STAR results and perspectives on transverse spin asymmetries

Nikola Poljak for the STAR collaboration University of Zagreb
Transversity 2011, Veli Losinj, Croatia 31.8.2011.

Done at RHIC - STAR 2006 configuration

FOM $\left(P^{2} \mathrm{~L}\right)$ in Run 6 is ~ 50 times larger than from all the previous STAR runs

Transverse Single Spin Asymmetries

A_{N} difference in cross-section between particles produced to the left and right

Theory Expectation:

Small asymmetries at high energies
(Kane, Pumplin, Repko, PRL 41, 1689-1692 (1978))

$$
A_{N} \propto \frac{m_{q}}{p_{T}}
$$

$$
\mathrm{A}_{\mathrm{N}} \mathrm{O}\left(10^{-4}\right) \text { Theory }
$$

Experiment:

(E704, Fermi National Laboratory
Phys. Lett. B 261 (201) Phys. Lett. B 264 (462))

$$
\begin{aligned}
& p p^{\uparrow} \rightarrow \pi+X \quad \\
& \sqrt{s}=20 \mathrm{GeV}
\end{aligned} \quad \mathrm{~A}_{\mathrm{N}} \mathrm{O}\left(10^{-1}\right) \text { Measured }
$$

Published measurements - A_{N}

PRL 97, 152302 (2006)
nucl-ex/0602011

At this energy the cross-section is consistent with NLO pQCD (run2 + run3) and included in global fits on
fragmentation functions Phys.Rev. D75: 114010, 2007

Polarized pp collisions:

- large rapidity production probes asymmetric partonic collisions (high x quark + low x gluon)
- describe pp particle production using NLO pQCD, relying on universal distribution and fragmentation functions - can study quark transversity distributions

Published measurements - A_{N}

RUN6 : PRL 101 (222001)

- Large transverse singlespin asymmetries at large x_{F}
- x_{F} dependence matches Sivers effect expectations qualitatively (under current study by theory)
- Obtained with the FPD and FPD++ modules

Separating Sivers and Collins effects

Sivers mechanism: asymmetry in the forward jet or γ production

Phys Rev D41 (1990) 83; 43 (1991) 261

Sensitive to proton spin parton transverse motion correlations

Collins mechanism: asymmetry in the forward jet fragmentation

Nucl Phys B396 (1993) 161

To discriminate between the two effects we need to go beyond inclusive π^{0} detection to jet-like events and measure the π^{0} asymmetry as a function of the azimuthal angle aroud the jet-event axis

Motivation and idea

Phys.Rev.D83:034021,2011
The estimated quark Collins asymmetry for $p^{\uparrow} p \rightarrow$ jet $+\pi+X$ process at $\sqrt{s}=200 \mathrm{GeV}$ for 2 different quark transversity distributions

Transversity 2005 proc. (arXiv:hep-ex/0602012): Resolve the origin of large transverse spin asymmetries in polarized pp reactions for forward pion production - use of a detector suitable for reconstruction of jet-like events

RUN-6; FPD++
Summed module energy trigger
Modular EM detector with explicit azimuthal symmetry primarily sensitive to incoming $\mathrm{Y}, \mathrm{e}^{+}$and e^{-}

Forward "jet-like" objects selection

Module energy sum with the following event requirements:
≥ 4 towers with $E \geq 0.4 \mathrm{GeV}$, cell area weighted sum of towers ≥ 10 (w(small) $=1, \mathrm{w}$ (large $=1.52$), "jet-like" $p_{T} \geq 1.5$ $\mathrm{GeV} / \mathrm{c}$, "jet-like" $\mathrm{E} \geq 20 \mathrm{GeV}$, max. cone radius of 0.5 in the $\eta-\Phi$ space, 2 perimeter fiducial volume cut

Simulations set up to mimic the data small cell module energy trigger The agreement between data and simulations is very convincing and repeats itself over a variety of results and throughout the X_{F} range

Association analysis and event jettiness

Simulations show reasonable agreement with data. The neutral pion is well reconstructed and carries most of the energy of the event. What about the "jet-like" object?

"jet-like" objects reconstructed from simulation are found to be associated with a hard-scattered or a radiated parton. The "jet-object" axis agrees well with the direction of the parton. On average, there are 2.5 fragmenting mesons per one object, making them reasonably "jetty".

Y and asymmetry definition

- y is the angle in the $x-y$ plane from the jet-like impact point to the neutral pion impact point. γ is defined mirror symmetrically (CW-CCW) for the left and right modules

$$
A_{N} f(\gamma)=\frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

By forming the geometric mean in each term, the detector effects are minimized. For the Sivers effect, the asymmetry does not depend on the cos(γ) bin. The slope of the asymmetry as a function of $\cos (\mathrm{y})$ is a signal of the Collins effect.

Characteristics of the spin-averaged results

- y is well reconstructed as confirmed by association analysis
- the component of the pion momentum perpendicular to the jet-like object axis (K_{T}) was found in data and simulations

The jet-like y distributions show agreement in data and simulations. The magnitude of k_{T} is in the domain of TMD fragmentation.

Why isn't the y distribution uniform?

- peaking in γ is an acceptance effect - a combination of falling p_{T} jet-like object cross section and limited pion acceptance prefers angles y close to 0

By restricting the jet-like object axis closer to the detector center, the distribution expectedly flattens.

Systematics studies of the model

- Systematic studies of the model were done by changing the model parameters by 10% both on data as well as simulations
- Results here given for data when changing maximal radius of the event cone

E(jet-like)-E(π_{0})

γ angle distribution WN

The results show that no special point in the parameter space has been selected and the systematic effects are small. The data follow the same trends as the simulations.

Forward results - asymmetry

- The pion asymmetry for the events was calculated in bins in the cosine of the jet-like y angle
- The negative X_{F} asymmetry is consistent with zero
- The $x_{F}>0$ asymmetry is greater than zero in all bins (av. 0.031 ± 0.014), but doesn't show a dependence on $\cos (\gamma)$

The "jet-like" events $\mathrm{x}_{\mathrm{F}}>0$ asymmetry is positive, but doesn't show any Collins effect contributions.

Mid-rapidity jet reconstruction

PRL 100032003 (2008)

Collins Angle $\Phi_{h}-\Phi_{S}$; Φ_{S} is angle between S_{\perp}

$\pi^{ \pm}$identification and preliminary results

TPC dE/dx isolates charged pions

Nucl.Instrum.Meth.A558:419-429,2006
$\mathbf{n}_{\sigma}(\pi)$ (- Leading Particles)

$-1<n_{\sigma}(\pi)<2$ cut removes contamination

- Require $\pi^{ \pm}$to be leading particle in jet
- At $z\left(p_{\mathrm{T}} / \mathrm{p}_{\mathrm{jet}}\right)$ >0.3 sample is nearly inclusive (90% of pions are leading)

- Systematic uncertainty limit given by $\Delta \mathrm{A} \equiv \mathrm{A}$ (detector) A(MonteCarlo)
- Results tentatively show asymmetries with opposite signs for opposite charge

Conclusions

Forward rapidity

- Data shows agreement with the simulated sample of events for the jet-like event sample
- The events have been shown to be "jetty"
- The jet-like y angle was found and compares well in data/simulations. The magnitude of k_{T} is in domain of TMD fragmentation
- The systematics of the jet-like object model have been explored and no special point in the parameter space was selected
- The calculated positive x_{F} asymmetry is greater than zero (av. of 0.031 , as in the published RUN6 result) and doesn't show any Collins contributions

Mid-rapidity

- Jet reconstruction selects mostly quark jets. At $z>0.3$ the sample is nearly inclusive (90 \% of pions are leading)
- The asymmetries, although limited at low (high) z by systematic (statistical) errors, flip sign for oppositely charged pions

Outlook

Forward rapidity

- Open up the neutral pion acceptance from small cells to entire calorimeter module, thereby increasing statistics and further addressing the gamma distribution shape
- Explore biases in k_{T} determination

Mid-rapidity

- Improve uncertainties with inclusion of additional simulation statistics and new analysis methods
- Look at data taken in 2012 - decrease systematics and increase statistics

Thank you!

FMS

- Ongoing and future work on neutral pions,
eta mesons and single gammas

Eta analysis (FPD 2006)

- measurement of asymmetry as a function of X_{F}
- determination of eta cross section and the
ration of eta/pion cross sections

2011 500GeV projections - FMS

Projected SSA Errors for $20 \mathrm{pb}^{-1}$
FMS π^{0} Measurement vs Transverse Momentum

Projected η SSA Errors for 20 pb $^{-1}$ Asymmetry vs Feynman X_{F} (Projections for $6 \mathrm{Gev} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<9 \mathrm{GeV} / \mathrm{c}$)

- projected $20 \mathrm{pb}^{-1}$ at 60% polarization; measured $22 \mathrm{pb}^{-1}$ at 50% polarization
- measure transverse spin asymmetries and their scaling properties in x_{F}, p_{T} and $\sqrt{ }$ s
- look at pions and eta mesons

