The 3D nucleon imaging program at JLab 12 GeV

Volker D. Burkert Jefferson Lab

CEBAF energy doubling from 6 GeV to 12 GeV

Base equipment & proposed equipment

Wigner Function - GPDs and TMDs

Physical content of GPDs H, E

Nucleon energy-momentum tensor of *q* flavored quarks:

$$\langle p_2 | \hat{T}^{q}_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[\frac{M_2^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_1^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} \right] U(p_1)$$
To measure gravitational FFs : graviton scattering or GPDs identities :

$$J^{q}(t) = \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right] , \quad M_{2}^{q}(t) + \frac{4}{5} d_{1}(t)\xi^{2} = \frac{1}{2} \int_{-1}^{1} dx \, x H^{q}(x,\xi,t)$$
(Ji's sum for t=0)

Fourier transformation relates J(t) to the quark angular momentum distribution in b_T space.

 $M_2(t)$: Mass distribution in b_T space $d_2(t)$: Pressure and force distribution on quarks.

K. Goeke et al., PRD75, 2094021 (2007)

DVCS and Bethe-Heitler Process

A path towards extracting GPDs

$$A = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} = \frac{\Delta\sigma}{2\sigma}$$

$$\xi \sim x_{\rm B}/(2-x_{\rm B})$$

k = t/4M²

$$y$$

 x
 k
 k'
 d_1
 d_2
 d_3
 d_2
 d_4
 d_5
 d_1
 d_2
 d_5
 d_1
 d_2
 d_4
 d_5
 d_1
 d_2
 d_4
 d_5
 d_1
 d_2
 d_4
 d_5
 d_1
 d_2
 d_5
 d_1
 d_2
 d_5
 d_5

 $H(\xi,t)$

 $\widetilde{H}(\xi,t)$

Polarized beam, unpolarized target:

 $\Delta \sigma_{LU} \sim \frac{\sin \phi}{F_1 H} + \xi (F_1 + F_2) \widetilde{H} + k F_2 E d\phi$

Unpolarized beam, longitudinal target:

$$\Delta \sigma_{UL} \sim \frac{\sin \phi}{F_1 H} \{F_1 + \xi (F_1 + F_2) (H + \xi / (1 + \xi) E)\} d\phi$$

Unpolarized beam, transverse target:

 $\Delta \sigma_{\text{UT}} \sim \cos \phi \sin(\phi_{\text{s}} - \phi) \{ k(F_2 H - F_1 E) \} d\phi$

Unpolarized total cross section:

Separates h.t. contributions to DVCS

Hall A DVCS/BH cross section on proton

<t > = - 0.28 GeV² <t>= - 0.17 GeV² <t>= - 0.33 GeV² <t>= - 0.23 GeV² e E00-110 Total fit 0.02 Twist - 2 beam helicity-dependent DVCS cross section (nb/GeV⁴) -0.02 E00-110 0.1 beam helicity-independent IBH+DVCSI² IBHI² BH+DVCSI² - IBH 0.05 00 Q 180 270 φ (deg) φ (deg) φ (deg) φ (deg) High statistics in small range in Q^2 , x_B , t

C. Muñoz et al., Phys. Rev. Lett. 97 (2006) 262002

Verify Bjorken scaling in small Q² range

New data taken 2010 on hydrogen and deuterium at two beam energies

Extraction of GPDs H, \tilde{H} at 6 GeV

CLAS DVCS/BH cross sections

CLAS Exclusive vector mesons

 ρ^0 helps the flavor separation of GPDs: 2u + d

Longitudinal cross-section separated by angular analysis in the C.O.M. Missing strength at low W : higher-twist or missing contribution in the D-term

Also longitudinal cross section data for $\rho^{\scriptscriptstyle +}$ production.

GPDs in DVCS experiments at JLab12

The JLab DVCS program will be carried out in two experimental Halls: **A & B (CLAS12)**

Hall A DVCS at 12 GeV

DVCS/BH A_{LU} projections on protons

 $\Delta \sigma_{LU} \sim \sin \phi \{F_1 H + \xi (F_1 + F_2) \widetilde{H} + k F_2 E\} d\phi$

U.S. DEPARTMENT OF ENERG

GPDs from simulated CLAS12 data

E12-06-119

CLAS12 DVCS/BH A_{UL} on protons

CLAS12 A_{UL} sin φ moment on protons

Extraction of \mathcal{H} & $\widetilde{\mathcal{H}}$ from A_{LU} and A_{UL}

M. Guidal: Model-independent analysis in leading twist

CLAS12 Target spin asymmetry A_{UT}

CLAS12 DVCS/BH Beam asymmetries A_{LU} neutrons

 σ

SIDIS and Transverse Momentum Distribution

SIDIS cross section in leading twist:

$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xQ^2}\frac{y}{2(1-\varepsilon)}$$

$$\times \left\{ \underbrace{F_{UU,T} + \varepsilon\cos(2\phi_h) \underbrace{F_{UU}^{\cos 2\phi_h}}_{UU} + \underbrace{S_L}\varepsilon\sin(2\phi_h) \underbrace{F_{UL}^{\sin 2\phi_h}}_{UL}}_{+ \underbrace{S_L}} + \underbrace{(S_L)}_e \sqrt{1-\varepsilon^2} \underbrace{F_{LL}}_{+ \underbrace{F_{UL}}} + \underbrace{(S_T)}_{T} \left[\sin(\phi_h - \phi_S) \underbrace{F_{UT,T}^{\sin(\phi_h - \phi_S)}}_{+ \underbrace{F_{UT}}} + \varepsilon\sin(\phi_h + \phi_S) \underbrace{F_{UT}^{\sin(\phi_h + \phi_S)}}_{+ \underbrace{F_{UT}}} + \varepsilon\sin(3\phi_h - \phi_S) \underbrace{F_{UT}^{\sin(3\phi_h - \phi_S)}}_{+ \underbrace{F_{UT}}} \right\},$$

The 8 structure functions factorize into TMD parton distributions, fragmentation functions, and hard parts:

$F_{UU} \propto$	$ \begin{array}{c} f_1\left(x,k_{\perp}\right)\\ g_{1L}\left(x,k_{\perp}\right)\\ h_{1L}^{\perp}\left(x,k_{\perp}\right) \end{array} $	$D_1\left(z_h, p_\perp\right)$	$H_{UU}\left(Q^2\right)$
$F_{LL} \propto$	$g_{1L}\left(x,k_{\perp}\right)$	$D_1(z_h, p_\perp)$	$H_{LL}\left(Q^2\right)$
$F_{UL} \propto$	$h_{1L}^{\perp}\left(x,k_{\perp}\right)$	$H_1^{\perp}\left(z_h, p_{\perp}\right)$	$H_{UL}\left(Q^2\right)$

Integrals over transverse momentum of initial and scattered parton

A full program to extract L.T. TMDs from measurements requires separation of the structure function using polarization, and coverage of a large range in x, z, P_T along with sensitivity to Q^2 , and the flavor separation in u, d, s quarks.

Transversity 2011 – Veli-Losinj, Croatia, 8/28-9/2

e'

 π, \mathbf{k}

JLab TMD Proton Program @ 12 GeV

Leading twist TMD parton distributions:

information on correlations between quark orbital motion and spin

CLAS12 A_{UU} for pions on unpolarized protons.

Measures momentum distribution of trans. pol. quarks in unpol. nucleon

Wide x and P_T range needed to map out phase space in longitudinal and transverse quark momentum

SIDIS pion/kaon on unpolarized protons.

U.S. DEPARTMENT OF ENERGY

Extraction of f_1 (x, z^2, b_T^2)

Project x-section onto b_T-space to avoid convolution + Bessel weighting

CLAS12 A_{UL} on longitudinally polarized target

 This is the only leading twist azimuthal moment for longitudinally polarized target. The sin2
 moment is sensitive to spin-orbit correlations.

CLAS12 A_{LL} in double polarization

The double polarization asymmetry is sensitive to the difference in the k_T distribution of quarks with spin orientation parallel and anti-parallel to proton spin.

Transverse momentum dependence of longitudinally polarized quarks in longitudinally polarized protons.

M.Anselmino et al Phys.Rev.D74:074015,2006

H. Avakian et al, (CLAS), Phys.Rev.Lett. 105 (2010) 262002

CLAS12 A_{UT} with transverse proton target

SOLID A_{UT} with transverse proton target

U.S. DEPARTMENT OF ENERGY

JLab TMD ³He Program @ 12 GeV

Leading twist TMD parton distributions:

information on correlations between quark orbital motion and spin

SOLID A_{UL} on ³He

SOLID A_{UT} on ³He Target

SBS/BB A_{UT} on ³He Target

JLab TMD D₂ Program @ 12 GeV

Leading twist TMD parton distributions: information on correlations between quark orbital motion and spin CLAS12 Hall C Quark spin polarization q Т U L N **Ε09-008**: π⁺,π⁻,π⁰ **Ε12-09-017**: π⁺,π⁻, K⁺,K⁻ \mathbf{h}_{1}^{\perp} \mathbf{f}_1 K⁺, K⁻,K⁰ Nucleon polarization IJ C12-11-102: π⁰

 \mathbf{g}_1

 $\mathbf{g}_{1\mathbf{T}}$

 $\mathbf{f}_{\mathbf{1T}}^{\perp}$

Т

Ε07-107: π⁺,π⁻,π⁰

E09-009: K⁺,K⁻,K⁰

 D_2 , ND_3

The JLab TMD program will chart the 4D phase space in Q^2 , x, z, P_T

 h_{1L}^{\perp}

 $\mathbf{h}_1 \mathbf{h}_{1T}$

Transversity 2011 - Veli-Losini, Croatia, 8/28-9/2

 D_2

HMS

SHMS

CLAS12 Kaon A_{UU} on unpolarized D_2

CLAS12 PDFs in π/K SIDIS

U.S. DEPARTMENT OF ENERGY

Conclusions

- Several detectors under construction or proposed CLAS12, SBS, SOLID to carry out 3D nucleon imaging program
- Jlab12 has a well defined and broad experimental program to measure DVCS in the full phase space available at 12 GeV: Q² < 9GeV², 0.5<x_B< 0.7, -t < 2.5GeV².
- CLAS12 is the major detector system to measure DVCS cross section and target polarization observables
- High statistics data are expected from Hall A for DVCS cross sections in reduced kinematics
- JLab12 has a broad program defined to measure TMDs in 4D phase space Q², x_B , z, P_T
- Use of full acceptance detectors with excellent Kaon identification essential for complete program
- Use of polarized proton (NH₃) and neutron (ND₃, ³He) targets with longitudinal and transverse polarization are available for complete program

Promise of GPDs & TMDs: Imaging of the Proton

12 GeV Upgrade Schedule

