The 3D nucleon imaging program at JLab 12 GeV

Volker D. Burkert Jefferson Lab

CEBAF energy doubling from 6 GeV to 12 GeV

Superconducting rf structures operating at $2 K$ provide cw beam acceleration with 1.5 GHz micro bunch structure.

Enhance equipment in existing halls

Office of
Science

Base equipment \& proposed equipment

Wigner Function - GPDs and TMDs

(Quantum phase-space quark distribution in the nucleon)
$W_{\Gamma}(\mathbf{r}, k)=\frac{1}{2 M_{N}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}}\langle\mathbf{q} / 2| \hat{\mathcal{W}}_{\Gamma}(0, k)|-\mathbf{q} / 2\rangle$,

Transverse Momentum-dependent Distributions (TMD)

Generalized Parton
Distributions (GPD)

3D nucleon imaging in transverse coordinate and longitudinal momentum space.

Physical content of GPDs H, E

Nucleon energy-momentum tensor of q flavored quarks:

$$
\left\langle p_{2}\right| T_{\mu \nu}^{q}\left|p_{1}\right\rangle=U\left(p_{2}\right)\left[M_{2}^{q}(t) \frac{P_{\mu} P_{\nu}}{M}+J q_{(t)} \frac{2\left(P_{\mu} \sigma_{\nu \rho}+P_{\nu} \sigma_{\mu \rho}\right) \Delta^{\rho}}{2 M}+d_{1}^{q}(t) \frac{\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}}{5 M}\right] U\left(p_{1}\right)
$$

To measure gravitational FFs : graviton scattering or GPDs identities :
$J^{q}(t)=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x \underset{(\text { Ji's sum for } \mathrm{t}=0)}{ }\left[H^{q}(x, \xi, t)+E^{q}(x, \xi, t)\right], \quad M_{2}^{q}(t)+\frac{4}{5} d_{1}(t) \xi^{2}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x H^{q}(x, \xi, t)$

> Fourier transformation relates $J(t)$ to the quark angular momentum distribution in b_{T} space.
$M_{2}(t)$: Mass distribution in b_{T} space
$d_{2}(t)$: Pressure and force distribution on quarks.
K. Goeke et al., PRD75,

2094021 (2007)

DVCS and Bethe-Heitler Process

$T^{B H}$: given by elastic form factors $T^{\text {DVCS: }}$ determined by GPDs

Cross section of ep \rightarrow ep γ at $Q^{2}=2 \mathrm{GeV} / \mathrm{c}^{2}$ and $X_{B}=0.35$

BH-DVCS interference generates beam and target polarization asymmetries that encode the nucleon structure content.

A path towards extracting GPDs

$$
A=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}=\frac{\Delta \sigma}{2 \sigma}
$$

$$
\begin{aligned}
& \xi \sim x_{B} /\left(2-x_{B}\right) \\
& k=t / 4 M^{2}
\end{aligned}
$$

$$
\int_{z}^{\mathrm{y}} \int_{\mathrm{z}}^{\mathrm{x}}
$$

Polarized beam, unpolarized target:

$$
\Delta \sigma_{\mathrm{LU}} \sim \sin \phi\left\{\mathrm{~F}_{1} H+\xi\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \widetilde{H}+\mathrm{kF} F_{2} E\right\} \mathrm{d} \phi
$$

$$
H(\xi, t)
$$

Unpolarized beam, longitudinal target:

$$
\Delta \sigma_{U L} \sim \sin \phi\left\{\mathrm{~F}_{1} \widetilde{H}+\xi\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)(H+\xi /(1+\xi) E)\right\} \mathrm{d} \phi
$$

$\widetilde{H}(\xi, t)$
Unpolarized beam, transverse target:

$$
\Delta \sigma_{U T} \sim \cos \phi \sin \left(\phi_{S}-\phi\right)\left\{k\left(F_{2} H-F_{1} E\right)\right\} d \phi
$$

$E(\xi, t)$

Unpolarized total cross section:
Separates h.t. contributions to DVCS

Hall A DVCS/BH cross section on proton

C. Muñoz et al., Phys. Rev. Lett. 97 (2006) 262002

High statistics in small range in Q^{2}, x_{B}, t
Verify Bjorken scaling in small Q^{2} range
New data taken 2010 on hydrogen and deuterium at two beam energies

Extraction of GPDs H, \widetilde{H} at 6 GeV

F.X. Girod et al. (CLAS), Phys.Rev.Lett100:162002,2008 S. Chen et al. (CLAS), Phys.Rev.Lett97:072002,2006

Long. Target asymmetry

M. Guidal, Phys.Lett.B689, 156-162,2010

CLAS DVCS/BH cross sections

Large kinematical range in Q^{2}, x_{B}, t

E01-113, $\sigma_{\text {DVCS }}, F_{1} \mathcal{H}+\xi G_{M} \tilde{\mathcal{H}}-F_{2} \frac{t}{4 M^{2}} \mathcal{E}+\cdots$

2009 data will double statistics

CLAS Exclusive vector mesons

ρ^{0} helps the flavor separation of GPDs: $2 u+d$

Longitudinal cross-section separated by angular analysis in the C.O.M.
Missing strength at low W : higher-twist or missing contribution in the D-term

Gluon-GPD handbag works for ϕ 's

Also longitudinal cross section data for ρ^{+}production.

GPDs in DVCS experiments at JLab12

Nucleon polarization	Sensitivity to SPDs
UP	H, \tilde{H}, E
LP	$\widetilde{H}, \boldsymbol{H}, E$
TP	E, H

$$
\begin{aligned}
& \text { E12-06-114: } \nu, \pi^{0} \\
& \text { E12-06-119: } 1 \text { (A) proton } \\
& \text { E12-11-003: } \nu, \pi^{0} \\
& \text { (B) proton } \\
& \text { E12-06-119 : } \nu, \pi^{0}\left(\mathrm{NH}_{3}\right) \text { (B) proton } \\
& \text { LOI12-11-105: } \gamma, \pi^{0} \text { (HD) (B) proton }
\end{aligned}
$$

The JLab DVCS program will be carried out in two experimental Halls: A \& B (CLAS12)

Hall A DVCS at 12 GeV

$$
\text { E12-06-114 } \quad \Delta \sigma_{\mathrm{LU}} \sim \sin \phi\left\{\mathrm{~F}_{1} H+\xi\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \widetilde{H}+\mathrm{k} \mathrm{~F}_{2} E\right\} \mathrm{d} \phi
$$

DVCS/BH $A_{\text {LU }}$ projections on protons

F. Sabatié, C. Hyde

```
E12-06-119/CLAS12
E12-06-114/Hall A
```

With large acceptance measure large $\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{B}}, \mathrm{t}$ ranges simultaneously.

$$
\begin{gathered}
\mathbf{A}_{\mathrm{LU}}\left(\mathbf{Q}^{2}, \mathbf{x}_{\mathrm{B}}, \mathbf{t}\right) \\
\Delta \sigma\left(\mathbf{Q}^{2}, \mathbf{x}_{\mathrm{B}}, \mathbf{t}\right) \\
\sigma\left(\mathbf{Q}^{2}, \mathbf{x}_{\mathrm{B}}, \mathbf{t}\right)
\end{gathered}
$$

GPDs from simulated CLAS12 data

E12-06-119

GPD H only contribution

$$
q\left(x, \vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \vec{b}_{\perp} \cdot \bar{\lambda}_{\perp}} H\left(x, \xi=0,-\Delta_{\perp}^{2}\right)
$$

CLAS12 DVCS/BH A_{UL} on protons

$$
\begin{aligned}
& \text { e } \vec{p} \longrightarrow \text { ep } \gamma \\
& \Delta \sigma_{U L} \sim \sin \phi\left\{\mathrm{~F}_{1} \widetilde{H}+\xi\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)(H+\xi /(1+\xi) E)\right\} \mathrm{d} \phi \\
& E=11 \mathrm{GeV} \\
& \text { - Polarization: } 0.8 \\
& \text { - Dilution factor: } 0.15 \\
& \text { (fraction of events } \\
& \text { from polarized material) } \\
& \text { - Magnetic field: 5T }
\end{aligned}
$$

CLAS12 $\mathrm{A}_{\mathrm{UL}} \sin \phi$ moment on protons

E12-06-119
F. Sabatié

Extraction of $\mathcal{H} \& \tilde{\mathcal{H}}$ from A_{LU} and A_{UL}

$\mathrm{Q}^{2}=1.5-7.5 \mathrm{GeV}^{2}$

M. Guidal: Model-independent analysis in leading twist

CLAS12 Target spin asymmetry A_{UT}

$A_{U T}$ and $A_{L T}$ are sensitive to the u and d-quark helicity content of the proton spin

CLAS12 DVCS/BH Beam asymmetries $\mathrm{A}_{\text {LU }}$ neutrons

SIDIS and Transverse Momentum Distribution

SIDIS cross section in leading twist:

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x Q^{2}} \frac{y}{2(1-\varepsilon)} \\
& \times\left\{\underline{F_{U U, T}}+\varepsilon \cos \left(2 \phi_{h}\right) \underline{F_{U U}}{ }^{\cos 2 \phi_{h}}+S_{L} \equiv \sin \left(2 \phi_{h}\right) \underline{F_{U L}^{\sin 2 \phi_{h}}}\right. \\
& \left.+S_{S_{L}} \lambda_{e} \sqrt{1-\varepsilon^{2}} \underline{F_{L L}}+\widehat{\boldsymbol{S}}_{T}\right)\left[\sin \left(\phi_{h}-\phi_{S}\right) \underline{F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}}\right. \\
& \left.+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) \underline{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) \underline{F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}}\right] \\
& \left.+\boldsymbol{S S}_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) \underline{F_{L T}} \cos \left(\phi_{h}-\phi_{S}\right)\right]\right\},
\end{aligned}
$$

The 8 structure functions factorize into TMD parton distributions, fragmentation functions, and hard parts:

$$
\begin{array}{c|r|r|r|}
F_{U U} \propto & f_{1}\left(x, k_{\perp}\right. & D_{1}\left(z_{h}, p_{\perp}\right) & H_{U U}\left(Q^{2}\right) \\
F_{L L} & g_{1 L}\left(x, k_{\perp}\right. & D_{1}\left(z_{h}, p_{\perp}\right. & H_{L L}\left(Q^{2}\right) \\
F_{U L} \propto & h_{1 L}^{\perp}\left(x, k_{\perp}\right) & H_{1}^{\perp}\left(z_{h}, p_{\perp}\right) & H_{U L}\left(Q^{2}\right), \\
\hline
\end{array}
$$

Integrals over transverse momentum of initial and scattered parton

A full program to extract L.T. TMDs from measurements requires separation of the structure function using polarization, and coverage of a large range in $\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{T}}$ along with sensitivity to Q^{2}, and the flavor separation in $\mathrm{u}, \mathrm{d}, \mathrm{s}$ quarks.

JLab TMD Proton Program @ 12 GeV

Leading twist TMD parton distributions:
information on correlations between
quark orbital motion and spin

CLAS12	Quark spin polarization					Hall C	Hall A	
\downarrow		N 9	U	L	T	\downarrow		
$\begin{aligned} & E 12-06-112: \pi^{+}, \pi ; \pi^{0} \\ & E 12-09-008: \boldsymbol{k}^{+}, \boldsymbol{K} ; \mathbf{K}^{0} \end{aligned}$		U	\mathbf{f}_{1}		h_{1}^{\perp}			$\begin{aligned} & \text { HMS } \\ & \text { SHMS } \end{aligned}$
$\begin{aligned} & \text { E12-07-107: } \pi^{+}, \pi, \pi \pi^{0} \\ & \text { E12-09-009: } \mathbf{K}^{+}, \kappa ; K^{0} \end{aligned}$		L		g_{1}	$\mathrm{h}_{1 \mathrm{~L}}^{\perp}$			
		T	$\mathrm{f}_{1 \mathrm{~T}}^{\perp}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathrm{~h}_{1 \mathrm{~T}}^{\perp}$	C12-11-108: π^{+}, π^{-}		Solid
$\mathrm{H}_{2}, \mathrm{NH}_{3}, \mathrm{HD}$						H_{2}	NH_{3}	

The TMD program will map the 4D phase space in Q^{2}, x, z, P_{T}

CLAS12 A_{Uu} for pions on unpolarized protons.

N 9	U		T
U	\mathbf{f}_{1}		h_{1}^{+}
L		g_{1}	$\mathrm{h}_{1 \mathrm{~L}}$
T	$\mathrm{f}_{1 \mathrm{~T}}^{\perp}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathrm{~h}_{1 \mathrm{~T}}^{\perp}$

$$
\begin{aligned}
& \frac{d \sigma}{d x_{B} d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\quad \text { E12-06-112 } \quad \text { H. Avakian } \\
& \frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& +\varepsilon \cos \left(2 \phi_{h}\right)\left(F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\},
\end{aligned}
$$

Measures momentum distribution of trans. pol. quarks in unpol. nucleon

Wide x and P_{T} range needed to map out phase space in longitudinal and transverse quark momentum

SIDIS pion/kaon on unpolarized protons.

Extraction of $f_{1}\left(x, z^{2}, b_{T}^{2}\right)$

Project x-section onto b_{T}-space to avoid convolution + Bessel weighting

$$
\int_{0}^{\infty} d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| J_{0}\left(\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{b}_{T}\right|\right)\left[\frac{d \sigma}{d x_{B} d y d \phi_{S} d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}\right]
$$

Boer, Gamberg, Musch, Prokudin, arXiv:1107.5294

- provides a model independent way to study kinematical dependences of TMDs
- requires wide range in hadron P_{T}

Example of simulated data with CLAS12

$$
\tilde{f}_{1}^{q}\left(x, z^{2} b_{T}^{2}\right) \tilde{D}_{1}^{q \rightarrow \pi}\left(z, b_{T}^{2}\right)
$$

CLAS12 A $_{\text {UL }}$ on longitudinally polarized target

$\mathbf{N} \mathbf{q}$	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	\mathbf{f}_{1}		$\mathbf{h}_{\perp}^{\perp}$
\mathbf{L}		g_{1}	$\mathbf{h}_{1 \mathrm{~L}}^{\perp}$
\mathbf{T}	$\mathbf{f}_{1 \mathrm{~T}}^{\perp}$	$g_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathbf{h}_{1 \mathrm{~T}}^{\perp}$

The Kotzinian-Mulders function measures the momentum distribution of transversely polarized quarks in a longitudinally polarized nucleon.

- This is the only leading twist azimuthal moment for longitudinally polarized target. The $\sin 2 \phi$ moment is sensitive to spin-orbit correlations.

CLAS12 $A_{\text {LL }}$ in double polarization

$\mathbf{N} \mathbf{q}$	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	\mathbf{f}_{1}		\mathbf{h}_{1}^{\perp}
\mathbf{L}		g_{1}	$\mathbf{h}_{1 \mathrm{~L}}^{\perp}$
\mathbf{T}	$\mathbf{f}_{1 \mathbf{T}}^{\perp}$	$g_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathbf{h}_{1 \mathrm{~T}}^{\perp}$

E12-07-107
H. Avakian
P. Rossi

The double polarization asymmetry is sensitive to the difference in the k_{T} distribution of quarks with spin orientation parallel and anti-parallel to proton spin.

Transverse momentum dependence of longitudinally polarized quarks in longitudinally polarized protons.
M.Anselmino et al Phys.Rev.D74:074015,2006

H. Avakian et al, (CLAS), Phys.Rev.Lett. 105 (2010) 262002

CLAS12 A_{UT} with transverse proton target

SOLID $A_{\text {UT }}$ with transverse proton target

JLab TMD ${ }^{3} \mathrm{He}$ Program @ 12 GeV

Leading twist TMD parton distributions:
information on correlations between
quark orbital motion and spin

SOLID A_{uL} on ${ }^{3} \mathrm{He}$

E12-11-007

$$
\mathrm{e}^{3} \mathrm{He}->\mathrm{e} \pi^{-} \mathrm{X}
$$

SOLID $\mathrm{A}_{\text {UT }}$ on ${ }^{3} \mathrm{He}$ Target

SBS/BB A_{UT} on ${ }^{3} \mathrm{He}$ Target

JLab TMD D_{2} Program @ 12 GeV

Leading twist TMD parton distributions:
information on correlations between
quark orbital motion and spin

The JLab TMD program will chart the 4D phase space in $\mathrm{Q}^{2}, \mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{T}}$

CLAS12 Kaon A_{Uu} on unpolarized $\mathrm{D}_{\mathbf{2}}$

N 9	U	L	T
U	\mathbf{f}_{1}		h_{1}^{\perp}
L		g_{1}	$\mathrm{h}_{1 \mathrm{~L}}^{1}$
T	$\mathrm{f}_{1 \mathrm{~T}}^{\perp}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathrm{~h}_{1 \mathrm{~T}}^{\perp}$

$\frac{d \sigma}{d x_{B} d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$
$\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.$
$\left.+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\}$,

CLAS12 PDFs in π / K SIDIS

Extraction of the individual contributions of quarks and anti-quarks to the nucleon spin. Use polarized \& unpolarized proton and deuteron targets.

E12-09-002
K. Hafidi

Conclusions

- Several detectors under construction or proposed - CLAS12, SBS, SOLID to carry out 3D nucleon imaging program
- Jlab12 has a well defined and broad experimental program to measure DVCS in the full phase space available at $12 \mathrm{GeV}: \mathrm{Q}^{2}<9 \mathrm{GeV}^{2}, 0.5<\mathrm{X}_{\mathrm{B}}<0.7,-\mathrm{t}<2.5 \mathrm{GeV}^{2}$.
- CLAS12 is the major detector system to measure DVCS cross section and target polarization observables
- High statistics data are expected from Hall A for DVCS cross sections in reduced kinematics
- JLab12 has a broad program defined to measure TMDs in 4D phase space Q^{2}, x_{B}, z, P_{T}
- Use of full acceptance detectors with excellent Kaon identification essential for complete program
- Use of polarized proton $\left(\mathrm{NH}_{3}\right)$ and neutron $\left(\mathrm{ND}_{3},{ }^{3} \mathrm{He}\right)$ targets with longitudinal and transverse polarization are available for complete program

Promise of GPDs \& TMDs: Imaging of the Proton

$$
\varepsilon\left(x, \mathrm{~b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} \boldsymbol{e}^{i \Delta_{\perp}{ }^{\boldsymbol{\iota}} \perp E_{q}}\left(x, \Delta_{\perp}\right)
$$

Target polarization

$$
\mathrm{d}_{\mathrm{x}}\left(x, \mathrm{~b}_{\perp}\right) \quad \mathbf{u}_{\mathrm{x}}\left(x, \mathrm{~b}_{\perp}\right)
$$

TMDs extend the image to include the quarks orbital motion.

12 GeV Upgrade Schedule

Two short parasitic installation periods in FY10

6-month installation May - Oct 2011

12-month installation May 2012 - May 2013

Hall A commissioning start October 2013

Hall D commissioning start April 2014

Halls B / C commissioning start October 2014

Project Completion June 2015 Transversity 2011 - Veli-Losinj, Croatia, 8/28-9/2

