Light-Front Holography and Proton Transversity

TRANSVERSITY 2011

Third International Workshop on Transverse Polarization Phenomena in Hard Scattering Veli Lošinj, Croatia, 29 August - 2 September 2011

Stan Brodsky

Angular Momentum Structure, and the Spin Dynamics of Hadrons

- Test Fundamentals of Gauge Structure of QCD
- Fundamental Measures of Hadron Structure
- Angular Momentum of Confined Quarks and Gluons
- Breakdown of Conventional Wisdom
- Breakdown of Factorization Ideas
- Crucial Experiment Tests, Measurements

Remarkable array of theory and experimental talks

Krisch

Unexpected

spin-spin correlation in pp elastic scattering

polarizations normal to scattering plane

Spin Correlations in Elastic $p-p$ Scattering

Transversity 2011

Light-Front Holography and Proton Transversity

Light-Front Holography and
Proton Transversity

$A_{n n}=1!$

QCD

Schwinger-Sommerfeld Enhancement at Heavy Quark Threshold

Hebecker, Kuhn, sjb
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

Light-Front Holography and Proton Transversity

Transversity 2011
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange +8 -Quark Resonance
$|u u d u u d s \bar{s}>| u u d u u d c \bar{c}>$
Strange and Charm Octoquark!

$$
M=3 \mathrm{GeV}, M=5 \mathrm{GeV}
$$

$$
J=L=S=1, B=2
$$

$A_{N N}=\frac{d \sigma(\uparrow \uparrow)-d \sigma(\uparrow \downarrow)}{d \sigma(\uparrow \uparrow)+d \sigma(\uparrow \downarrow)}$

Light-Front Holography and Proton Transversity

"Exclusive

A. Krisch, Sci. Am. 257 (1987)
"The results challenge the prevailing theory that describes
the proton's structure and forces"

Spin-dependence at large- $\mathrm{P}_{\mathrm{T}}\left(90^{\circ}{ }_{\mathrm{cm}}\right)$:

Hard scattering takes place with spins $\uparrow \uparrow$

Charm and Strangeness Thresholds

> Heppelmann et al: Quenching of Colo. Transparency

$$
\mathcal{B}=2 \text { Octoquark Resonances? }
$$

Transversity 2011
Light-Front Holograpney c.e.u
Proton Transversity

Color Transparency fails when A_{nn} is large

Mueller, sjb

Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Transversity 2011

Light-Front Holography and
Proton Transversity

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm production at threshold!!?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Key physics at GSI: second charm threshold

$$
\begin{gathered}
\bar{p} p \rightarrow \bar{p} p J / \psi \\
\bar{p} p \rightarrow \bar{p} \wedge_{c} D
\end{gathered}
$$

Key QCD Experiment at GSI

Total open charm cross section at threshold

$$
\sigma(\overline{p p} \rightarrow c X) \simeq 1 \mu b
$$

needed to explain Krisch $A_{N N}$

Huge Number of Tests of Transversity in Exclusive
Reactions

$$
\frac{d \sigma}{d t}(p p \rightarrow p p) \simeq \frac{f\left(\theta_{c m}\right)}{s^{10}}
$$

Transversity 2011

$$
p p \rightarrow p p
$$

connected gluon

Landshoff process

Light-Front Holography and
Proton Transversity

Deep Inelastic Electron-Proton Scattering

Transversity 2011

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark can be neglected

Transversity 2011

Light-Front Holography and Proton Transversity

can interfere with

and produce a T-odd effect! (also need $L_{z} \neq 0$)

Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for $\pi^{+} . .$.

Consistent with zero for π^{-}...
Gamberg: Hermes data compatible with BHS model

Schmidt, Lu:
Asymmetry ratios should follow quark contributions to anomalous moment

Transversity 2011
Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Hermes

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{s}\right)\right\rangle_{U T}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{w} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

ω^{*} significantly positive
clear rise with z
ω^{\sim} rise at low $\mathrm{P}_{\mathrm{h} \perp}$, plateau at high $\mathrm{P}_{\mathrm{h} \perp}$
~ dominated by scattering off u-quark:
$\simeq-\frac{f_{1 T}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes_{w} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}$
~ u-quark Sivers DF<0
non-zero orbital angular momentum
slightly positive
consistent with 0
u- and d-quark cancellation
~ d-quark Sivers DF>0

Hwang, Schmidt, sjb Collins

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Arises from the interference of Final-State QCD Coulomb phases in S- and P-waves;

Burkardt: "LensEffect"

- Wilson line effect -- gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases!
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs

Pasquini, Xiao, Yuan, sjb
Mulders, Boer Qiu, Sterman
Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Running Coupling from Light-Front Holography and AdS/QCD Analytic, defined at all scales, IR Fixed Point

Transversity 2011

Light-Front Holography and Proton Transversity

Q (GeV)

FSI phases in TSSAs unsuppressed
Gamberg

$$
\boldsymbol{\Delta} \boldsymbol{f}^{\perp}\left(\boldsymbol{x}, \boldsymbol{k}_{\perp}\right)=\boldsymbol{i} \boldsymbol{S}_{\boldsymbol{T}} \cdot\left(\boldsymbol{P} \times \boldsymbol{k}_{\perp}\right) f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{\perp}\right)
$$

O Unsuppressed reaction mech. Boer PRD 1999 context of DY @ RHIC
O Brodsky Hwang Schmidt PLB 2002- SIDIS w/ transverse polarized target
O Collins PLB 2002- Gauge link Sivers function doesn't vanish
O Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links
O LG, Goldstein, Oganessyan, schlegel 2002, 20032008 Boer-Mulders Fnct, and Sivers -spectator model
O Burkardt Sivers chromdynamic lensing NPA 2004
O Bacchetta, Schaefer, Yang, PLB 2004, Bacchetta Conti Radici ... 2008,2010,201I PRD
O LG, M. Schlegel, PLB 2010 \& arXiv: 1012.3395 B-M, Sivers sum FSIs w/color Chromo Lensing M. Schegel

Many more model calcs. talk of A. Bacchetta

Light-Front Holography and
Proton Transversity

Predict Opposite Sígn SSA in DY!

Collins

Hwang Schmidt sjb

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional
to the Proton Anomalous Moment and α_{s}.
Opposite Sign to DIS! No Factorization
Transversity 2011

Initial-state interactions and single-spin asymmetries in Drell-Yan processes *

Stanley J. Brodsky ${ }^{\text {a }}$, Dae Sung Hwang ${ }^{\text {a,b }}$, Ivan Schmidt ${ }^{\text {c }}$

Nuclear Physics B 642 (2002) 344-356

Here $\Delta=\frac{q^{2}}{2 P \cdot q}=\frac{q^{2}}{2 M v}$ where v is the energy of the lepton pair in the target rest frame.

BHS
approach
gauge-link formalism plus "time-reversal" non-zero result requires $L \neq 0$ in "wave function" change in sign DY, SIDIS insensitive to details of bound system .- reduces to geometrical argument (ISI. FSI)

$$
f_{1 T_{s i d i s}}^{\perp}\left(x, k_{T}\right)=-f_{1 T_{D Y}}^{\perp}\left(x, k_{T}\right) \quad p_{T} \sim \mathbf{k}_{T} \ll \sqrt{Q^{2}}
$$

EIC conjunction with DY exp. E906-Fermi, RHIC II, Compass, JPARC

Process Dependence, Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Piilman Bomhoff 03,04 ...

$$
d \sigma=L_{\mu \nu} \mathcal{W}^{\mu \nu} \Rightarrow
$$

P\&T

$$
\Phi^{[+] *}\left(x, p_{T}\right)=i \gamma^{1} \gamma^{3} \Phi^{[-]}\left(x, p_{T}\right) i \gamma^{1} \gamma^{3}
$$

Gamberg

Light-Front Holography and Proton Transversity

Sivers amplitudes for kaons

\ldots similar to $\boldsymbol{\pi}^{+}, \mathbf{K}^{+}$dominated by scattering off u-quarks:

$$
\propto-\frac{\mathbf{f}_{\mathbf{1 T}}^{\perp, \mathbf{u}}\left(\mathbf{x}, \mathbf{p}_{\mathbf{T}}^{2}\right) \otimes_{\mathbf{w}} \mathbf{D}_{\mathbf{1}}^{\mathbf{u} \rightarrow \pi^{+} / \mathbf{K}^{+}}\left(\mathbf{z}, \mathbf{k}_{\mathbf{T}}^{\mathbf{T}}\right)}{\mathbf{f}_{\mathbf{1}}^{\mathbf{u}}\left(\mathbf{x}, \mathbf{p}_{\mathbf{T}}^{\mathbf{2}}\right) \otimes \mathbf{D}_{\mathbf{1}}^{\mathbf{u} \rightarrow \pi^{+} / \mathbf{K}^{+}}\left(\mathbf{z}, \mathbf{k}_{\mathbf{T}}^{\mathbf{2}}\right)}
$$

\mathbf{K}^{+}amplitudes are larger in size than the $\boldsymbol{\pi}^{+}$ amplitudes
non-trivial role of sea quarks

$$
\pi^{+} \equiv|\mathbf{u} \overline{\mathbf{d}}\rangle \quad \mathbf{K}^{+} \equiv|\mathbf{u} \overline{\mathbf{s}}\rangle
$$

Transversity 2011

Light-Front Holography and
Proton Transversity

Gardner, sjb

Sea quarks carry orbital angular momentum

Sivers effect for $\pi^{+}(u \bar{d})$ reduced by $L_{\bar{d}}$ at low x Sivers effect for $\pi^{-}(d \bar{u})$ reduced by $L_{\bar{u}}$ at low x Sivers effect for $K^{+}(u \bar{s})$ increased by $L_{\bar{s}}$!

Light-Front Holography and Proton Transversity

Estimate of $<L_{q}>$

Orbital functions	Song parameters	This paper
u quark	0.150	0.197 ± 0.02
d quark	0.025	-0.012 ± 0.01
s quark	0.025	0.015 ± 0.005
Sum of quarks	0.200	0.200 ± 0.02

Orbital functions	Song parameters	This paper
\bar{u} antiquark	0.017	0.015 ± 0.002
\bar{d} antiquark	0.058	0.053 ± 0.006
\bar{s} antiquark	0.025	0.022 ± 0.002
Sum of antiquarks	0.100	0.090 ± 0.01

Chiral Mechanisms Leading to Orbital Quantum Structures in the Nucleon.
Dennis Sivers (Portland Phys. Inst. \& Michigan U.) . Apr 2007. 28pp.
e-Print: arXiv:0704.1791 [hep-ph]

Single-spin

 asymmetries in exclusive channelse^{-}
$i \vec{S}_{\Lambda} \cdot \vec{q} \times{\overrightarrow{p_{K}}}^{{ }^{-}} \gamma^{*} p_{\uparrow} \rightarrow K^{+} \Lambda$
$i \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{K}$
Pseudo- T-Odd quark

Transversity 2011

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

8 leading-twist spin- \boldsymbol{k}_{\perp} dependent distribution functions

Light-Front Wavefunctions $\Psi_{n}\left(x_{i}, k_{\perp i}, \lambda_{i}\right)$

Hadron Eigenstates of QCD Hamiltonian!

Wigner distributions
$\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$

$$
\operatorname{GTMD}\left(x, \vec{k}_{\perp}, \Delta\right)
$$

$$
\rightarrow \Delta=0
$$

$$
\rightarrow-\int \mathrm{d} x
$$

$$
\cdots \rightarrow \mathrm{d}^{2} k_{\perp}
$$

Transverse charge
densities $\left(\vec{b}_{\perp}\right)$
Bacchetta
Impact-parameter distributions $\left(x, \vec{b}_{\perp}\right)$

Transverse charge densities $\left(\vec{b}_{\perp}\right)$

* C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) C

Complete picture @ $\xi=0$

Momentum space $\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp}$ Position space $\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}

A hadron state of momentum $P^{+}=P^{0}+P^{3}$ can at fixed $x^{+}=x^{0}+x^{3}$ be expanded in terms its quark and gluon Fock states as

$$
\begin{aligned}
\left|P^{+}, \boldsymbol{P}_{\perp}, \lambda\right\rangle_{x^{+}=0}= & \sum_{n, \lambda_{i}} \prod_{i=1}^{n}\left[\int_{0}^{1} \frac{d x_{i}}{\sqrt{x_{i}}} \int \frac{d^{2} \boldsymbol{k}_{i}}{16 \pi^{3}}\right] 16 \pi^{3} \delta\left(1-\sum_{i} x_{i}\right) \delta^{(2)}\left(\sum_{i} \boldsymbol{k}_{i}\right) \\
& \times \psi_{n}\left(x_{i}, \boldsymbol{k}_{i}, \lambda_{i}\right)\left|n ; x_{i} P^{+}, x_{i} \boldsymbol{P}_{\perp}+\boldsymbol{k}_{i}, \lambda_{i}\right\rangle_{x^{+}=0}
\end{aligned}
$$

The LF wave functions $\psi_{n}\left(x_{i}, \boldsymbol{k}_{i}, \lambda_{i}\right)$ are independent of P^{+}, P_{\perp}. Hadrons can be (trivially) boosted.

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$$
x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Dírect connection to QCD Lagrangian!
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

Hadron Distribution Amplitudes

$$
\begin{gathered}
\phi_{M}(x, Q)=\int^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right) \\
\sum_{i} x_{i}=1 \\
\text { Fixed } \tau=t+z / c
\end{gathered}
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE

Lepage, sjb Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

- Conformal Invariance

Braun, Gardi

- Compute from valence light-front wavefunction in lightcone gauge

Transversity 2011

A Unified Description of Hadron Structure

The probability interpretation of PDF's is expressed in terms of LF wave functions:

$$
\begin{array}{r}
f_{\mathrm{q} / N}(x)=\sum_{n, \lambda_{i}, k} \prod_{i=1}^{n}\left[\int \frac{d x_{i} d^{2} \boldsymbol{k}_{i}}{16 \pi^{3}}\right] 16 \pi^{3} \delta\left(1-\sum_{i} x_{i}\right) \delta^{(2)}\left(\sum_{i} \boldsymbol{k}_{i}\right) \\
\times \delta\left(x-x_{k}\right)\left|\psi_{n}\left(x_{i}, \boldsymbol{k}_{i}, \lambda_{i}\right)\right|^{2}
\end{array}
$$

Note: 1. Parton distributions factorize at leading twist $\left(Q^{2} \rightarrow \infty\right)$.
2. The above expression is approximate, since rescattering of the struck parton (the Wilson line) is neglected.

Díffractive DIS Shadowing
Hoyer

QCD constraints on the shape of polarized quark and gluon distributions ${ }^{\text {a }}$

Stanley J. Brodsky ${ }^{\text {a }}$, Matthias Burkardt ${ }^{\text {b,1 }}$, Ivan Schmidt ${ }^{\text {c }}$
${ }^{\text {a }}$ Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
${ }^{\mathrm{b}}$ Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{\text {c }}$ Universidad Federico Santa María, Casilla 110-V, Valparaiso, Chile

The limiting power-law behavior at $x \rightarrow 1$ of the helicity-dependent distribution derived from the minimally connected graphs is

$$
G_{\mathrm{q} / \mathrm{H}} \sim(1-x)^{p},
$$

where

$$
p=2 n-1+2 \Delta S_{z} .
$$

Transversity 2011
Light-Front Holography and
Proton Transversity

8 leading-twist spin- \boldsymbol{k}_{\perp} dependent distribution functions

GPDs \& Deeply Virtual Exclusive Processes
 - New Insight into Nucleon Structure

Deeply Virtual Compton Scattering (DVCS)

ξ-longitudinal momentum transfer

$$
\begin{aligned}
& \sqrt{-\dagger} \text { - Fourier conjugate } \\
& \text { to transverse impact } \\
& \text { parameter }
\end{aligned}
$$

$H(x, \xi, t), E(x, \xi, t), . . \mid " G e n e r a l i z e d ~ P a r t o n ~ D i s t r i b u t i o n s " ~$

- Generalized Parton Distributions in gauge/gravity duals
[Vega, Schmidt, Gutsche and Lyubovitskij, Phys.Rev. D83 (2011) 036001]
[Nishio and Watari, arXiv:1105.290]

Light-Front Wave Function Overlap Representation

DVCS/GPD

Diehl, Hwang, sjb, NPB596, 200 I
See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region

ERBL region

DGLAP region

Bakker \& JI
Lorce
Transversity 2011

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

$$
\begin{array}{r}
\frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
\\
\times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{array}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{ll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
\end{array} \quad \text { for the struck quark }, ~
$$

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \quad \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)

$$
\begin{aligned}
& \int_{d x}^{1} d x\left[H^{q}(x, \xi, t)\right]=F_{l}(t) \text { Dirac f.f. } \\
& \int_{-1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t) \text { Pauli f.f. } \\
& \int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)
\end{aligned}
$$

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

Close, Gunion, sjb (1972, 1973)

Features of DVCS

- Imaginary part constrained by unitarity: DIS!
- Reggeon Exchange determined by small x DIS
- Phase from C=+ Reggeon Signature Factor
- J=0 Fixed Pole
- Interference with Bethe-Heitler

Origin of Regge Behavior of
Deep Inelastic Structure Functions

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\hat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Landshoff,
Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Polkinghorne, Short
Close, Gunion, sjb
Schmidt, Yang, Lu,
Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Light-Front Holography and Proton Transversity

Deeply Virtual Compton Scattering

$$
\gamma^{*} p \rightarrow \gamma p
$$

Hard Reggeon Domain

$$
s \gg-t, Q^{2} \gg \Lambda_{Q C D}^{2}
$$

p

$$
T\left(\gamma^{*}(q) p \rightarrow \gamma(k)+p\right) \sim \epsilon \cdot \epsilon^{\prime} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t)
$$

$$
\alpha_{R}(t) \rightarrow 0 \quad \text { Reflects elementary coupling of two photons to quarks }
$$

$$
\beta_{R}(t) \sim \frac{1}{t^{2}} \quad \frac{d \sigma}{d t} \sim \frac{1}{s^{2}} \frac{1}{t^{4}} \sim \frac{1}{s^{6}} \text { at fixed } \frac{Q^{2}}{s}, \frac{t}{s_{4} 8}
$$

$J=0$ Fixed Pole Contribution to DVCS

- J=o fixed pole -- direct test of QCD locality -- from seagull or instantaneous contribution to Feynman propagator

Real amplitude, independent of Q^{2} at fixed t

$J=0$ Fixed pole in real and virtual Compton scattering

Effective two-photon contact term
Seagull for scalar quarks
Real phase

$$
M=s^{0} \sum e_{q}^{2} F_{q}(t)
$$

Independent of Q^{2} at fixed t
$<\mathrm{I} / \mathrm{x}>$ Moment: Related to Feynman-Hellman Theorem
Fundamental test of local gauge theory
Q^{2}-independent contribution to Real DVCS amplitude

$$
s^{2} \frac{d \sigma}{d t}\left(\gamma^{*} p \rightarrow \gamma p\right)=F^{2}(t)
$$

Transversity 2011

Regge domain

$$
T\left(\gamma^{*} p \rightarrow \pi^{+} n\right) \sim \epsilon \cdot p_{i} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t) \quad s \gg-t, Q^{2}
$$

$$
\alpha_{R}(t) \rightarrow 0 \text { at } t \rightarrow-\infty \quad \text {-I † }
$$

$$
\beta_{R}(t) \sim \frac{1}{t^{2}}
$$

$$
\frac{d \sigma}{d t}\left(\gamma^{*} p \rightarrow \gamma p\right) \rightarrow \frac{1}{s^{2}} \beta_{R}^{2}(t) \sim \frac{1}{s^{2} t^{4}} \sim \frac{1}{s^{6}} \text { at fixed } \frac{t}{s}, \frac{Q^{2}}{s}
$$

Exclusive Electroproduction

$$
e p \rightarrow e^{\prime} \pi^{+} n
$$

Hard Reggeon Domain

$s \gg-t, Q^{2} \gg \Lambda_{Q C D}^{2}$
n
$T\left(\gamma^{*} p \rightarrow \pi^{+} n\right) \sim \epsilon \cdot p_{i} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t)$
$\alpha_{R}(t) \longrightarrow-1 \quad$ Reflects elementary exchange of quarks in t-channel

$$
\beta_{R}(t) \sim \frac{1}{t^{2}} \quad \frac{d \sigma}{d t} \sim \frac{1}{s^{7}} \text { at fixed } \frac{Q^{2}}{s}, \frac{t}{s}
$$

Regge domain

$$
T\left(\gamma^{*} p \rightarrow \pi^{+} n\right) \sim \epsilon \cdot p_{i} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t) \quad s \gg-t, Q^{2}
$$

$$
\begin{aligned}
& \alpha_{R}(t) \rightarrow-1 \\
& \frac{d \sigma}{d t} \sim \frac{1}{s^{3}} \frac{1}{\alpha_{R}(t) \rightarrow-1 \text { at } t \rightarrow-\infty} \begin{array}{c}
\alpha_{R}(t) \\
\text { Reflects elementary exchange } \\
\text { of quarks int-cbannel }
\end{array} \\
& \quad \beta_{R}(t) \sim \frac{1}{s^{2}} \text { at fixed } \frac{Q^{2}}{s}, \frac{t}{s}\left(\gamma^{*} p \rightarrow \pi^{+} n\right) \rightarrow \frac{1}{s^{3}} \beta_{R}^{2}(t)
\end{aligned}
$$

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z / c
$$

Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eigenstate -- independent of τ

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}

Dírac'sAmazing Idea:
The Front Form

Evolve in ordinary time

Instant Form

Evolve in light-front time!

 $\pi \tau=t+z / c$Front Form

Light-Front Holography and Proton Transversity

"Working with a front is a process that is unfamiliar to physicists.
But still I feel that the mathematical simplification that it introduces is allimportant.

I consider the method to be promising and have recently been making an extensive study of it.

It offers new opportunities, while the familiar instant form seems to be played out " P.A.M. Dirac (1977)

$$
\left|p, S_{z}>=\sum \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

$$
\text { sum over states with } n=3,4, \ldots \text { constituents }
$$

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $c(x), b(x)$ at high x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

\qquad

Heisenberg Matrix
Formulation

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{gathered}
$$

$H_{L F}^{i n t}$: Matrix in Fock Space

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

Eigenvalues and Eigensolutions give Hadron
 Spectrum and Light-Front wavefunctions!

LIGHT-FRONT SCHRODINGER EQUATION

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} g / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\langle q \bar{q} q| V|q \bar{q}\rangle\rangle & \langle q \bar{q} q| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} g / \pi} \\
\vdots
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{+}=0 \\
& \text { G.P. Lepage, sjb }
\end{aligned}
$$

Transversity 2011

Light-Front Holography and Proton Transversity

Light－Front QCD

Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

	n	Sector	$\begin{gathered} 1 \\ \mathrm{q} \overline{\bar{q}} \end{gathered}$	$\begin{aligned} & 2 \\ & \mathrm{gg} \end{aligned}$	$\stackrel{3}{q}{ }_{q}$	$\begin{gathered} 4 \\ q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 5 \\ g g g \end{gathered}$	$\begin{gathered} 6 \\ q \bar{q} g g \end{gathered}$	$\begin{gathered} 7 \\ q \bar{q} q \bar{q} 9 \end{gathered}$	$\begin{gathered} 8 \\ q \bar{q} q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{gggg} \end{gathered}$	$\begin{gathered} 10 \\ q \bar{q} g g \mathrm{~g} \end{gathered}$	$\begin{gathered} 11 \\ q \bar{q} 9 \bar{q} g g \end{gathered}$	$\begin{gathered} 12 \\ q \bar{q} q \bar{q} q \bar{q} \bar{q} \end{gathered}$	$\left\lvert\, \begin{gathered} 13 \\ q \bar{q} q \bar{q} q \bar{q} q \bar{q} \end{gathered}\right.$
${ }^{2} \underbrace{\mathrm{k}, \lambda}$	1	qā	－	Im	$-k$	\％	－	\cdots	－	－	－	－	－	－	－
	2	g9	L	S	m	．	men	tm	－	－	新	－	－	－	－
（a）		qव̄ 9	－	\geqslant	－	m	－	mus	\％	－	．	5	－	－	－
		वव̄ वप̆	3	．	\geqslant		．	－	$-k$	意	－		7	－	
		g9g	．	3mm	－	．	5	\cdots	－	．	mu	t		－	
Mru		qāgg	3	$3{ }^{3}$	3mm	E	\geqslant	F－	m	－	$-m$	$-k_{2}$	\％	－	
$\overline{\mathrm{k}}, \lambda^{\wedge} \quad \mathrm{p}, \mathrm{s}$ （b）		qव̄qव̄̆	．	．	3	5－	．	\％		m	－m	－	－k	行	
		पव̄ व̄̆qप̄	－	－		3	．		خ		．		－	－k	5
		gg gg	－	3	－	．	3m	F－	．	．	家	m		－	．
		qāggg	－		3	－	$3{ }^{3}$	－	I－		\geq	T－	\cdots		－
$\overrightarrow{\overline{\mathrm{k}}, \sigma^{\prime}} \overrightarrow{k, \sigma}$		q̄̆ व̄̆q9	－	－		每		3	－	m^{2}		\％	ITY	m	－
（c）		१व̄qव̄qव̄ 9	－	－	－	．			$\frac{3}{3}$	－			\％	If	\cdots
			－	－	－					3	－			\geq	

Transversity 2011

Light－Front Holography and
Proton Transversity

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P+}
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Dírect connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC 63

QCD and the LF Hadron Wavefunctions

AdS/QCD

Light-Front Holography LF Schrodinger Eqn

Initial and Final State Rescattering DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Heavy Quark Fock States Intrinsic Charm

Coordinate space representation

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}
$$

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n-I orbital angular momenta

Nonzero Anomatous Moment $->$ Nonzero orbital angular momentum

Transversity 2011
Light-Front Holography and Proton Transversity 65

Special Features of LF Spin

- LF Helicity and chirality refer to z direction, not the particle's 3-momentum P
- LF spinors are eigenstates of $S^{z}= \pm \frac{1}{2}$
- Gluon polarization vectors are eigenstates

$$
\begin{aligned}
& \text { with } \quad S^{z}= \pm 1 \\
& \epsilon^{\mu}=\left(\epsilon^{+}, \epsilon^{-}, \vec{\epsilon}_{\perp}\right)=\left(0,2 \frac{\vec{\epsilon}_{\perp} \cdot \vec{k}_{\perp}}{k^{+}}, \vec{\epsilon}_{\perp}\right) \\
& \vec{\epsilon}_{\perp}^{ \pm}=\mp \frac{1}{\sqrt{2}}(\hat{x} \pm i \hat{y}) \quad k^{\mu} \epsilon_{\mu}=0
\end{aligned}
$$

G. P. Lepage and sjb

$$
\begin{aligned}
& \left.\begin{array}{l}
u_{\uparrow}(p) \\
u_{\downarrow}(p)
\end{array}\right\}=\frac{1}{\left(p^{+}\right)^{1 / 2}}\left(p^{+}+\beta m+\alpha_{\perp} \cdot p_{\perp}\right) \times\left\{\begin{array}{l}
\chi(\uparrow) \\
\chi(\downarrow),
\end{array}\right. \\
& \left.\begin{array}{l}
v_{\uparrow}(p) \\
v_{\perp}(p)
\end{array}\right\}=\frac{1}{\left(p^{+}\right)^{1 / 2}}\left(p^{+}-\beta m+\vec{\alpha}_{\perp} \cdot \vec{p}_{\perp}\right) \times\left\{\begin{array}{l}
\chi(\downarrow) \\
\chi(\uparrow)
\end{array}\right. \\
& \cdot \chi(\uparrow)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \chi(\downarrow)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), \quad \begin{array}{l}
\text { Melosh not } \\
\text { needed }
\end{array}
\end{aligned}
$$

Angular Momentum on the Light-Front

Transversity 2011

Angular Momentum on the Light-Front

Triple-Gluon Coupling

$$
g z_{1} \vec{\epsilon}_{\perp}^{+} \cdot \vec{v}_{23}=g z_{1} \vec{\epsilon}_{\perp}^{+} \cdot\left(\frac{\vec{k}_{\perp 2}}{z_{2}}-\frac{\vec{k}_{\perp 3}}{z_{3}}\right)
$$

$$
g z_{1} \vec{\epsilon}_{\perp}^{+} \cdot \vec{v}_{23}=g \vec{\epsilon}_{\perp}^{+} \cdot \frac{\vec{\ell}_{\perp}}{x(1-x)}
$$

$$
\xrightarrow[L^{z}=-1]{+1} \bullet \longrightarrow+1
$$

$$
\langle i j\rangle=-\sqrt{2 z_{i} z_{j}} \vec{\epsilon}_{\perp}^{+} \cdot\left(\frac{\vec{k}_{\perp i}}{z_{i}}-\frac{\vec{k}_{\perp j}}{z_{j}}\right)
$$

Light-Front Holography and Proton Transversity 69

Stan Brodsky, SLAC
G. de Teramond and sjb

$$
\begin{aligned}
& M(-1 \rightarrow-1+1+1+1 \cdots+1) \propto g^{n-2}=0 \\
& J^{z}=-1=\sum_{i=1}^{n} S_{i}^{z}+L^{z}=(n-2)+L^{z} \\
& +\cdots L^{z}=-(n-1)
\end{aligned}
$$

Vanishes Because Maximum $\quad\left|L^{z}\right|=n-2$

Light Front Analog of MHV rules

Drell \&Yan, West

$$
\text { spectators } \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}
$$

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \quad \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -->
Nonzero orbital quark angular momentum

Light-Front Holography and
Proton Transversity

Connection between the Sivers function and the anomalous magnetic moment

Zhun Lu* and Ivan Schmidt ${ }^{\dagger}$
 Departamento de Física, Universidad Técnica Federico, Santa María, Casilla 110-V, Valparaíso, Chile and Center of Subatomic Physics, Valparaíso, Chile
 (Received 8 January 2007; revised manuscript received 14 February 2007; published 9 April 2007)

The same light-front wave functions of the proton are involved in both the anomalous magnetic moment of the nucleon and the Sivers function. Using the diquark model, we derive a simple relation between the anomalous magnetic moment and the Sivers function, which should hold in general with good approximation. This relation can be used to provide constraints on the Sivers single spin asymmetries from the data on anomalous magnetic moments. Moreover, the relation can be viewed as a direct connection between the quark orbital angular momentum and the Sivers function.

$$
\frac{A_{U T}^{\mathrm{Siv}}\left(\pi^{+}\right)}{A_{U T}^{\mathrm{Siv}}\left(\pi^{-}\right)} \approx \frac{2 e_{u}^{2} f_{1 T}^{\perp u} D_{1}^{\pi^{+} / u}}{e_{d}^{2} f_{1 T}^{\perp d} D_{1}^{\pi^{-} / d}} \approx \frac{2 e_{u}^{2} \kappa_{u}}{e_{d}^{2} \kappa_{d}}=-3.3
$$

$$
\begin{aligned}
\frac{A_{U T}^{\mathrm{Siv}}\left(\pi^{0}\right)}{A_{U T}^{\mathrm{Siv}}\left(\pi^{-}\right)} & \approx \frac{2 e_{u}^{2} f_{1 T}^{\perp u} D_{1}^{\pi^{0} / u}+e_{d}^{2} f_{1 T}^{\perp d} D_{1}^{\pi^{0} / d}}{e_{d}^{2} f_{1 T}^{\perp d} D_{1}^{\pi^{-} / d}} \\
& \approx \frac{2 e_{u}^{2} \kappa_{u}+e_{d}^{2} \kappa_{d}}{2 e_{d}^{2} \kappa_{d}}=-1.15
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{p}=(2)(2 / 3) \kappa_{u / p}+(-1 / 3) \kappa_{d / p} \\
& \kappa_{n}=(2)(-1 / 3) \kappa_{u / p}+(2 / 3) \kappa_{d / p}
\end{aligned}
$$

$$
\frac{A_{U T}^{\mathrm{Siv}}\left(K^{+}\right)}{A_{U T}^{\mathrm{Siv}}\left(K^{0}\right)} \approx \frac{2 e_{u}^{2} f_{1 T}^{\perp u} D_{1}^{K^{+} / u}}{e_{d}^{2} f_{1 T}^{\perp d} D_{1}^{K^{0} / d}} \approx \frac{4 e_{u}^{2} \kappa_{u}}{e_{d}^{2} \kappa_{d}}=-6.6
$$

Using measured form factors, find the

Paul Hoyer Losjin 2 September 2011

Light-Front Holography and Proton Transversity

A Transversity Theorem!

Anomalous gravitomagnetic moment $B(0)$

Terayev, Okun: $\mathcal{B}(0)$ Must vanish because of
Equivalence Theorem

Hwang, Schmidt, sjb;
Donoghue,Holstein

Transversity 2011

$$
B(0)=0
$$

Each Fock State
LF formalism essential

Light-Front Holography and Proton Transversity Stan Brodsky, SLAC

Transversity 2011

Wick Theorem

Feynman diagram = single front-form time-ordered diagram!

Also $P \rightarrow \infty$ observer frame (Weinberg)

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

- Need to boost proton wavefunction from p to $p+q$: Extremely complicated dynamical problem; particle number changes
- Need to couple to all currents arising from vacuum
- Each time-ordered contribution is framedependent
- Divide by disconnected vacuum diagrams
- Current matrix elements of hadron include interactions with vacuum-induced currents arising from infinitely-complex vacuum
- Pair creation from vacuum occurs at any time before probe acts -- acausal
- Knowledge of hadron wavefunction insufficient to compute current matrix elements

- Requires dynamical boost of hadron wavefunction -unknown except at weak binding
Hoyer, Vantinnen, Primack, sjb
- Complex vacuum even for QED
- None of these complications occur for quantization at fixed LF time (front form)

Transversity 2011

Key QCD Experiment

Measure single-spin asymmetry A_{N} in Drell-Yan reactions

Leading-twist Bjorken-scaling A_{N} from S, P-wave initial-state gluonic interactions

Predict: $A_{N}(D Y)=-A_{N}(D I S)$ Opposite in sign!

$$
\bar{p} p_{\uparrow} \rightarrow \ell^{+} \ell^{-} X
$$

$\vec{S} \cdot \vec{q} \times \vec{p}$ correlation

Drell-Yan angular distribution

Unpolarized DY

Lam - Tung SR : $1-\lambda=2 \nu$
NLO pQCD : $\lambda \approx 1 \mu \approx 0 \nu \approx 0$

- Experimentally, a violation of the Lam-Tung sum rule is observed by sizeable $\cos 2 \Phi$ moments
- Several model explanations
- higher twist
- spin correlation due to non-triva QCD vacuum
- Non-zero Boer Mulders function
$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$

Stan Brodsky, SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI
Product of Boer -
Mulders Functions

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

Transversity 2011

Light-Front Holography and Proton Transversity 8I

Measurement of Angular Distributions of Drell-Yan Dimuons in $p+d$ Interaction at $800 \mathrm{GeV} / \mathrm{c}$
(FNAL E866/NuSea Collaboration)

Parameter ν vs. p_{T} in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_{C}=2.4 \mathrm{GeV} / \mathrm{c}^{2}$ are also shown.

Transversity 2011
Light-Front Holography and Proton Transversity

Double Initial-State Interactions generate anomalous $\cos 2 \phi$

Boer, Hwang, sjb Drell-Yan planar correlations

$$
\begin{array}{r}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
\quad \text { PQCD Factorization (Lam Tung): } 1-\lambda-2 \nu=0
\end{array}
$$

Violates Lam-Tung relation!

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \mathrm{NA10}
$$

Model: Boer,
Transversity 2011

Light-Front Holography and Proton Transversity 83

Anomatous effect from Double ISI in Massive Lepton Production

Boer, Hwang, sjb
$\cos 2 \phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!

- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semi-inclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

$\cos 2 \phi$ correlation for quarkonium production at leading twist from double ISI
Enhanced by gluon color charge

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
e-Print: arXiv:0705.2141 [hep-ph]

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

Problem for factorization when both ISI and FSI occur

Important Corrections from Initial and Final State Corrections

Sívers E Collins Odd-T Spin Effects, Co-planarity Correlations

Light-Front Holography and
Proton Transversity

Observation

- Crucial point: Sivers function in inclusive single particle production contains both ISI and FSI
- Color factors entirely due to color structure of the partonic subprocess
- consider channel $q q^{\prime} \rightarrow q q^{\prime}$

(a)

(c)

Gamberg

- In a large fraction ($\sim 10-15 \%$) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet $\rightarrow \mathrm{a}$ pomeron??

Diffractive Deep Inelastic Lepton-Proton Scattering

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \sigma_{N C}^{d i f f}}{\mathrm{~d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}} & \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right) \\
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right) & =f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)
\end{aligned}
$$

extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$

QCD Mechanism for Rapidity Gaps

Transversity 2011

Final State Interactions in QCD

Feynman Gauge
Light-Cone Gauge
Result is Gauge Independent

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron and DDIS
Need Imaginary Phase to Generate T-
Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target!

Anti-Shadowing

Transversity 2011

Light-Front Holography and Proton Transversity

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS

Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

Transversity 2011

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.
Observed HERA DDIS produces nuclear shadowing
Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron
Need Imaginary Pbase to Generate T-
Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target Antishadowing (Reggeon exchange) is not universat!

Schmidt, Yang, sjb
Transversity 2011

Light-Front Holography and Proton Transversity

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

Reggeon
If the scattering on nucleon N_{1} is via pomoron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\longrightarrow Anti- Shadowing of the DIS nuclear structure functions.

Schmidt, Yang, sjb
Transversity 2011

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Criticaltest: Tagged Drell-Yan

Predicted nuclear shadowing and and antishadowing at

$$
Q^{2}=1 \mathrm{GeV}^{2}
$$

S. J. Brodsky, I. Schmidt and J. J. Yang,
"Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,'
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Transversity 2011

Light-Front Holography and Proton Transversity

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Transversity 2011

Light-Front Holography and Proton Transversity 103

Stan Brodsky, SLAC

Transversity 2011

Light-Front Holography and
Proton Transversity 104

Shadowing and Antishadowing of DIS

Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

Modifies NuTeV extraction of
 $$
\sin ^{2} \theta_{W}
$$

Test in flavor-tagged
lepton-nucleus collisions

Shadowing and Antishadowing in Lepton-Nucleus Scattering

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference Ivan Schmidt of Two-Step and One-Step Processes! Reggeon and Odderon Exchange

Hung Jung Lu
sjb

- Antishadowing is Not Universal!

Electromagnetic and weak currents: different nuclear effects !

Can explain NuTeV result!

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Transversity 2011

Light-Front Holography and
Proton Transversity 107

Stan Brodsky, SLAC

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Formation of RelativisticAntv-Hydrogen

Measured at CERN-LEAR and FermiLab

Munger, Schmidt,
sjb

$$
\begin{aligned}
b_{\perp} & \leq \frac{1}{m_{r e d} \alpha} \\
y_{\bar{p}} & \simeq y_{e^{+}}
\end{aligned}
$$

Coalescence of off-shell co-moving positron and antiproton
Wavefunction maximal at small impact separation and equal rapidity "Hadronization" at the Amplitude Level

Transversity 2011

Light-Front Holography and
Proton Transversity

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Transversity 2011

Hadronization at the Amplitude Level

Baryon Production

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Construct helicity amplitude using Light-Front
Perturbation theory; coalesce quarks via LFWFs

Features of LF T-Matrix Formalism "Event Amplitude Generator"
 Hadronization at the Amplitude Level!

- Same principle as antihydrogen production: off-shell coalescence
- coalescence to hadron favored at equal rapidity, small transverse momenta
- leading heavy hadron production: D and B mesons produced at large z
- hadron helicity conservation if hadron LFWF has $L^{x}=0$
- Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin
- Color Transparency
- Lensing

Transversity 2011
Light-Front Holography and Proton Transversity

$$
P^{+}, \vec{P}_{\perp}
$$

$$
P^{+}=P^{0}+P^{z}
$$

Stan Brodsky, SLAC

Crucial Test of Leading -Twist QCD:
 Scaling at fixed x_{T}

$$
E \frac{d \sigma}{d^{3} p}(p N \rightarrow \pi X)=\frac{F\left(x_{T}, \theta_{C M}\right)}{p_{T}^{n e f f}} \quad x_{T}=\frac{2 p_{T}}{\sqrt{s}}
$$

Parton model: $\mathbf{n}_{\text {eff }}=4$

As fundamental as Bjorken scaling in DIS

scaling law: $\mathbf{n}_{\text {eff }}=\mathbf{2} \mathbf{n a c t i v e}^{-4}$

$p p \rightarrow \gamma X$

$$
\sqrt{s}^{n} E \frac{d \sigma}{d^{3} p}(p p \rightarrow \gamma X) \text { at fixed } x_{T}
$$

$\mathbf{x}_{\mathbf{T}}$-scaling of direct photon production: consistent with PQCD

$$
E \frac{d \sigma}{d^{3} p}(p p \rightarrow H X)=\frac{F\left(x_{T}, \theta_{C M}=\pi / 2\right)}{p_{T}^{n_{\text {eff }}}}
$$

Transversity 2011

Light-Front Holography and
Proton Transversity 116

RHIC/LHC predictions

PHENIX results

Scaling exponents from $\sqrt{s}=500 \mathrm{GeV}$ preliminary data
[A. Bezilevsky, APS Meeting

- Magnitude of Δ and its x_{\perp}-dependence consistent with predictions

Inclusive invariant cross sections, scaled by $\sqrt{s}^{5.1}$

Direct Higher Twist Processes

- QCD predicts that hadrons can interact directly within hard subprocesses
- Exclusive and quasi-exclusive reactions
- Form factors, deeply virtual meson scattering
- Controlled by the hadron distribution amplitude

$$
\phi_{H}\left(x_{i}, Q\right)
$$

- Satisfies ERBL evolution

Dírect Contribution to Hadron Production

No Fragmentation Function
S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

Particle ratio changes with centrality!

Protons less absorbed in nuclear collisions than pions because of dominant color transparent higher twist process
\leftarrow Central

- ■ Au+Au 0-10\%
$\triangle \triangle A u+A u$ 20-30\%
- $A u+A u$ 60-92\%
$\star \mathrm{p}+\mathrm{p}, \sqrt{\mathrm{s}}=53 \mathrm{GeV}$, ISR
---- $\mathbf{e}^{+} \mathbf{e}^{-}$, gluon jets, DELPHI
...... $\mathbf{e}^{+} \mathbf{e}^{-}$, quark jets, DELPHI
\leftarrow Peripheral
Tannenbaum:
"Baryon Anomaly"

Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Baryon can be made directly within hard subprocess!

Transversity 2011

Light-Front Holography and Proton Transversity

Power-law exponent $n\left(x_{T}\right)$ for π^{0} and h spectra in central and peripheral Au+Au collisions at

$$
\sqrt{s_{N N}}=130 \text { and } 200 \mathrm{GeV}
$$

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].
b+includes protons

Proton power changes with centrality!
Proton production dominated by
color-transparent direct high $n_{\text {eff }}$ subprocesses
Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

A_{N} in $p^{\uparrow} p \rightarrow \pi X$, the big challenge

$$
A_{N} \equiv \frac{d \sigma^{\uparrow}-d \sigma^{\uparrow}}{d \sigma^{\uparrow}+d \sigma^{\uparrow}}
$$

Contributions from Dúrect Processes?

Transversity 2011

$\pi^{-} N \rightarrow \mu^{+} \mu^{-} X$ at $80 \mathrm{GeV} / c$

$\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\rho \sin 2 \theta \cos \phi+\omega \sin ^{2} \theta \cos 2 \phi$.
$\frac{d^{2} \sigma}{d x_{\pi} d \cos \theta} \propto x_{\pi}\left(\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4}{9} \frac{\left\langle k_{T}^{2}\right\rangle}{M^{2}} \sin ^{2} \theta\right)$

$$
\begin{gathered}
\left\langle k_{T}^{2}\right\rangle=0.62 \pm 0.16 \mathrm{GeV}^{2} / \mathrm{c}^{2} \\
Q^{2}=M^{2}
\end{gathered}
$$

Dramatic change in angular distribution at large x

$$
x_{\pi}=x_{\bar{q}}
$$

Example of a higher-twist direct subprocess

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

Transversity 2011
Light-Front Holography and Proton Transversity

$$
\pi N \rightarrow \mu^{+} \mu^{-} \mathrm{X} \text { at high } \mathrm{x}_{\mathrm{F}}
$$

In the limit where $\left(1-\mathrm{xF}^{2}\right) \mathrm{Q}^{2}$ is fixed as $\mathrm{Q}^{2} \rightarrow \infty$

Distribution amplitude from AdS/CFT

Entire pion wf contributes to hard process

Similar higher twist terms injet badronization at large z

Transversity 2011

Light-Front Holography and Proton Transversity 126

Berger, sjb
Khoze, Brandenburg, Muller, sjb

$\pi q \rightarrow \gamma^{*} q$

Initial State Interaction

Pion appears directly in subprocess at large x_{F}

All of the pion's momentum is transferred to the lepton pair Lepton Pair is produced longitudinally polarized
Transversity 2011

Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

$\pi^{-} N \rightarrow \mu^{+} \mu^{-} X$ at $80 \mathrm{GeV} / c$

$$
\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\rho \sin 2 \theta \cos \phi+\omega \sin ^{2} \theta \cos 2 \phi
$$

$$
\frac{d^{2} \sigma}{d x_{\pi} d \cos \theta} \propto x_{\pi}\left(\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4}{9} \frac{\left\langle k_{T}^{2}\right\rangle}{M^{2}} \sin ^{2} \theta\right)
$$

$$
\begin{gathered}
\left\langle k_{T}^{2}\right\rangle=0.62 \pm 0.16 \mathrm{GeV}^{2} / \mathrm{c}^{2} \\
Q^{2}=M^{2}
\end{gathered}
$$

Dramatic change in angular distribution at large x_{F}

Example of a higher-twist direct subprocess

Phys.Rev.Lett.55:2649,1985

Light-Front Holography and Proton Transversity

Light-Front Holography and Non-Perturbative QCD

Goal:
Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum
Light-Front Wavefunctions, Running coupling in IR

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond

Central problem for strongly-coupled gauge theories

Transversity 2011
Light-Front Holography and Proton Transversity

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, Color-Confining
- QCD Coupling at all scales
- Hadron Spectroscopy
- Light-Front Wavefunctions
- Form Factors, Hadronic Observables, Constituent Counting Rules
- Transversity
- Insight into QCD Condensates
- Systematically improvable
de Teramond, sjb

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Transversity 2011

Light-Front Holography and Proton Transversity

$$
e^{\Phi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \phi(z)=\mathcal{M}^{2} \phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action Dülaton-Modified $A d S_{5}$

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{aligned}
J(Q, z) & =z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F} & =\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

High Q ${ }^{2}$ from small z $\sim 1 / Q$

```
\[
\operatorname{high} Q^{2}
\]
```

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

Dimensional Quark Counting Rules:
General result from
AdS/CFT and Conformal Invariance
where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.
Transversity 2011
Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Gravitational Form Factor in Ads space

- Hadronic gravitational form-factor in AdS space

$$
A_{\pi}\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} H\left(Q^{2}, z\right)\left|\Phi_{\pi}(z)\right|^{2}
$$

where $H\left(Q^{2}, z\right)=\frac{1}{2} Q^{2} z^{2} K_{2}(z Q)$

- Use integral representation for $H\left(Q^{2}, z\right)$

$$
H\left(Q^{2}, z\right)=2 \int_{0}^{1} x d x J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)
$$

- Write the AdS gravitational form-factor as

$$
A_{\pi}\left(Q^{2}\right)=2 R^{3} \int_{0}^{1} x d x \int \frac{d z}{z^{3}} J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)\left|\Phi_{\pi}(z)\right|^{2}
$$

- Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$
\left|\tilde{\psi}_{q \bar{q} / \pi}(x, \zeta)\right|^{2}=\frac{R^{3}}{2 \pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^{2}}{\zeta^{4}}
$$

Identical to LF Holography obtained from electromagnetic current

$$
\begin{gathered}
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)={\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)}_{(1-x)}
\end{gathered}
$$

Light Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for current matrix elements

$H_{Q E D}$

QED atoms: positronium and muoníum

Coupled Fock states
$\left(H_{0}+H_{\text {int }}\right)|\Psi>=E| \Psi>$
$\left[-\frac{\Delta^{2}}{2 m_{\text {red }}}+V_{\text {eff }}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})$

$$
\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)
$$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

SphericalBasis r, θ, ϕ
Coulomb potentiat

Bohr Spectrum

Semiclassical füst approximation to QED

Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$
\begin{aligned}
\mathcal{M}^{2} & =\int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \frac{\vec{k}_{\perp}^{2}}{x(1-x)}\left|\psi\left(x, \vec{k}_{\perp}\right)\right|^{2}+\text { interactions } \\
& =\int_{0}^{1} \frac{d x}{x(1-x)} \int d^{2} \vec{b}_{\perp} \psi^{*}\left(x, \vec{b}_{\perp}\right)\left(-\vec{\nabla}_{\vec{b}_{\perp \ell}}^{2}\right) \psi\left(x, \vec{b}_{\perp}\right)+\text { interactions. }
\end{aligned}
$$

$\begin{gathered}\text { Change } \\ \text { variables }\end{gathered} \quad(\vec{\zeta}, \varphi), \vec{\zeta}=\sqrt{x(1-x)} \vec{b}_{\perp}: \quad \nabla^{2}=\frac{1}{\zeta} \frac{d}{d \zeta}\left(\zeta \frac{d}{d \zeta}\right)+\frac{1}{\zeta^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}$

$$
\begin{aligned}
\mathcal{M}^{2}= & \int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}} \\
& +\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta) \\
= & \int d \zeta \phi^{*}(\zeta)\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi(\zeta)
\end{aligned}
$$

Light-Front Holography and Proton Transversity

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\text {eff }}^{L F}\right] \psi_{L F}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

Coupled Fock states

Effective two-particle equation

$$
\zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$ Azimuthat Basis ζ, ϕ

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$ potential

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \text { soft wall }
\end{gathered}
$$

G. de Teramond, sib

Transversity 2011

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Soft wall Model

Light-Front Holography and Proton Transversity

140

General-Spin Htadrons

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(3-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

- Upon substitution $z \rightarrow \zeta$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta)
$$

we find the LF wave equation

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

Bosonic Modes and Meson Spectrum

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+J / 2+L / 2) \rightarrow 4 \kappa^{2}(n+L+S / 2) \begin{gathered}
4 \kappa^{2} \text { for } \Delta n=1 \\
4 \kappa^{2} \text { or } \Delta L=1 \\
2 \kappa^{2} \text { for } \Delta S=1
\end{gathered}
$$

$$
\text { Same slope in } n \text { and } L
$$

Rage trajectories for the $\pi(\kappa=0.6 \mathrm{GeV})$ and the $I=1 \rho$-meson and $I=0 \omega$-meson families $(\kappa=0.54 \mathrm{GeV})$

Light-Front Holography and Proton Transversity

Transversity 2011
Light-Front Holography and Proton Transversity

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion $\left(\mathrm{m}_{\mathrm{q}}=\mathrm{O}\right)$
- Regge Trajectories: universal slope in n and L
- Valid for all integer J \& S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize H_{LF} on AdS basis

AdS/QCD Soft Wall Model - Reproduces Linear Regge Trajectories

- Baryons Spectrum in "bottom-up" holographic QCD GdT and Brodsky: hep-th/0409074, hep-th/0501022.

Baryons in Ads/CFT

- Action for massive fermionic modes on AdS_{5} :

From Nick Evans

$$
S[\bar{\Psi}, \Psi]=\int d^{4} x d z \sqrt{g} \bar{\Psi}(x, z)\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z)
$$

- Equation of motion: $\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z)=0$

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+\frac{d}{2} \Gamma_{z}\right)+\mu R\right] \Psi\left(x^{\ell}\right)=0
$$

- Solution $(\mu R=\nu+1 / 2)$

$$
\Psi(z)=C z^{5 / 2}\left[J_{\nu}(z \mathcal{M}) u_{+}+J_{\nu+1}(z \mathcal{M}) u_{-}\right]
$$

- Hadronic mass spectrum determined from IR boundary conditions $\psi_{ \pm}\left(z=1 / \Lambda_{\mathrm{QCD}}\right)=0$

$$
\mathcal{M}^{+}=\beta_{\nu, k} \Lambda_{\mathrm{QCD}}, \quad \mathcal{M}^{-}=\beta_{\nu+1, k} \Lambda_{\mathrm{QCD}}
$$

with scale independent mass ratio

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}, J>\frac{1}{2}$, with all indices along $3+1$ from Ψ by shifting dimensions Transversity 2011
- Action for Dirac field in AdS_{d+1} in presence of dilator background $\varphi(z)$ [Abidin and Carlson (2009)]

$$
S=\int d^{d+1} \sqrt{g} e^{\varphi}(z)\left(i \bar{\Psi} e_{A}^{M} \Gamma^{A} D_{M} \Psi+h . c+\varphi(z) \frac{\downarrow}{\Psi} \Psi-\mu \bar{\Psi} \Psi\right)
$$

- Factor out plane waves along $3+1: \quad \Psi_{P}\left(x^{\mu}, z\right)=e^{-i P \cdot x} \Psi(z)$

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+2 \Gamma_{z}\right)+\mu R+\kappa^{2} z\right] \Psi\left(x^{\ell}\right)=0
$$

- Solution $\left(\nu=\mu R-\frac{1}{2}, \nu=L+1\right)$

$$
\Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} z^{2}\right), \quad \Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} z^{2}\right)
$$

- Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+1)
$$

positive parity

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}, J>\frac{1}{2}$, with all indices along $3+1$ from Ψ by shifting dimensions
- Large $N_{C}: \quad \mathcal{M}^{2}=4 \kappa^{2}\left(N_{C}+n+L-2\right) \quad \Longrightarrow \mathcal{M} \sim \sqrt{N_{C}} \Lambda_{\mathrm{QCD}}$
- We write the Dirac equation

$$
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0
$$

in terms of the matrix-valued operator Π

$$
\nu=L+1
$$

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

and its adjoint Π^{\dagger}, with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}\right) \gamma_{5}
$$

- Solutions to the Dirac equation

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)
$$

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
& \psi_{+}(\zeta)_{n, L}=\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta)_{n, L}=\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \\
& \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

- Δ spectrum identical to Forkel and Klempt, Phys. Lett. B 6 P99, 77 (2009)

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

Same multiplicity of states for mesons and baryons!
\mathcal{M}^{2}

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5 \mathrm{GeV}$

E. Klempt et al.: Δ^{*} resonances, quark models, chiral symmetry and AdS/QCD
H. Forkel, M. Beyer and T. Frederico, JHEP 0707 (2007) 077.
H. Forkel, M. Beyer and T. Frederico, Int. J. Mod. Phys.

E 16 (2007) 2794.

Other Applications of Light-Front Holography

- Light baryon spectrum
- Light meson spectrum
- Nucleon form-factors: space-like region
- Pion form-factors: space and time-like regions
- Gravitational form factors of composite hadrons.
- n-parton holographic mapping

- Heavy flavor mesons

hep-th/0501022
hep-ph/0602252
arXiv:0707.3859
arXiv:0802.0514
arXiv:0804.0452

Transversity 2011

Spacelike pion form factor from AdS/CFT

Data Compilation
Baldini, Kloe and Volmer

- Soft Wall: Harmonic Oscillator Confinement

_ Hard Wall: Truncated Space Confinement
One parameter - set by pion decay constant
de Teramond, sjb
See also: Radyushkin

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

Soft Wall

where $U(a, b, c)$ is the confluent hypergeometric function

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.
Transversity 2011

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Spacelike and Timelike Pion Form Factor

Structure of the space- and time-like pion form factor in light-front holography for a truncation of the pron wave function up to twist four. Triangles are the data compilation from Baldini et al., [42] red squares are JLAB 1 [43] and green squares are JLAB 2. [44]

$$
\left|\pi>=\psi_{\bar{q} q / \pi}\right| \bar{q} q>+\psi_{\bar{q} q \bar{q} q / \pi} \mid q \bar{q} \bar{q} q>
$$

AdS/QCD $\quad \kappa=0.54 \mathrm{GeV}$

$Q^{4} F_{p}^{1}\left(Q^{2}\right)$ in a negative (dashed line, $\kappa=0.3877 \mathrm{GeV}$) and positive dilaton backgrounds (continuous line, $\kappa=0.5484 \mathrm{GeV}$). The data compilation is from Diehl.

- Scaling behavior for large $Q^{2}: \quad Q^{4} F_{1}^{n}\left(Q^{2}\right) \rightarrow$ constant \quad Neutron $\tau=3$

SW model predictions for $\kappa=0.424$ GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Light-Front Holography and Proton Transversity 160

$$
\begin{aligned}
& F\left(Q^{2}\right)=\frac{1}{1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}, \quad N=2, \\
& F\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}, \quad N=3, \\
& F\left(Q^{2}\right)=\frac{\cdots}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{N-2}}^{2}}\right)}, \quad N,
\end{aligned}
$$

Positive Dilaton Background $\exp \left(+\kappa^{2} z^{2}\right)$

$$
\mathcal{M}_{n}^{2}=4 \kappa^{2}\left(n+\frac{1}{2}\right)
$$

$$
F\left(Q^{2}\right) \rightarrow(N-1)!\left[\frac{4 \kappa^{2}}{Q^{2}}\right]^{(N-1)}
$$

$$
Q^{2} \rightarrow \infty
$$

Constituent Counting

Light-Front Holography and Proton Transversity 16I

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1}{ }_{N \rightarrow N^{*}}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Consistent with counting rule, twist 3

$$
F_{1 N \rightarrow N^{\star}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{M_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho^{\prime \prime}}^{2}}\right)}
$$

Nucleon Transition Form Factor

de Teramond, sjb

Light-Front Holography and Proton Transversity 163

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum.
- Massless Pion
- Hadron Eigenstates have LF Fock components of different $L^{\mathbf{x}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}=0>
$$

- Self-Dual Massive Eigenstates: Proton is its own chira
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

Higher Fock States

- Exposed by timelike form factor through dressed current.
- Created by confining interaction

$$
P_{\text {confinement }}^{-} \simeq \kappa^{4} \int d x^{-} d^{2} \vec{x}_{\perp} \frac{\bar{\psi} \gamma^{+} T^{a} \psi}{P^{+}} \frac{1}{\left(\partial / \partial_{\perp}\right)^{4}} \frac{\bar{\psi} \gamma^{+} T^{a} \psi}{P^{+}}
$$

- Similar to $\mathrm{QCD}(\mathrm{I}+\mathrm{I})$ in lcg
- No explicit gluons - quark interchange dominates exlusive reactions

de Teramond, sjb

AdS/QCD and Light-Front Holography

- Hadrons are composites of quark and anti-quark constituents
- Explicit gluons absent!
- Higher Fock states with extra quark/anti-quark pairs created by confining potential
- Dominance of Quark Interchange in Hard Exclusive Reactions
- Short-distance behavior matches twist of interpolating operator at short distance -- guarantees dimensional counting rules --

Comparison of 20 exclusive reactions at large t

C. White,,$^{4, *}$ R. Appel, ${ }^{1,5, \dagger}$ D. S. Barton, ${ }^{1}$ G. Bunce, ${ }^{1}$ A. S. Carroll, ${ }^{1}$ H. Courant, ${ }^{4}$ G. Fang, ${ }^{4, \ddagger}$ S. Gushue, ${ }^{1}$ K. J. Heller, ${ }^{4}$ S. Heppelmann, ${ }^{2}$ K. Johns, ${ }^{4, \S}$ M. Kmit, ${ }^{1, \|}$ D. I. Lowenstein, ${ }^{1}$ X. Ma, ${ }^{3}$ Y. I. Makdisi, ${ }^{1}$ M. L. Marshak, ${ }^{4}$ J. J. Russell, ${ }^{3}$ and M. Shupe ${ }^{4, \S}$
${ }^{1}$ Brookhaven National Laboratory, Upton, New York 11973
${ }^{2}$ Pennsylvania State University, University Park, Pennsylvania 16802
${ }^{3}$ University of Massachusetts Dartmouth, N. Dartmouth, Massachusetts 02747
${ }^{4}$ University of Minnesota, Minneapolis, Minnesota 55455
${ }^{5}$ New York University, New York, New York 10003

(Received 28 May 1993)
We report a study of 20 exclusive reactions measured at the AGS at $5.9 \mathrm{GeV} / c$ incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadronhadron scattering at large angle. At $9.9 \mathrm{GeV} / c$ an upper limit had been set for the ratio of cross sections for $(\bar{p} p \rightarrow \bar{p} p) /(p p \rightarrow p p)$ at 90° c.m., with the ratio less than 4%. The present experiment was performed at lower energy to gain sensitivity, but was still within the fixed angle scaling region. A ratio $R(\bar{p} p / p p) \approx 1 / 40$ was measured at $5.9 \mathrm{GeV} / c, 90^{\circ}$ c.m. in comparison to a ratio near 1.7 for small angle scattering. In addition, many other reactions were measured, often for the first time at 90° c.m. in the scaling region, using beams of $\pi^{ \pm}, K^{ \pm}, p$, and \bar{p} on a hydrogen target. There are similar large differences in cross sections for other reactions: $R\left(K^{-} p \rightarrow \pi^{+} \Sigma^{-} / K^{-} p \rightarrow \pi^{-} \Sigma^{+}\right)$ $\approx 1 / 12$, for example. The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.

We report a study of 20 exclusive reactions measured at the AGS at $5.9 \mathrm{GeV} / c$ incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadronhadron scattering at large angle.

The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.

Transversity 2011
Light-Front Holography and
Proton Transversity

Differential cross sections for the 16 mesonbaryon and 4 baryon-baryon measured in this experiment. The cross sections are at, or extrapolated from, near 90° center of mass. The four quark flow diagrams which contribute to each of the 20 reactions are given in the chart at the top of the figure. Those reactions which have a contribution from quark interchange(INT) are given by the solid black points. As can be seen, these are the largest cross sections.

Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

$$
\begin{aligned}
\int d^{4} x \int d z \epsilon^{L M N P Q} A_{L} \partial_{M} & A_{N} \partial_{P} A_{Q} \\
& \sim(2 \pi)^{4} \delta^{(4)}\left(p_{\pi}+q-k\right) F_{\pi \gamma}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(q)\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}
\end{aligned}
$$

- Take $A_{z} \propto \Phi_{\pi}(z) / z, \quad \Phi_{\pi}(z)=\sqrt{2 P_{q \bar{q}}} \kappa z^{2} e^{-\kappa^{2} z^{2} / 2}, \quad\left\langle\Phi_{\pi} \mid \Phi_{\pi}\right\rangle=P_{q \bar{q}}$
- Find $\quad\left(\phi(x)=\sqrt{3} f_{\pi} x(1-x), \quad f_{\pi}=\sqrt{P_{q \bar{q}}} \kappa / \sqrt{2} \pi\right)$

$$
Q^{2} F_{\pi \gamma}\left(Q^{2}\right)=\frac{4}{\sqrt{3}} \int_{0}^{1} d x \frac{\phi(x)}{1-x}\left[1-e^{-P_{q \bar{q}} Q^{2}(1-x) / 4 \pi^{2} f_{\pi}^{2} x}\right]
$$

normalized to the asymptotic DA $\quad\left[P_{q \bar{q}}=1 \rightarrow\right.$ Musatov and Radyushkin (1997)]

- Large Q^{2} TFF is identical to first principles asymptotic QCD result $Q^{2} F_{\pi \gamma}\left(Q^{2} \rightarrow \infty\right)=2 f_{\pi}$
- The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

Photon-to-pion transition form factor

Transversity 2011
Light-Front Holography and
Proton Transversity
Stan Brodsky, SLAC

Prediction from AdS/CFT: Meson LFWF

Prediction from AdS/CFT: Meson LFWF

"Soft Wall" model

 $\kappa=0.375 \mathrm{GeV}$$$
\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

Connection of Confinement to TMDs
Transversity 2011

Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Hadron Distribution Amplitudes

$$
\phi_{H}\left(x_{i}, Q\right)
$$

$$
\sum_{i} x_{i}=1
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal

> Lepage, sjb Invariance Sachrajda, Frishman Lepage, sjb Braun, Gardi

- Compute from valence light-front wavefunction in lightcone gauge

$$
\phi_{M}(x, Q)=\int^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)
$$

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{rlr}
<\xi^{2}>_{\pi}=1 / 5=0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Donnellan et al.
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$

Braun et al.

Light-Front Holography and Proton Transversity 175

Generalized parton distributions in AdS/QCD

Alfredo Vega ${ }^{1}$, Ivan Schmidt ${ }^{1}$, Thomas Gutsche ${ }^{2}$, Valery E. Lyubovitskij ${ }^{2 *}$

${ }^{1}$ Departamento de Física y Centro Científico y Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

${ }^{2}$ Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Features of AdS/QCD LF Holography

- Based on Conformal Scaling of Infrared QCD Fixed Point
- Conformal template: Use isometries of AdS5
- Interpolating operator of hadrons based on twist, superfield dimensions
- Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required
- Break Conformal symmetry with dilaton
- Dilaton introduces confinement -- positive exponent
- Origin of Linear and HO potentials: Stochastic arguments (Glazek); General 'classical' potential for Dirac Equation (Hoyer)
- Effective Charge from AdS/QCD at all scales
- Conformal Dimensional Counting Rules for Hard Exclusive Processes

Nearly conformal QCD?

Define α_{s} from Björkén sum,

$$
\Gamma_{1}^{p-n} \equiv \int_{0}^{1} d x\left(g_{1}^{p}\left(x, Q^{2}\right)-g_{1}^{n}\left(x, Q^{2}\right)\right)=\frac{1}{6} g_{A}\left(1-\frac{\alpha_{s, g_{1}}}{\pi}\right)
$$

gl = spin dependent structure functio

RecentJlab data from EGI(2008), CLAS, and Hall A

α_{s} runs only modestly at small Q^{2}

Gribov
Fig. from 0803.4119 , Doer et al.
Dear, de Teramond, sib

Deur, Korsch, et al.

Transversity 2011

Light-Front Holography and Proton Transversity

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sib

- Consider five-dim gauge fields propagating in AdS_{5} space in dilator background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Running Coupling from Light-Front Holography and AdS/QCD Analytic, defined at all scales, IR Fixed Point

Deur, de Teramond, sjb

Applications of Nonperturbative Running Coupling from AdS/QCD

- Sivers Effect in SIDIS, Drell-Yan
- Double Boer-Mulders Effect in DY
- Diffractive DIS
- Heavy Quark Production at Threshold

All involve gluon exchange at small momentum transfer

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \quad \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)_{\text {de Teramond, sjb }}} \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad \begin{array}{c}
\text { Holographic Variable } \\
-\frac{d}{d \zeta^{2}} \equiv \frac{k_{\perp}^{2}}{x(1-x)} \quad \begin{array}{c}
\text { LF KineticEnergy in } \\
\text { momentum space }
\end{array}
\end{array}
\end{gathered}
$$

Assume LFWF is a dynamical function of the quark. antiquark invariant mass squared

$$
-\frac{d}{d \zeta^{2}} \rightarrow-\frac{d}{d \zeta^{2}}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x} \equiv \frac{k_{\perp}^{2}+m_{1}^{2}}{x}+\frac{k_{\perp}^{2}+m_{2}^{2}}{1-x}
$$

Transversity 2011

Light-Front Holography and
Proton Transversity
184

Stan Brodsky, SLAC

Result: Soft-Wall LFWF for massive constituents

$$
\psi\left(x, \mathbf{k}_{\perp}\right)=\frac{4 \pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2 \kappa^{2}}\left(\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right)}
$$

LF WF in impact space: soft-wall model with massive quarks

$$
\begin{gathered}
\psi\left(x, \mathbf{b}_{\perp}\right)=\frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2} \kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}-\frac{1}{2 \kappa^{2}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]} \\
z \rightarrow \zeta \rightarrow \chi \\
\chi^{2}=b^{2} x(1-x)+\frac{1}{\kappa^{4}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]
\end{gathered}
$$

Transversity 201

Light-Front Holography and
Proton Transversity
185

Stan Brodsky, SLAC

$$
\psi_{J / \psi}(x, b)_{\substack{b\left[\mathrm{GeV}^{-1}\right] \\ 0 \\ 0 \\ 10}}
$$

$$
m_{a}=m_{b}=1.25 \mathrm{GeV}
$$

LFWF peaks at
$x_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}$
where
$m_{\perp i}=\sqrt{m^{2}+k_{\perp}^{2}}$
minimum of LF
energy
denominator

$$
\kappa=0.375 \mathrm{GeV}
$$

Light-Front Holography and
Proton Transversity 186

Static $\overline{\mathrm{Q}} \mathrm{Q}$ Potential

- For heavy quarks LF holographic equations reduce to NR Schrödinger equation in configuration space

$$
V(r)=-\frac{4}{3} \frac{\alpha_{V}(r)}{r}+V_{\text {conf }}(r)
$$

where $V_{\text {conf }} \simeq \frac{1}{2} m_{\text {red }} \omega^{2} r^{2}, \quad m_{\text {red }}=m_{Q} m_{\bar{Q}} /\left(m_{Q}+m_{\bar{Q}}\right)$ and $\omega=\kappa^{2} /\left(m_{Q}+m_{\bar{Q}}\right)$

Comparison of Coulomb $\bar{Q} Q$ potential with Cornell potential

Features of Soft-wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion ($\mathbf{m}_{\mathbf{q}}=\mathbf{0}$)
- Regge Trajectories: universal slope in n and L
- Valid for all integer J \& S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize $\mathrm{H}_{\text {LF }}$ on AdS basis

Use AdS/CFT orthonormal Light Front Wavefunctions as abasis for diagonalizing the QCD LF Hamiltonian

- Good initial approximation
- Better than plane wave basis Hiller, McCartor, Chabysheva, sjb
- DLCQ discretization -- highly successful I+I
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations
- Hamiltonian light-front field theory within an AdS/QCD basis.
J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,
G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjb

"One of the gravest puzzles of theoretical physics"

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \quad \Omega_{\Lambda}=0.76(\text { expt })
$$

$$
\left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56}
$$

$$
\left(\Omega_{\Lambda}\right)_{Q C D} \propto<0|q \bar{q}| 0>^{4}
$$

QCD Problem Solved if quark and gluon condensates reside within hadrons, not vacuum!

R. Shrock, sjb Proc.Nat.Acad.Sci. 108 (2011) 45-50 "Condensates in Quantum Chromodynamics and the Cosmological Constant" C. Roberts, R. Shrock, P. Tandy, sjb Phys.Rev. C82 (2010) 022201 "New Perspectives on the Quark Condensate"

Gell-Mann Oakes Renner Formula in QCD

$$
\begin{aligned}
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}^{2}}<0|\bar{q} q| 0> \\
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}}<0\left|i \bar{q} \gamma_{5} q\right| \pi>
\end{aligned}
$$

current algebra: effective pion field

QCD: composite pion Bethe-Salpeter Eq.

vacuum condensate actually is an "in-hadron condensate"

$$
<0\left|\bar{q} \gamma_{5} q\right| \pi>\quad \text { Maris, Roberts, Tandy }
$$

Gell-Mann Oakes Renner Formula in QCD

$$
\begin{aligned}
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}^{2}}<0|\bar{q} q| 0> \\
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}}<0\left|i \bar{q} \gamma_{5} q\right| \pi>
\end{aligned}
$$

current algebra: effective pion field

QCD: composite pion Bethe-Salpeter Eq.

vacuum condensate actually is an "in-hadron condensate"

General Form of Bethe-Salpeter Wavefunction

$$
\begin{array}{r}
\Gamma_{\pi}(k ; P)=i \gamma_{5} E_{\pi}(k, P)+\gamma_{5} \gamma \cdot P F_{\pi}(k ; P) \\
\quad+\gamma_{5} \gamma \cdot k G_{\pi}(k ; P)-\gamma_{5} \sigma_{\mu \nu} k^{\mu} P^{\nu} H_{\pi}(k ; P)
\end{array}
$$

Allows both $<0\left|\bar{q} \gamma_{5} \gamma_{\mu} q\right| \pi>$ and $<0\left|\bar{q} \gamma_{5} q\right| \pi>$

Light-Front Pion Valence Wavefunctions

$$
\begin{aligned}
& \begin{array}{l}
S_{\bar{u}}^{z}+S_{d}^{z}=+1 / 2-1 / 2=0 \\
\bar{u} \quad \vdots \\
\text { Couples to }
\end{array} \\
& L^{z}=0, S^{z}=0<\pi\left|\bar{\gamma}^{\mu} q \gamma_{5} q\right| 0>\sim f_{\pi} \\
& \longrightarrow L^{\bar{u}} \quad L^{z}=+1, S^{z}=-1 \quad<\pi\left|\bar{q} \gamma_{5} q\right| 0>\sim \rho_{\pi} \\
& S_{\bar{u}}^{z}+S_{d}^{z}=-1 / 2-1 / 2=-1
\end{aligned}
$$

Angular

Momentum
Conservation
Transversity 2011

$$
J^{z}=\sum_{i}^{n} S_{i}^{z}+\sum_{i}^{n-1} L_{i}^{z}
$$

Running constituent mass at vertex

$$
L^{z}=+1, S^{z}=-1
$$

$L^{z}=0, S^{z}=0 \quad$ LF wavefunction couples to $<\pi\left|\bar{\gamma}^{\mu} q \gamma_{5} q\right| 0>$
$L^{z}=+1, S^{z}=-1 \quad$ LF wavefunction couples to $\langle\pi| \bar{q} \gamma_{5} q|0\rangle$

Running quark mass in QCD

$$
S^{-1}(p)=i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)
$$

$$
m\left(p^{2}\right)=\frac{B\left(p^{2}\right)}{A\left(p^{2}\right)}
$$

Dyson-Schwinger

Chang, Cloet, E1-Bennich Klahn, Roberts

Consistent with EW input at high \mathbf{p}^{2}
Survives even at $\mathbf{m}=\mathbf{0}$!

> Spontaneous Chiral Symmetry Breaking!

Transversity 2011
Light-Front Holography and Proton Transversity

Stan Brodsky, SLAC

Chiral magnetism (or magnetohadrochironics)

Aharon Casher and Leonard Susskind

The spontaneous breakdown of chiral symmetry in hadron dynamics is generally studied as a vacum phenomenon. Because of an instability of the chirally invariant vacuum, the real vacuum is "aligned" into a chirally asymmetric configuration. On the other hand an approach to quantum field theory exists in which the properties of the vacuum state are not relevant. This is the parton or constituent approach formulated in the infinitemomentum frame. A number of investigations

Light-Front Formalism

Is there evidence for a gluon vacuum condensate?

$$
<0\left|\frac{\alpha_{s}}{\pi} G^{\mu \nu}(0) G_{\mu \nu}(0)\right| 0>
$$

Look for higher-twist correction to current propagator

$$
R_{e^{+} e^{-}}(s)=N_{c} \sum_{q} e_{q}^{2}\left(1+\frac{\alpha_{s}}{\pi} \frac{\Lambda_{\mathrm{QCD}}^{4}}{s^{2}}+\cdots\right)
$$

Transversity 2011

Light-Front Holography and Proton Transversity 199

Determinations of the vacuum Gluon Condensate

$$
<0\left|\frac{\alpha_{s}}{\pi} G^{2}\right| 0>\left[\mathrm{GeV}^{4}\right]
$$

-0.005 ± 0.003 from τ decay.
Davier et al. $+0.006 \pm 0.012$ from τ decay. Geshbenbein, Ioffe, Zyablyuk $+0.009 \pm 0.007$ from charmonium sum rules

Ioffe, Zyablyuk

Consistent with zero vacuum condensate

Transversity 2011

Effective Confinement potential from soft-wall AdS/QCD gives Regge Spectroscopy plus higher-twist correction to current propagator

$$
M^{2}=4 \kappa^{2}(n+L+S / 2) \quad \text { light-quark meson spectra }
$$

$$
R_{e^{+} e^{-}}(s)=N_{c} \sum_{q} e_{q}^{2}\left(1+\mathcal{O} \frac{\kappa^{4}}{s^{2}}+\cdots\right)
$$

mimics dimension-4 gluon condensate $<0\left|\frac{\alpha_{s}}{\pi} G^{\mu \nu}(0) G_{\mu \nu}(0)\right| 0>$ in

$$
e^{+} e^{-} \rightarrow X, \tau \text { decay, } Q \bar{Q} \text { phenomenology }
$$

Light-Front Holography and Proton Transversity

Summary on QCD 'Condensates'

- Condensates do not exist as space-time-independent phenomena
- Property of hadron wavefunctions: Bethe-Salpeter or LightFront: "In-Hadron Condensates"
- Find:

$$
\begin{aligned}
& \frac{<0|\bar{q} q| 0>}{f_{\pi}} \rightarrow-<0\left|i \bar{q} \gamma_{5} q\right| \pi>=\rho_{\pi} \\
& <0\left|\bar{q} i \gamma_{5} q\right| \pi>\text { similar to }<0\left|\bar{q} \gamma^{\mu} \gamma_{5} q\right| \pi>
\end{aligned}
$$

- Zero contribution to cosmological constant! Included in hadron mass
- ϱ_{π} survives for small m_{q}-- enhanced running mass from gluon loops / multiparton Fock states

PHYSICAL REVIEW C 82, 022201(R) (2010)

New perspectives on the quark condensate

Stanley J. Brodsky, ${ }^{1,2}$ Craig D. Roberts, ${ }^{3,4}$ Robert Shrock, ${ }^{5}$ and Peter C. Tandy ${ }^{6}$
${ }^{1}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA ${ }^{2}$ Centre for Particle Physics Phenomenology: CP ${ }^{3}$-Origins, University of Southern Denmark, Odense 5230 M, Denmark
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{4}$ Department of Physics, Peking University, Beijing 100871, China
${ }^{5}$ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
${ }^{6}$ Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA
(Received 25 May 2010; published 18 August 2010)
We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gaugeinvariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the currentquark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave functions.

Quark and Gluon condensates reside

 within hadrons, not vacuumCasher and Susskind Maris, Roberts, Tandy Shrock and sjb

- Bound-State Dyson Schwinger Equations
- AdS/QCD
- Implications for cosmological constant -Eliminates 45 orders of magnitude conflict

Features of AdS/QCD LF Holography

- Based on Conformal Scaling of Infrared QCD Fixed Point
- Conformal template: Use isometries of AdS5
- Interpolating operator of hadrons based on twist, superfield dimensions
- Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required
- Break Conformal symmetry with dilaton
- Dilaton introduces confinement -- positive exponent for spacelike observables
- Origin of Linear and HO potentials: Stochastic arguments (Glazek); General 'classical' potential for Dirac Equation (Hoyer)
- Effective Charge from AdS/QCD at all scales
- Conformal Dimensional Counting Rules for Hard Exclusive Processes
- Use CRF (LF Constituent Rest Frame) to reconstruct 3D Image of Hadrons (Glazek, de Teramond, sjb)

Angular Momentum Structure, and the Spin Dynamics of Hadrons

- Test Fundamentals of Gauge Structure of QCD
- Fundamental Measures of Hadron Structure
- Angular Momentum of Confined Quarks and Gluons
- Breakdown of Conventional Wisdom
- Breakdown of Factorization Ideas
- Crucial Experiment Tests, Measurements

Remarkable array of theory and experimental talks

Light-Front Holography and Proton Transversity

Thanks for an outstanding meeting!

TRANSVERSITY 2011

Third International Workshop on Transverse Polarization Phenomena in Hard Scattering

Veli Lošinj, Croatia, 29 August - 2 September 2011

Franco Bradamante (chair) / Trieste

Local Organizing Committee

- Elena Boglione / Torino
- Andrea Bressan / Trieste
- Marco Contalbrigo / Ferrara
- Anna Martin (chair) / Trieste
- Francesco Murgia / Cagliari
- Barbara Pasquini / Pavia
- Daniele Panzieri / Alessandria
- Patrizia Rossi / LNF
- Giovanni Salmè / Roma

