section ratios on Hydrogen, Deuterium (and Nuclear) Targets

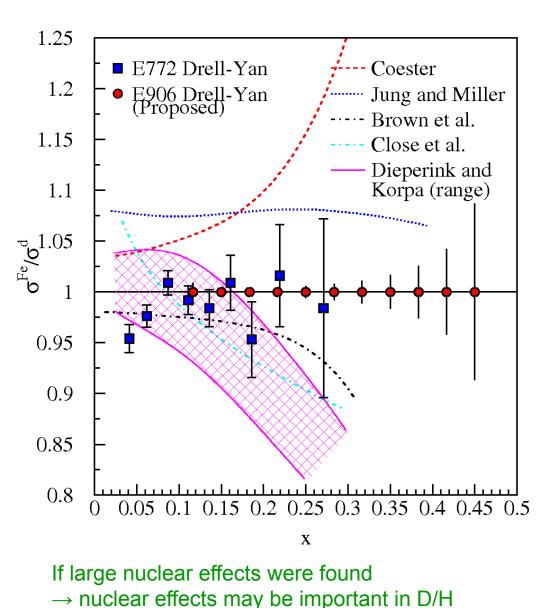
$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$


SeaQuest Projections for d-bar/u-bar Ratio


- SeaQuest will extend these measurements and reduce statistical uncertainty
- SeaQuest expects systematic uncertainty to remain at ≈1% in cross section ratio
- 5 s slow extraction spill each minute
- Intensity:
 - 2 x 10¹² protons/s (I_{inst} = 320 nA)
 - 1 x 10¹³ protons/spill

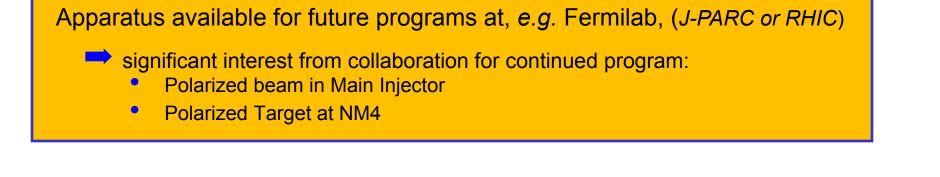
Sea quark distributions in Nuclei


- EMC effect from DIS is well established
- Nuclear effects in sea quark distributions may be different from valence sector
- Indeed, Drell-Yan apparently sees no Antishadowing effect (valence only effect)


Sea quark distributions in Nuclei - II

- SeaQuest can extend statistics and x-range
- Are nuclear effects the same for sea and valence distributions?
- What can the sea parton distributions tell us about the effects of nuclear binding?

Where are the exchanged pions in the nucleus?


- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases
- Models must explain both DIS-EMC effect and Drell-Yan
- SeaQuest can extend statistics and x-range

Fermilab Seaquest Timelines

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Fermilab Stage II approval in December 2008
- Expect first beam in November 2011 (for 2 years of data collection)

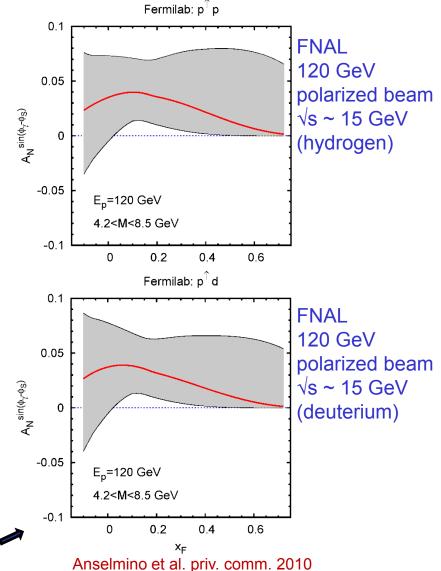
Expt. Funded	Experiment Construction			Exp. Runs			
	2009	2010	2011	2012 Beam: low	2013 intensity	2014 high intensity	2015
						Αι	ıg 2011

Beyond SeaQuest

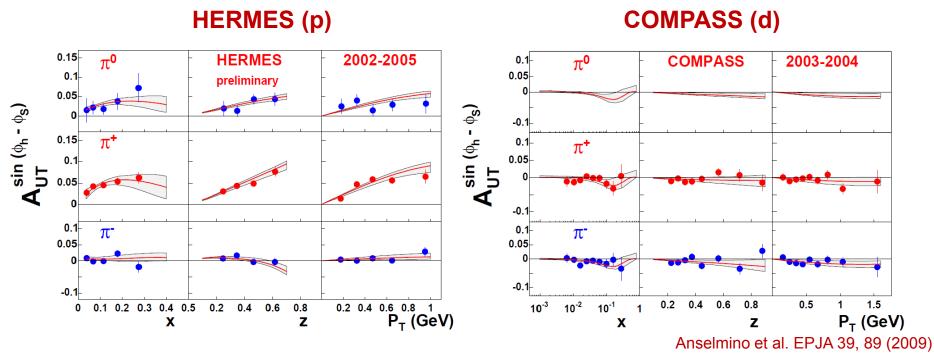
Polarized Drell-Yan Experiment

Not yet done!

- transverse momentum dependent distributions functions (Sivers, Boer-Mulders, etc)
- Transversely Polarized Beam or Target
 - Sivers function in single-transverse spin asymmetries (SSA) (sea quarks or valence quarks)
 - valence quark effects expected to be large
 - sea quark effects might be small
 - ✓ transversity ⊗ Boer-Mulders function
 - \checkmark baryon production, incl. pseudoscalar and vector meson production, elastic scattering, two-particle correlations, J/ ψ and charm production
- Beam and Target Transversely Polarized
 - ✓ flavor asymmetry of sea-quark polarization
 - \checkmark transversity (quark \otimes anti-quark for pp collisions)
 - anti-quark transversity might be very small


Sivers Function

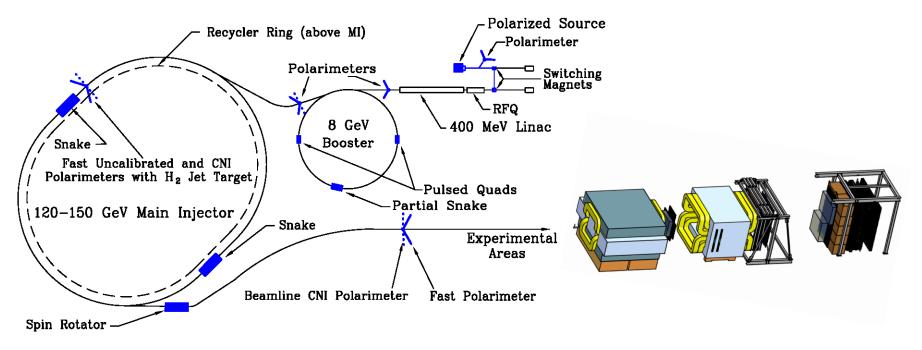
- described by transverse-momentum dependent distribution function
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- leads to a sin $(\phi \phi_S)$ asymmetry in SIDIS and Drell-Yan
- done in SIDIS (HERMES, COMPASS)
- Sivers function is time-reversal odd
 leads to sign change


 $f_{1T}^{\perp}|_{DIS} =$

fundamental prediction of QCD (goes to heart of gauge formulation of field theory)

Predictions based on fit to SIDIS data <

Sivers Asymmetry Measurements


• Global fit to sin $(\phi_h - \phi_S)$ asymmetry in SIDIS (HERMES, COMPASS)

u- and d-Sivers DF almost equal size, but different sign (d slightly larger)

- Comparable measurements needed for single spin asymmetries in Drell-Yan process
- BUT: COMPASS (p) data (2007 & 2100) smaller Sivers asym. than HERMES
 - maybe due to y or z dependence?
 - do global fits with all available data

Polarized Drell-Yan at Fermilab Main Injector

Polarize Beam in Main Injector (A. Krisch's talk)

- Use SeaQuest di-muon Spectrometer
 - fixed target experiment
 - \rightarrow luminosity: L_{av} = 3.4 x 10³⁵/cm²/s

- $N_p = 2.1 \times 10^{24} / \text{cm}^2$
- approved for 2-3 years of running: 3.4 x 10¹⁸ pot
- by 2015: fully understood, optimized for Drell-Yan, and ready to take pol. beam

Polarized Drell-Yan at Fermilab Main Injector - II

SeaQuest di-muon Spectrometer

Iuminosity: $L_{av} = 3.4 \times 10^{35} / \text{cm}^2 / \text{s} [I_{av} = 1.6 \times 10^{11} \text{ p/s} (= 26 \text{ nA}) / N_p = 2.1 \times 10^{24} / \text{cm}^2]$

 \rightarrow approved for 3.4 x 10¹⁸ pot

Polarized Beam in Main Injector

→ use Seaquest spectrometer

🗪 use SeaQuest target

✓ liquid H₂ target can take $I_{av} = ~5 \times 10^{11} \text{ p/s}$ (=80 nA)

- I mA at polarized source can deliver about I_{av} = ~1 x 10¹² p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011))
 - 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
 - 1 MI pulse = 1.9 x 10¹² p

✓ using three 2-s cycles (1.33-s ramp time, 0.67-s slow extraction) /min (=10% of beam time): → 2.8 x 10¹² p/s (=450 nA) instantaneous beam current , and $I_{av} = ~0.95 \times 10^{11}$ p/s (=15 nA)

Scenarios:

 \checkmark L = 2.0 x 10³⁵/cm²/s (10% of available beam time: I_{av} = 15 nA)

 $\checkmark L = 1 \times 10^{36} / \text{cm}^2/\text{s} \quad (50\% \text{ of available beam time: } I_{av} = 75 \text{ nA})$

→ x-range:

 $x_{\rm b} = 0.3 - 0.9$ (valence quarks) $x_{\rm t} = 0.1 - 0.4$ (sea quarks)

SeaQuest: Drell-Yan Acceptance

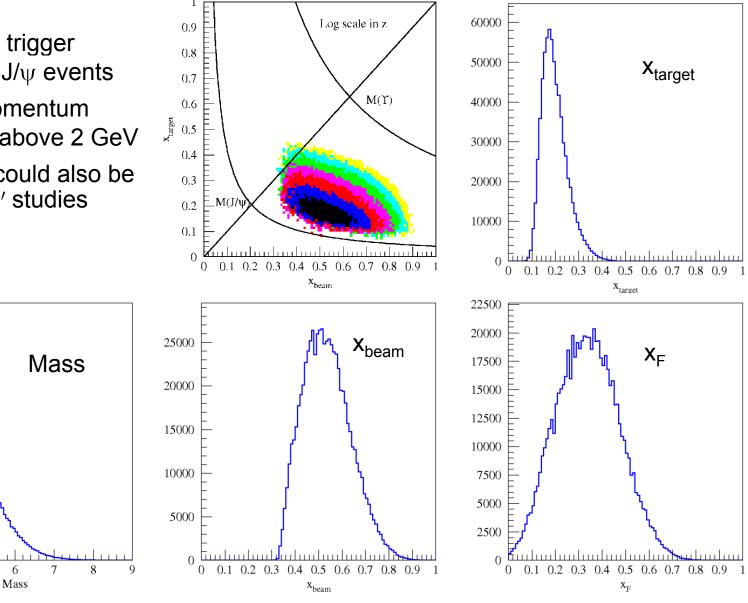
- Programmable trigger removes likely J/ψ events
- Transverse momentum acceptance to above 2 GeV
- Spectrometer could also be used for J/ψ , ψ' studies

5

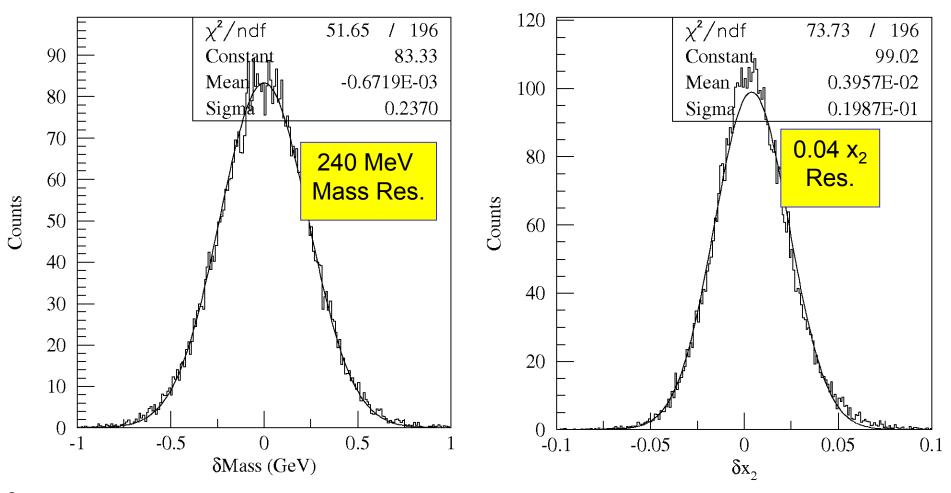
35000

30000

25000


20000

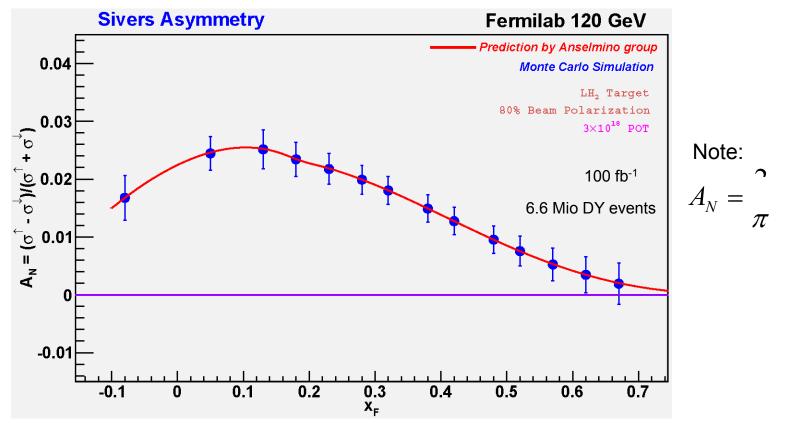
15000


10000

5000

0 🖬

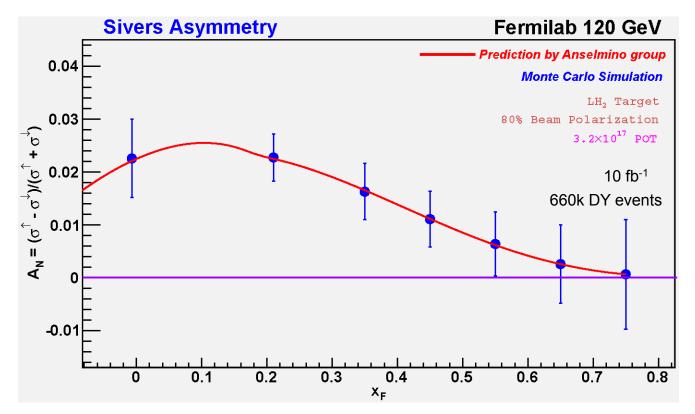
SeaQuest: Detector Resolution



Triggered Drell-Yan events

Polarized Drell-Yan at Fermilab Main Injector - III

Experimental Sensitivity


- Iuminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
- → 100 fb⁻¹ for 5 x 10⁵ min: (= 2 yrs at 50% efficiency)

Can measure not only sign, but also the size & shape of the Sivers function !

Polarized Drell-Yan at Fermilab Main Injector - III

- What if?
 - Iuminosity: $L_{av} = 2 \times 10^{34}$ (= 10x lower than expected)
 - \rightarrow 10 fb⁻¹ for 5 x 10⁵ min: (= 2 yrs at 50% efficiency)

Can still measure sign, AND shape of the Sivers function, with 10x less L_{int} ! What if the sign changes, BUT $\int_{1T}^{\perp} \int_{DIS} \neq \frac{2}{10}$?

Planned Polarized Drell-Yan Experiments

experiment	particles	energy	x_1 or x_2	luminosity	timeline
COMPASS (CERN)	π [±] + p [↑]	160 GeV √s = 17.4 GeV	$x_2 = 0.2 - 0.3$ $x_2 \approx 0.05$ (low mass)	2 x 10 ³³ cm ⁻² s ⁻¹	2014
PAX (GSI)	$p^{\uparrow} + p_{par}$	collider √s = 14 GeV	$x_1 = 0.1 - 0.9$	2 x 10 ³⁰ cm ⁻² s ⁻¹	>2017
PANDA (GSI)	p_{par} + p^{\uparrow}	15 GeV √s = 5.5 GeV	$x_2 = 0.2 - 0.4$	2 x 10 ³² cm ⁻² s ⁻¹	>2016
J-PARC	p↑ + p	50 GeV √s = 10 GeV	$x_1 = 0.5 - 0.9$	1 x 10 ³⁵ cm ⁻² s ⁻¹	>2015 ??
NICA (JINR)	p↑ + p	collider √s = 20 GeV	$x_1 = 0.1 - 0.8$	1 x 10 ³⁰ cm ⁻² s ⁻¹	>2014
PHENIX (RHIC)	p↑ + p	collider √s = 500 GeV	$x_1 = 0.05 - 0.1$	2 x 10 ³² cm ⁻² s ⁻¹	>2018
RHIC internal target phase-1	p↑ + p	250 GeV √s = 22 GeV	$x_1 = 0.25 - 0.4$	2 x 10 ³³ cm ⁻² s ⁻¹	>2018
RHIC internal target phase-1	p↑ + p	250 GeV √s = 22 GeV	$x_1 = 0.25 - 0.4$	6 x 10 ³⁴ cm ⁻² s ⁻¹	>2018
A _n DY RHIC (IP-2)	p↑ + p	500 GeV √s = 32 GeV	x ₁ = ??	?? cm ⁻² s ⁻¹	2013
SeaQuest (unpol.) (FNAL)	p + p	120 GeV √s = 15 GeV	x ₁ = 0.3 – 0.9	3.4 x 10 ³⁵ cm ⁻² s ⁻¹	2011
pol. SeaQuest (FNAL)	p↑ + p	120 GeV <mark>√s</mark> = 15 GeV	x ₁ = 0.3 – 0.9	1 x 10 ³⁶ cm ⁻² s ⁻¹	>2014

Drell-Yan fixed target experiments at Fermilab

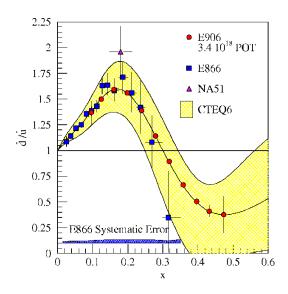
• What is the structure of the nucleon?

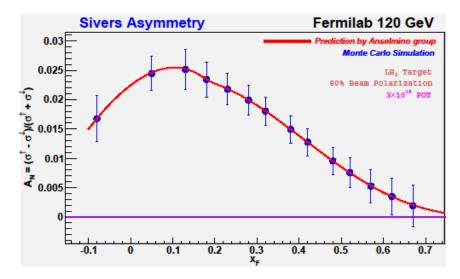
ightarrow What is \overline{d} / \overline{u} ?

What is the origin of the sea quarks?

• What is the structure of nucleonic matter?

Where are the nuclear pions?


Is anti-shadowing a valence effect?


SeaQuest: 2011 - 2014

significant increase in physics reach

Beyond SeaQuest

- Polarized beam at Fermilab Main Injector
- Polarized target at Main Injector
- high-luminosity Drell-Yan program: complementary to spin programs at RHIC and JLAB

Thank you!