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Learning about dynamics in 
transverse coordinate space 
from data on 

γ*N → πN, ππN, etc. 
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2The photon is a precise probe of QCD dynamics

Photons are perturbative probes 
of strong dynamics at any Q2.

At leading twist (Q2 → ∞) QCD factorization allows to 

measure parton distributions (PDF, GPD, TMD,...)

Drell-YanDeep Inelastic Scattering

How is the Q2 distribution related 
to the size of the scattering region?
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3Example: Electromagnetic Form Factors

p–q/2

γ*

e e

q

p+q/2

N N
F1, F2

A Fourier transform of F(Q2) determines

the charge density in coordinate space

〈r2〉 = −6
dF1

dQ2

∣∣∣∣
Q2=0

Only (too) recently was it realized that these relations are inappropriate 
when the target or its constituents are in relativistic motion.

Soper, Burkardt, Diehl, Ralston et al, Miller, Carlson et al...
Rocha et al, Eur. J. Phys. A44 (2010) 411

F (Q2) =
∫

d3r ρ(r) exp(−iq · r)
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4Two reasons why relativity is relevant

p–q/2
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q

p+q/2

N N
F1, F2

II. The nucleon momentum is different
in the initial and final states.

Boosting equal-time states is a
dynamic process, which conserves
neither particle number nor shape.

I. The photon probe couples to quarks,
    which move nearly at the velocity of light.

We cannot get a sharp picture of objects that move 
during the time that the shutter is open.

Even though these are fundamental obstacles, they can be circumvented. 
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5Boosting to the Infinite Momentum Frame (I)

Quark motion in the transverse direction vanishes in the IMF: 

A photon moving along the - z axis probes the target at fixed  x+= t+z

The Light Front (LF) ≈ Infinite Momentum Frame (IMF)

v⊥ =
p⊥
xEh

→ 0 as Eh → ∞

This removes objection I: The speed of the quarks.

But it restricts the analysis to the transverse plane.
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A hadron state of momentum P+ = P0 + P3 can at fixed x+ = x0 + x3

be expanded in terms its quark and gluon Fock states as

The LF wave functions ψn(xi, ki,λi) are independent of  P+, P⊥ . 
Hadrons can be (trivially) boosted.

This removes objection II: Boosting hadron wave functions.

|P+,P⊥,λ〉x+=0 =
∑

n,λi

n∏

i=1

[∫ 1

0

dxi√
xi

∫
d2ki

16π3

]
16π3δ(1−

∑

i

xi) δ(2)(
∑

i

ki)

×ψn(xi,ki,λi) |n; xiP
+, xiP⊥ + ki,λi〉x+=0

Boosting to the Infinite Momentum Frame (II)
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fq/N (x) =
∑

n,λi,k

n∏

i=1

[∫ dxi d2ki

16π3

]
16π3δ(1−

∑

i

xi) δ(2)(
∑

i

ki)

PDF’s in terms of LF wave functions

×δ(x− xk)|ψn(xi,ki,λi)|2

Note: 1. Parton distributions factorize at leading twist (Q2 → ∞).

The probability interpretation of PDF’s is 
expressed in terms of LF wave functions:

2. The above expression is approximate, since rescattering of  
    the struck parton (the Wilson line) is neglected.

P

*

x x

P

fq/N(x)

...
N N

*
0 z

Q2 Q2
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8Charge density in terms of LF wave functions

The Fourier transform of an elastic 
EM form factor in transverse space

ρ0(b) =
∑

n,λi,k

ek

[ n∏

i=1

∫
dxi

∫
4πd2bi

]
δ(1−

∑

i

xi)
1
4π

δ(2)(
∑

i

xibi)

× δ(2)(b− bk) |ψλ
n(xi, bi,λi)|2

ρ0(b) =
∫ ∞

0

dQ

2π
QJ0(b Q)F1(Q2)

No “leading twist”: Resolution  Δb ∼ 1/Qmax

No Wilson line: Fock expansion is “exact”
Δ = q

gives the charge density in impact parameter space:

Important extension of the applications of virtual photons!

Q2
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empirical quark 
transverse densities 

in neutron 

data : Bradford, Bodek, Budd, Arrington (2006)

induced EDM : dy = - F2n (0) . e / (2 MN)

+

+

by

bx

by

bx

ρ0(b)

ρx(b)

Using measured form factors, find the

ρ0

ρx

Jx

Miller (2007)
Carlson and Vanderhaeghen (2008)
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Game Over?

The transverse charge densities of polarized protons and 
neutrons have been determined using existing form factor data. 

Is there anything else to do?
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L. Tiator, M. Vanderhaeghen / Physics Letters B 672 (2009) 344–348 347

Fig. 4. Quark transverse charge density corresponding to the p → P11(1440) e.m. transition. Upper left panel: when p and N∗ are unpolarized (ρ pN∗
0 ). Upper right panel:

when p and N∗ are polarized along the x-axis (ρ pN∗
T ). The light (dark) regions correspond with positive (negative) densities. Lower panel: densities ρ pN∗

T (solid curves) and

ρ pN∗
0 (dashed curves) along the y-axis. For the p → P11(1440) e.m. transition FFs, we use the improved MAID2007 fit of this work.

Fig. 5. Quark transverse charge density corresponding to the n → P11(1440) e.m. transition. Upper left panel: when n and N∗ are unpolarized (ρnN∗
0 ). Upper right panel:

when n and N∗ are polarized along the x-axis (ρnN∗
T ). The light (dark) regions correspond with positive (negative) densities. Lower panel: densities ρnN∗

T (solid curves) and
ρnN∗
0 (dashed curves) along the y-axis. For the n → P11(1440) e.m. transition FFs, we use the MAID2007 fit [4].

tions of opposite sign compared to the proton, with active quarks
spreading out over even larger spatial distances, see Fig. 5.

It may be of interest to also extract these densities within
baryon structure models, and check that within such models the
quarks active in the e.m. transition from the nucleon to its first ra-
dial excited state are spatially more spread out than e.g. is the case
for the e.m. N → ∆ transition.

In summary, we analyzed in the present work the e.m. N →
P11(1440) transition based on recent data for the proton which
extend up to 5 GeV2. We extracted both the helicity amplitudes
as well as the transition form factors. The latter were used to ex-
tract the quark transverse charge densities inducing this transition.
For the proton, it was found that this transition from the nucleon
to its first radially excited state is dominated by up quarks in a

Tiator and Vanderhaeghen (2009)

Extension to transition Form Factors: p → N*

Physics Letters B 672 (2009) 344–348
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Using recent experimental data, we analyze the electromagnetic transition from the nucleon to the
P11(1440) resonance. From the resulting empirical transition form factors, we map out the quark
transverse charge densities which induce the N → P11(1440) transition. It is found that the transition
from the proton to its first radially excited state is dominated by up quarks in a central region of around
0.5 fm and by down quarks in an outer band which extends up to about 1 fm.

 2009 Elsevier B.V. All rights reserved.

A major focus of current research in hadronic physics centers
around the question of how the structure of the nucleon and its
excitations can be quantitatively understood from the interaction
among its constituent quarks and gluons. To this end, a substan-
tial experimental effort is underway at electron facilities such as
JLab, ELSA, and MAMI to map out the nucleon excitation spectrum
and to measure the electromagnetic transition form factors from a
nucleon to an excited baryon.

The form factors (FFs) describing the electromagnetic (e.m.)
transition of the nucleon to the first baryon excitation, the ∆(1232)
resonance, have been measured precisely and over a large range of
photon virtualities by means of the ep → epπ0 and ep → enπ+

reaction. The resulting data allow to study and quantify the defor-
mation of the N → ∆ transition charge distribution, see e.g. Ref. [1]
for a recent review and references therein.

High precision data have also become available in recent years
for the γ ∗N → N∗ transition, for the P11(1440) [2–6], D13(1520)
[2–5], S11(1535) [2–5,7] and F15(1680) [3,4] nucleon resonances,
from π0 [8,9], π+ [10–12], and η [7,13–15] electroproduction data
on the nucleon.

On the theoretical side, the nucleon-to-resonance transition FFs
are also becoming amenable to lattice QCD calculations. For the
N → ∆ transition, first full QCD results using different fermion
actions were presented in Ref. [16]. It was found that the un-
quenched results for the small N → ∆ Coulomb quadrupole FF
show deviations from the quenched one at low Q 2, underlining
the important role of the pion cloud to this observable. For the
electromagnetic transition of the nucleon to its first excited state
with quantum numbers J P = 1

2
+
, the P11(1440) resonance, often

* Corresponding author.
E-mail address: tiator@kph.uni-mainz.de (L. Tiator).

referred to as the Roper resonance, first full QCD lattice studies
were performed in Ref. [17]. The Roper resonance, being the first
radial excitation of the nucleon, presents a particular challenge for
lattice calculations to reproduce the correct level ordering with its
negative-parity partner, the S11(1535) resonance.

The precise e.m. FF data, extracted from experiment, allow to
map out the quark charge densities in a baryon. It was shown pos-
sible to define a proper density interpretation of the form factor
data by viewing the baryon in a light-front frame. This yields in-
formation on the spatial distribution of the quark charge in the
plane transverse to the line-of-sight. In this way, the quark trans-
verse charge densities were mapped out in the nucleon [18,19],
and in the deuteron [20] based on empirical FF data. Further-
more, recent lattice QCD results were used to map out the quark
transverse densities in the ∆(1232) [21] resonance. To understand
the e.m. structure of a nucleon resonance, it is of interest to use
the precise transition FF data to reveal the spatial distribution of
the quark charges that induce such a transition. In this way, the
N → ∆(1232) transition charge densities have been mapped out
in Ref. [19] using the empirical information of the N → ∆(1232)
transition FFs [4]. In the following, we will generalize the above
considerations to the e.m. transition between the nucleon and the
first excited state with nucleon quantum numbers, the P11(1440)
resonance. We will use the empirical information to map out the
quark transition charge densities inducing the N → P11(1440) e.m.
excitation.

After outlining the definitions to characterize the vertex for the
N → P11(1440) e.m. transition, we will use the recent JLab/CLAS
data to extract the two independent N → P11(1440) transition FFs.
Subsequently, we define the transition densities and use the em-
pirical FF information to map out the spatial distribution of quark
charges that induce the N → P11(1440) transition. We finally give
a brief summary and outline extensions of this work.

0370-2693/$ – see front matter  2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2009.01.048

“It is found that the transition from the proton to its first radially excited state is dominated 
by up quarks in a central region of around 0.5 fm and by down quarks in an outer band 
which extends up to about 1 fm.”

Jx

ρ(b) ∼ δ(2)(b− bk) ψ∗
N∗(xi, bi)ψp(xi, bi)



Paul Hoyer Losjin 2 September 2011

12

q

N

π

e el

N
N

π

e
e

bq
bq

bq´

Charge density of inelastic processes: γ*N → πN,...

Any inelastic process initiated by a virtual photon can be 
similarly analyzed in transverse space:

+ + +

Fourier transform of
amplitude measures

bq – bN

Fourier transform of cross section
measures  bq – bq´

Interpretation requires to isolate contribution of  j+ photon current.
j+ dominates in the high energy limit, l– → ∞ at fixed q
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Example: f = π (p1) N(p2)

In order to conform with the Lorentz covariance of LF states, at any pf  :

5

A. Transverse shape analysis of γ∗N → πN

The standard LF Fock expansion in transverse momentum space for a single pion is [5, 7]

|π(p+1 ,p1)〉 = 16π3
∑

n

[ n∏

i=1

∫ 1

0

dxi√
xi

∫
d2ki

16π3

]
δ
(
1−

∑

i

xi

)
δ2
(∑

i

ki

)
ψπ
n(xi,ki)

n∏

i=1

b†(xip
+
1 , xip1 + ki) · · · |0〉 (18)

where · · · stands for the operators which create the remaining n− 1 partons of the Fock state. As noted above, the
wave functions ψπ

n(xi,ki) are independent of the pion momentum p1. The ‘plus’ momentum of parton i is xip
+
1 and

its transverse momentum is xip1 + ki. The restrictions on the xi and ki implied by (18) ensure that the parton
momenta sum to the total pion momentum in each Fock state.

For a πN state we have then the double expansion

|π(p1)N(p2)〉 = (16π3)2
∑

nπ,nN

[ nπ∏

i=1

∫ 1

0

dxi√
xi

∫
d2ki

16π3

][nN∏

j=1

∫ 1

0

dyj√
yj

∫
d2!j
16π3

]
δ
(
1−

nπ∑

i=1

xi

)
δ
(
1−

nN∑

j=1

yj
)

(19)

× δ2
( nπ∑

i=1

ki

)
δ2
( nN∑

j=1

!j
)
ψπ
nπ

(xi,ki)ψ
N
nN

(yj , !j)
∏

i,j

b†(xip
+
1 , xip1 + ki) b

†(yjp
+
2 , yjp2 + !j) · · · |0〉

which should be transformed into the standard form (18), where parton momenta refer to the total momentum
pf = p1 + p2 of the state. We parametrize the pion and nucleon momenta in terms of a momentum fraction x and
relative transverse momentum k,

p+1 = xp+f p1 = xpf + k

p+2 = (1− x)p+f p2 = (1− x)pf − k
(20)

where p+f = p+ and pf = 1
2q in the frame (16). The momentum fractions of the pion and nucleon constituents wrt.

p+ are then x′
i = xxi and y′j = (1− x)yj , respectively. Using this and integrating over x gives

∫ 1

0
dx δ

(
1−

∑

i

xi

)
δ
(
1−

∑

j

yj
)
= x(1− x)δ

(
1−

∑

i

x′
i −

∑

j

y′j

)
(21)

where x =
∑

i x
′
i on the rhs. The transverse momenta of the partons may be expressed as

xip1 + ki = x′
ipf + k′

i k′
i = ki + k x′

i/x

yjp2 + !j = y′jpf + !′j !′j = !j − k y′j/(1− x)
(22)

which gives

∫
d2k

16π3
(16π3)2δ2

[∑

i

(
k′
i − k

x′
i

x

)]
δ2
[∑

j

(
!′j + k

y′j
1− x

)]
= 16π3δ2

(∑

i

k′
i +

∑

j

!′j

)
(23)

For a |f〉 = |πN〉 state specified by a wave function Ψf (x,k) of the relative hadron momentum defined in (20) we get

|πN(p+f ,pf ;Ψ
f )〉 ≡

∫ 1

0

dx√
x(1− x)

∫
d2k

16π3
Ψf (x,k)|π(p1)N(p2)〉 = (24)

= 16π3
∑

nπ,nN

[∏

i,j

∫ 1

0

dx′
i√
x′
i

dy′j√
y′j

∫
d2k′

i

16π3

d2!′j
16π3

]
δ
(
1−

∑

i

x′
i −

∑

j

y′j

)
δ2
(∑

i

k′
i +

∑

j

!′j

)

× x(1− x)Ψf (x,k)ψπ
nπ

(x′
i

x
, k′

i −
x′
i

x
k
)
ψN
nN

( y′j
1− x

, !′j +
y′j

1− x
k
)

×
nπ∏

i

[ 1√
x
b†(x′

ip
+, x′

ipf + k′
i) · · ·

][ nN∏

j

1√
1− x

b†(y′jp
+, y′jpf + !′j) · · ·

]
|0〉

where Ψf (x,k) is a freely chosen function of the relative variables x, k :
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|π(p+1 ,p1)〉 = 16π3
∑

n

[ n∏

i=1

∫ 1

0

dxi√
xi

∫
d2ki

16π3

]
δ
(
1−

∑

i

xi

)
δ2
(∑

i

ki

)
ψπ
n(xi,ki)

n∏

i=1

b†(xip
+
1 , xip1 + ki) · · · |0〉 (18)
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|π(p1)N(p2)〉 = (16π3)2
∑

nπ,nN

[ nπ∏

i=1

∫ 1

0

dxi√
xi

∫
d2ki

16π3

][nN∏

j=1

∫ 1

0

dyj√
yj

∫
d2!j
16π3

]
δ
(
1−

nπ∑

i=1

xi

)
δ
(
1−

nN∑

j=1

yj
)

(19)

× δ2
( nπ∑

i=1

ki

)
δ2
( nN∑

j=1

!j
)
ψπ
nπ

(xi,ki)ψ
N
nN

(yj , !j)
∏

i,j

b†(xip
+
1 , xip1 + ki) b

†(yjp
+
2 , yjp2 + !j) · · · |0〉
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(20)
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2q in the frame (16). The momentum fractions of the pion and nucleon constituents wrt.

p+ are then x′
i = xxi and y′j = (1− x)yj , respectively. Using this and integrating over x gives

∫ 1

0
dx δ

(
1−

∑

i

xi

)
δ
(
1−

∑

j

yj
)
= x(1− x)δ

(
1−

∑

i

x′
i −

∑

j

y′j

)
(21)
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∑

i x
′
i on the rhs. The transverse momenta of the partons may be expressed as

xip1 + ki = x′
ipf + k′

i k′
i = ki + k x′

i/x

yjp2 + !j = y′jpf + !′j !′j = !j − k y′j/(1− x)
(22)

which gives

∫
d2k

16π3
(16π3)2δ2

[∑

i

(
k′
i − k

x′
i

x

)]
δ2
[∑

j

(
!′j + k

y′j
1− x

)]
= 16π3δ2

(∑

i

k′
i +

∑

j

!′j

)
(23)

For a |f〉 = |πN〉 state specified by a wave function Ψf (x,k) of the relative hadron momentum defined in (20) we get

|πN(p+f ,pf ;Ψ
f )〉 ≡

∫ 1

0

dx√
x(1− x)

∫
d2k

16π3
Ψf (x,k)|π(p1)N(p2)〉 = (24)

= 16π3
∑

nπ,nN

[∏

i,j

∫ 1

0

dx′
i√
x′
i

dy′j√
y′j

∫
d2k′

i

16π3

d2!′j
16π3

]
δ
(
1−

∑

i

x′
i −

∑

j

y′j

)
δ2
(∑

i

k′
i +

∑

j

!′j

)

× x(1− x)Ψf (x,k)ψπ
nπ

(x′
i

x
, k′

i −
x′
i

x
k
)
ψN
nN

( y′j
1− x

, !′j +
y′j

1− x
k
)

×
nπ∏

i

[ 1√
x
b†(x′

ip
+, x′

ipf + k′
i) · · ·

][ nN∏

j

1√
1− x

b†(y′jp
+, y′jpf + !′j) · · ·

]
|0〉

With x, k being independent of  pf , this defines the pion and nucleon 
momenta p1, p2 at all photon momenta q.

The                              state has an LF Fock expansion of standard form.
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∑
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i = ki + k x′

i/x

yjp2 + !j = y′jpf + !′j !′j = !j − k y′j/(1− x)
(22)

which gives

∫
d2k

16π3
(16π3)2δ2

[∑

i

(
k′
i − k

x′
i

x

)]
δ2
[∑

j

(
!′j + k

y′j
1− x

)]
= 16π3δ2

(∑

i

k′
i +

∑

j

!′j

)
(23)

For a |f〉 = |πN〉 state specified by a wave function Ψf (x,k) of the relative hadron momentum defined in (20) we get

|πN(p+f ,pf ;Ψ
f )〉 ≡

∫ 1

0

dx√
x(1− x)

∫
d2k

16π3
Ψf (x,k)|π(p1)N(p2)〉 = (24)

= 16π3
∑

nπ,nN

[∏

i,j

∫ 1

0

dx′
i√
x′
i

dy′j√
y′j

∫
d2k′

i

16π3

d2!′j
16π3

]
δ
(
1−

∑

i

x′
i −

∑

j

y′j

)
δ2
(∑

i

k′
i +

∑

j

!′j

)

× x(1− x)Ψf (x,k)ψπ
nπ

(x′
i

x
, k′

i −
x′
i

x
k
)
ψN
nN

( y′j
1− x

, !′j +
y′j

1− x
k
)

×
nπ∏

i

[ 1√
x
b†(x′

ip
+, x′

ipf + k′
i) · · ·

][ nN∏

j

1√
1− x

b†(y′jp
+, y′jpf + !′j) · · ·
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|0〉
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Fourier transform of γ*N → f

In the frame:

4

To allow a simple interpretation of the amplitude (5) it is essential to choose a frame where p+f = p+.5 A photon

with q+ = 0 cannot create a qq̄ pair, causing the matrix element to be diagonal in the number of incoming and
outgoing quarks. In fact, the initial and final Fock states are identical. As seen from (13) the J+(0) current interacts
with a single quark or antiquark6 at bk = 0⊥ in |N〉, and similarly in 〈f |. The remaining n− 1 partons in |N〉 must
thus be identical to those in 〈f |. The constraints

∑
i xi = 1 in the initial and final states forces also the momentum

fraction xk of the struck quark to be the same. The “center of momentum” constraint b =
∑

i xibi in (13) then
requires the impact parameters of the initial and final states to be equal,

1

2p+
〈f(p+, bf )|J+(0)|N(p+, bN )〉 ≡ 1

(4π)2
δ2(bf − bN )AfN (−bN ) (14)

where, after a shift of integration variables bi → bi + bN ,

AfN (b) =
1

4π

∑

n

[ n∏

i=1

∫ 1

0
dxi

∫
4πd2bi

]
δ(1−

∑

i

xi)δ
2(
∑

i

xibi)ψ
f
n
∗
(xi, bi)ψ

N
n (xi, bi)

∑

k

ekδ
2(bk − b) (15)

This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |ψN

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state differs from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are

p = (p+, p−,− 1
2q)

q = (0+, q−, q) (16)

pf = (p+, p− + q−, 1
2q)

The excitation amplitude in impact parameter space is then, using (10) and (14),
∫

d2q

(2π)2
e−iq·b 1

2p+
〈f(pf )|J+(0)|N(p)〉 = (17)

=

∫
d2q

(2π)2
d2bNd2bf e−iq·(b+ 1

2bN+ 1
2bf ) (4π)

2

2p+
〈f(p+, bf )|J+(0)|N(p+, bN )〉 = AfN (b)

The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f〉 that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to γ∗ + i → f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f〉 = |h1, . . . , hn〉 consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f〉. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (πN) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.
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Illustration (1): γ*+ µ → µ + γ 

The QED matrix element

6

where x =
∑

i x
′
i and k =

∑
i ki on the rhs. This Fock expansion has the standard LF form, implying that the

superposition of πN plane wave states should be given by Ψf (x,k) with x and k determined by the relations (20) in
any frame. The standard normalization condition (suppressing the helicities)

〈πN(p′+,p′;Ψf )|πN(p+,p ;Ψf )〉 = 16π3p+δ(p+ − p′+)δ2(p− p′) (25)

implies

∫ 1

0
dx

∫
d2k

16π3
|Ψf (x,k)|2 = 1 (26)

For the wave function Ψf (x,k) to preserve the invariant mass of the πN state it should have support only at fixed

p2f = (p1 + p2)
2 =

m2
π

x
+

m2
N

1− x
+

k2

x(1− x)
(27)

This would be satisfied, e.g., by standard partial wave analyses. A superposition defined by the appropriate spherical
harmonics in the rest frame (pf = 0) determines directly the frame independent wave function Ψf (x,k). However,
it is not necessary to constrain the mass (27) to be fixed. States with different mass that are produced at the same
q+ = 0 and q will differ wrt. q−, which does not affect the Fourier transform.

It is instructive to express the πN states also in impact parameter space, again following the conventions for partonic
states. For the state (24)

|πN(p+,p ;Ψf )〉 = 4π

∫
d2b eip·b|πN(p+, b ;Ψf )〉 (28)

where

|πN(p+, b ;Ψf )〉 = 4π

∫
dx d2bπ d2bN√

x(1− x)
δ2
[
xbπ + (1− x)bN

]
Ψf (x, bπ) |π(xp+, bπ + b)N((1− x)p+, bN + b)〉 (29)

The hadronic wave functions are related according to

Ψf (x, bπ) =

∫
d2k

16π3
exp

[
ik · bπ
1− x

]
Ψf (x,k) (30)

The normalization condition in impact parameter space is

4π

∫
dx d2bπ d

2bNδ2
[
xbπ + (1− x)bN

]
|Ψ(x, bπ)|2 = 1 (31)

B. Illustration: !µ → !′µγ

We denote the photon matrix element in the amplitude (5) for #µ → #′µγ by

Aµγ
λ1,λ2

=
1

2p+
〈µ(p1,λ1)γ(p2,λ2)|J+(0)|µ(p,λ = 1

2 )〉 (32)

where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity λ = 1
2 . At lowest order, using LF helicity

spinors [7] in the frame (16) and the parametrization (20),

Aµγ
+ 1

2+1
(q;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 − e− · (k − (1− x)q)

(1− x)2m2 + (k − (1− x)q)2

]
(33)

where eλ · k = −λeiλφk |k|/
√
2. The corresponding expressions for the other helicity amplitudes are given in the

Appendix. The Fourier transform (17) gives the amplitude for the virtual photon to interact with a muon at impact
parameter b, when the center-of-momentum of the initial and final states is at zero impact parameter:

Aµγ
+ 1

2+1
(b;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 δ
2(b)− i

2
√
2π

m e−iφb

1− x
K1(mb) exp

(
−i

k · b
1− x

)]
(34)

expressed in terms of the relative variables x, k is:

6

where x =
∑

i x
′
i and k =

∑
i ki on the rhs. This Fock expansion has the standard LF form, implying that the

superposition of πN plane wave states should be given by Ψf (x,k) with x and k determined by the relations (20) in
any frame. The standard normalization condition (suppressing the helicities)

〈πN(p′+,p′;Ψf )|πN(p+,p ;Ψf )〉 = 16π3p+δ(p+ − p′+)δ2(p− p′) (25)

implies

∫ 1

0
dx

∫
d2k

16π3
|Ψf (x,k)|2 = 1 (26)

For the wave function Ψf (x,k) to preserve the invariant mass of the πN state it should have support only at fixed

p2f = (p1 + p2)
2 =

m2
π

x
+

m2
N

1− x
+

k2

x(1− x)
(27)

This would be satisfied, e.g., by standard partial wave analyses. A superposition defined by the appropriate spherical
harmonics in the rest frame (pf = 0) determines directly the frame independent wave function Ψf (x,k). However,
it is not necessary to constrain the mass (27) to be fixed. States with different mass that are produced at the same
q+ = 0 and q will differ wrt. q−, which does not affect the Fourier transform.

It is instructive to express the πN states also in impact parameter space, again following the conventions for partonic
states. For the state (24)

|πN(p+,p ;Ψf )〉 = 4π

∫
d2b eip·b|πN(p+, b ;Ψf )〉 (28)

where

|πN(p+, b ;Ψf )〉 = 4π

∫
dx d2bπ d2bN√

x(1− x)
δ2
[
xbπ + (1− x)bN

]
Ψf (x, bπ) |π(xp+, bπ + b)N((1− x)p+, bN + b)〉 (29)

The hadronic wave functions are related according to

Ψf (x, bπ) =

∫
d2k

16π3
exp

[
ik · bπ
1− x

]
Ψf (x,k) (30)

The normalization condition in impact parameter space is

4π

∫
dx d2bπ d

2bNδ2
[
xbπ + (1− x)bN

]
|Ψ(x, bπ)|2 = 1 (31)

B. Illustration: !µ → !′µγ

We denote the photon matrix element in the amplitude (5) for #µ → #′µγ by

Aµγ
λ1,λ2

=
1

2p+
〈µ(p1,λ1)γ(p2,λ2)|J+(0)|µ(p,λ = 1

2 )〉 (32)

where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity λ = 1
2 . At lowest order, using LF helicity

spinors [7] in the frame (16) and the parametrization (20),

Aµγ
+ 1

2+1
(q;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 − e− · (k − (1− x)q)

(1− x)2m2 + (k − (1− x)q)2

]
(33)

where eλ · k = −λeiλφk |k|/
√
2. The corresponding expressions for the other helicity amplitudes are given in the

Appendix. The Fourier transform (17) gives the amplitude for the virtual photon to interact with a muon at impact
parameter b, when the center-of-momentum of the initial and final states is at zero impact parameter:

Aµγ
+ 1

2+1
(b;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 δ
2(b)− i

2
√
2π

m e−iφb

1− x
K1(mb) exp

(
−i

k · b
1− x

)]
(34)

where
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where x =
∑

i x
′
i and k =

∑
i ki on the rhs. This Fock expansion has the standard LF form, implying that the

superposition of πN plane wave states should be given by Ψf (x,k) with x and k determined by the relations (20) in
any frame. The standard normalization condition (suppressing the helicities)

〈πN(p′+,p′;Ψf )|πN(p+,p ;Ψf )〉 = 16π3p+δ(p+ − p′+)δ2(p− p′) (25)

implies

∫ 1

0
dx

∫
d2k

16π3
|Ψf (x,k)|2 = 1 (26)

For the wave function Ψf (x,k) to preserve the invariant mass of the πN state it should have support only at fixed

p2f = (p1 + p2)
2 =

m2
π

x
+

m2
N

1− x
+

k2

x(1− x)
(27)

This would be satisfied, e.g., by standard partial wave analyses. A superposition defined by the appropriate spherical
harmonics in the rest frame (pf = 0) determines directly the frame independent wave function Ψf (x,k). However,
it is not necessary to constrain the mass (27) to be fixed. States with different mass that are produced at the same
q+ = 0 and q will differ wrt. q−, which does not affect the Fourier transform.

It is instructive to express the πN states also in impact parameter space, again following the conventions for partonic
states. For the state (24)

|πN(p+,p ;Ψf )〉 = 4π

∫
d2b eip·b|πN(p+, b ;Ψf )〉 (28)

where

|πN(p+, b ;Ψf )〉 = 4π

∫
dx d2bπ d2bN√

x(1− x)
δ2
[
xbπ + (1− x)bN

]
Ψf (x, bπ) |π(xp+, bπ + b)N((1− x)p+, bN + b)〉 (29)

The hadronic wave functions are related according to

Ψf (x, bπ) =

∫
d2k

16π3
exp

[
ik · bπ
1− x

]
Ψf (x,k) (30)

The normalization condition in impact parameter space is

4π

∫
dx d2bπ d

2bNδ2
[
xbπ + (1− x)bN

]
|Ψ(x, bπ)|2 = 1 (31)

B. Illustration: !µ → !′µγ

We denote the photon matrix element in the amplitude (5) for #µ → #′µγ by

Aµγ
λ1,λ2

=
1

2p+
〈µ(p1,λ1)γ(p2,λ2)|J+(0)|µ(p,λ = 1

2 )〉 (32)

where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity λ = 1
2 . At lowest order, using LF helicity

spinors [7] in the frame (16) and the parametrization (20),

Aµγ
+ 1

2+1
(q;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 − e− · (k − (1− x)q)

(1− x)2m2 + (k − (1− x)q)2

]
(33)

where eλ · k = −λeiλφk |k|/
√
2. The corresponding expressions for the other helicity amplitudes are given in the

Appendix. The Fourier transform (17) gives the amplitude for the virtual photon to interact with a muon at impact
parameter b, when the center-of-momentum of the initial and final states is at zero impact parameter:

Aµγ
+ 1

2+1
(b;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 δ
2(b)− i

2
√
2π

m e−iφb

1− x
K1(mb) exp

(
−i

k · b
1− x

)]
(34)

The Fourier transform gives:
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it is not necessary to constrain the mass (27) to be fixed. States with different mass that are produced at the same
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]
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The hadronic wave functions are related according to

Ψf (x, bπ) =

∫
d2k

16π3
exp

[
ik · bπ
1− x

]
Ψf (x,k) (30)

The normalization condition in impact parameter space is
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∫
dx d2bπ d

2bNδ2
[
xbπ + (1− x)bN
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|Ψ(x, bπ)|2 = 1 (31)

B. Illustration: !µ → !′µγ

We denote the photon matrix element in the amplitude (5) for #µ → #′µγ by

Aµγ
λ1,λ2

=
1

2p+
〈µ(p1,λ1)γ(p2,λ2)|J+(0)|µ(p,λ = 1

2 )〉 (32)

where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity λ = 1
2 . At lowest order, using LF helicity

spinors [7] in the frame (16) and the parametrization (20),

Aµγ
+ 1

2+1
(q;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 − e− · (k − (1− x)q)

(1− x)2m2 + (k − (1− x)q)2

]
(33)

where eλ · k = −λeiλφk |k|/
√
2. The corresponding expressions for the other helicity amplitudes are given in the

Appendix. The Fourier transform (17) gives the amplitude for the virtual photon to interact with a muon at impact
parameter b, when the center-of-momentum of the initial and final states is at zero impact parameter:

Aµγ
+ 1

2+1
(b;x,k) = 2e

√
x

[
e− · k

(1− x)2m2 + k2 δ
2(b)− i

2
√
2π

m e−iφb

1− x
K1(mb) exp

(
−i

k · b
1− x

)]
(34)

In the first term the γ* interacts with the initial muon, which by definition is at 
b = 0. The second term reflects the distribution of the final muon in transverse 
space. 

This expression conforms exactly with the wave function overlap formula.
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Fourier transform of the cross section

The γ*+N → f  amplitudes have dynamical phases (resonances,...).
⇒ Calculating their Fourier transforms requires a partial wave analysis.

However, one can FT the cross section itself.

Then the b-distribution reflects the difference between the impact parameters 
of the photon vertex in the amplitude and its complex conjugate:

8

is interesting to ask whether information about the transverse structure of the scattering process can be obtained from
a Fourier transform of the measured cross section. As we next discuss, this gives the distribution of the transverse
distance between the photon interaction vertices in the amplitude and its complex conjugate.

As in the case of the amplitude (5) we need to isolate the contribution of the J+ current. Here we again consider
the high energy limit s ! !−p+ → ∞ at fixed momentum transfer q = !− !′. The Lorentz invariant cross section can
then be expressed as

!−
dσ(!N → !′f)

dq− d2q
! 2α2

π

s

q4

∫
dΠf

∣∣∣∣
1

2p+
〈f(pf )|J+(0)|N(p)〉

∣∣∣∣
2

(42)

where dΠf is the phase space element of the hadrons in f . The frame (16) can be reached from the !N CM by
a rotation δθ ! |q/|!− around the normal to the lepton scattering plane. In the !− → ∞ limit the rotation is
infinitesimal and does not affect the finite momentum transfer q. Then the Fourier transformation below can be done
directly in the !N CM.

For a state f with n hadrons of momenta pi,

dΠf (n) =

[
n∏

i=1

dp+i d2pi

(2π)32p+i

]
(2π)4δ4(p+ q −

∑

i

pi) (43)

With a LF parametrization as in (20),

p+i = xip
+
f pi = xipf + ki (44)

where pf =
∑

i pi, we obtain

dΠf (n) =
2(2π)4

p+f

[
n∏

i=1

dxi d2ki

(2π)32xi

]
δ(1−

∑

i

xi) δ
2(
∑

i

ki) δ(p
− + q− − p−f ) (45)

The initial nucleon N and final state f in the matrix element of (42) may be Fourier transformed (10) in the frame
(16), where pf = −p = 1

2q and q+ = 0. According to (14) the matrix element is diagonal in impact parameter. Thus

∫
d2q

(2π)2
e−iq·b

∣∣∣∣
1

2p+
〈f(pf )|J+(0)|N(p)〉

∣∣∣∣
2

=

∫
d2bq AfN (bq)A∗

fN (bq − b) (46)

Altogether we get for the Fourier transformed cross section,

SfN (b) ≡
∫

d2q

(2π)2
e−iq·b q4 dσ(!N → !′f)

d2q
(47)

= (4π)3α2
∑

n

∫
d2bq AfN (bq)A∗

fN (bq − b)

[
n∏

i=1

∫
dxi d2ki

(2π)32xi

]
δ(1−

∑

i

xi) δ
2(
∑

i

ki)

As indicated, the cross section may include several final states with different multiplicities n. The amplitudes AfN (bq)
defined by (17) can according to (15) be expanded in terms of Fock states common to N and f . With the states
located at zero impact parameter the struck quark is at impact parameter bq. Hence SfN (b) gives the distribution
in transverse distance b between the quark struck in the amplitude and in its complex conjugate. It has a real part
that is even under b → −b and an imaginary part that is odd. In an unpolarized cross section the latter reflects
correlations between the lepton scattering plane (defined by the beam and q) and the transverse momenta ki of the
hadrons in f .

The final phase space integral in (47) refers to the internal momenta of f , and depends on the definition of the
final state f . E.g., in the particular case of |f〉 = |π(p1)N(p2)〉, with p1 and p2 defined by (20) and the hadronic wave
function Ψf (x,k) chosen to be a δ-function in x and k as in (35),

SfN (b;x,k) =

∫
d2q

(2π)2
e−iq·b q4 dσ(!N → !′πN)

d2q dx d2k
=

α2

4π3

1

x(1− x)

∫
d2bq AfN (bq;x,k)A∗

fN (bq − b;x,k) (48)

Thus the impact parameter distribution may be considered for fully exclusive (as well as fully inclusive) cross-sections.
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Illustration (3): σ(γ*+ µ → µ + γ) 

For the QED example considered above the Fourier transform of the cross 
section can be done analytically:

9

The impact parameter amplitude Aµγ(b;x,k) is given by (34) in the case of the µ → µγ example considered in
Section III B. The corresponding expression for Sµγ(b;x,k) is most easily found by substituting the expression (33)
for Aµγ(q;x,k) on the lhs. of (46) and Fourier transforming its square,

Sµγ(b;x,k) = 4e2x

{
k2/2

[(1− x)2m2 + k2]2
δ(2)(b) − |k| cos(φb − φk)

(1− x)2m2 + k2

im

2π

exp
(
− i k·b

1−x

)

1− x
K1(mb)

+
1

4π

exp
(
− i k·b

1−x

)

(1− x)2

[
K0(mb)− 1

2mbK1(mb)
]}

(49)

The three terms correspond, respectively, to the virtual photon interacting (i) with the initial muon in both Aµγ and
Aµγ∗, (ii) once with the intial and once with the final muon, and (iii) only with the final muon. The imaginary part
can be seen to arise from the angular correlation between the lepton scattering plane (defined by b) and the relative
transverse momentum k in the final state. This correlation affects the real part as well.

V. DISCUSSION

The impact parameter analysis of virtual photon induced transition amplitudes and cross-sections appears to open
a new window on hadron dynamics. It is complementary to parton distributions in longitudinal momentum, and more
economical in using data at all q2, not being restricted to the leading twist (q2 → ∞) contribution. The analysis
can be applied to any final (and initial) state, allowing to study systematic dependencies on, e.g., the mass, relative
momenta and flavor content of the state. The J+ component of the electromagnetic current needs to be isolated for
a simple Fock state picture.

Only Fock states that are common to the initial and final states contribute to the transition amplitudes (17), which
are determined (15) by the overlap of the corresponding wave functions. This interpretation requires [4, 5] a frame
like (16) with q+ = 0 , where the photon does not create or destroy quark pairs. This is analogous to DIS, where a
parton model interpretation is possible only in “infinite momentum” frames with q+ ≤ 0.

The momentum pf = p+ q of the final state depends on the photon momentum q. Relativistic invariance requires
that the momenta of all hadrons in f be parametrized as in (44), with the relative momentum variables xi,ki being
independent of q. It is possible to form superpositions of final states through weighted integrals over the xi and ki. In
the case of two-particle (πN) final states we may thus consider states of the form (24) with photon matrix elements

〈πN(pf ;Ψ
f )|J+(0)|N(p)〉 ≡

∫ 1

0

dx√
x(1− x)

∫
d2k

16π3
Ψf ∗(x,k)〈π(p1)N(p2)|J+(0)|N(p)〉 (50)

The pion and nucleon momenta are defined by (20) and we may freely choose the hadronic wave function Ψf (x,k).
The Fourier transformed amplitudes (17) get contributions only from quarks at bq = b, with the initial nucleon
and final πN states localized at zero impact parameter. The Fourier transform of the squared amplitude (46) gives
the distribution of the impact parameter difference between the photon interaction vertices in the amplitude and its
complex conjugate.

The transverse shape of the contributing Fock states reflects only the distribution of the quark struck by the photon,
not that of the other partons. For example, both compact valence (Brodsky-Lepage [14]) Fock states and non-compact
(Feynman [15, 16]) states may contribute to the elastic form factors of the nucleon at large photon virtualities |q|.
Both types of states will contribute at small bq, since the photon interacts only with the x → 1 quark of the Feynman
states, whose impact parameter is close to the transverse center-of-momentum (bN = 0) of the nucleon.

The impact parameter distribution in γ∗N → πN should contract as a function of the relative transverse momentum
k between the final pion and nucleon. Only compact initial nucleons would be expected to have an overlap with πN
states with high k, in analogy to the observed color transparency of high energy pions dissociating into exclusive jets
with high relative momentum [17].

Large angle photo-production cross-sections are consistent with constituent counting rules [18, 19] at surprisingly
low energies. Thus σ(γp → π+n) [20] and σ(γp → K+Λ) [21] are both found to be ∝ E−14

CM at θCM = 90◦. Even
σ(γD → pn) [22] and σ(γ 3He → pp(n)) [23] obey the rules, scaling as E−22

CM . The simplest theoretical prediction is
based on perturbative QCD, which requires that only transversally compact Fock states contribute at large angles.
Data on electro-production at large angles would allow to to measure the actual width of the impact parameter
distribution.

According to the present analysis all contributing Fock states are common to the initial and final states. However,
this does not require a heavy quark QQ̄ pair to be present in the initial nucleon in processes such as γ∗N → KΛ and

The 3 terms correspond to 2, 1 and 0 of the γ* interactions occurring on the 
initial muon.

The imaginary part arises from an angular correlation between b and k .
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We obtain information on the transverse space dynamics of any γ*-
induced process by Fourier transforming wrt. q.

The analysis can be done directly on the cross section.

Requires identification of the  j+ photon current (e.g., high energy limit).

A Fourier range 0 ≤ Q ≤ Qmax provides a resolution   Δb ∼ 1/Qmax

There is no twist expansion.

This type of analysis awaits application to real data.

Applications to basic QED processes work as advertized.
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19Remarks

In heavy quark production:

the b-distribution should narrow with the quark mass if the photon couples 
directly to the heavy quarks.

One may study the b-distribution of diffractive events.

In γ*N → πN , expect the b-distribution to narrow with the relative 
transverse momentum k between the π and the N.

σ(γD → pn) ∝ E–22 at large 
angles, suggesting compact 
states. A measurement of the q2-
dependence would allow a direct 
measurement of the transverse 
size.

with K the number of elementary fields (quarks, photons, leptons, etc.) among / inside the initial and

final particles.

For example, in the case of the deuteron break-up by a photon, γ + D → p + n, we have K =
1 + 6 + 6 = 13 (a photon and 6 quarks inside the initial deuteron and another 6 in the final proton and

neutron). So, the differential cross section is expected to fall with s, asymptotically, as s−11 = E−22
c.m. .

The key word asymptotically always provided an excuse for unnerved HEP theorists in their encounters

with angered experimenters. The JLAB plot in Fig. 1 which I borrowed from Paul Hoyer’s talk [27]

seems to be telling us that this standard excuse is unnecessary here. However, it is again unnerving but

for precisely opposite reason, if you take my meaning. Indeed, it is very difficult to digest how the naive

asymptotic regime manage to settle that early! The lab. energy 1GeV of the incident photon, where the

scaling behaviour starts, is just too low.

The “counting rules” invite us to view a

fast deuteron as a system of six comoving

valence quarks. One of them is punched

by the photon. The other five we have

to properly push ourselves so as to make

them fit into two outgoing nucleons. This

is done by exchanging five gluons be-

tween the quarks in the scattering am-

plitude so that the cross section acquires

the factor α10
s . The picture makes sense

as long as 1) the deuteron is indeed fast

and 2) typical momentum transfers q2 be-

tween quarks are large enough to allow us

to use the concept of gluon exchange and

of the QCD{1} coupling αs(q2) for that

E  (GeV)!

E    –– (!d   pn) / kb GeVd"
dt

22
#

20

CM

Fig. 1: Large angle γ-disintegration of a deuteron [28].

matters. None of these conditions holds for Eγ " 1GeV.

Nonetheless we would have had every right to feel happy about Fig. 1 provided we could con-

vincingly answer but one question: why is such precocious scaling not seen for simpler systems and in

particular for the simplest of them all – the electromagnetic form factor of a pion?

Too smooth?

HERA measurements of the DIS proton structure

function F2(x,Q2) in a wide range of photon vir-

tualities,

0.1GeV2 < Q2 < 35GeV2,

are compiled in Fig. 2. The data are plotted as a

function of the simple variable

ξ = log
0.04

x
log

(
1 +

Q2

0.5GeV2

)

proposed by Dieter Haidt [29].

Being surprisingly smooth, they show no sign of a

“phase transition” when going from large virtualities

(perturbative{1} regime) downto very small scales

where non-perturbative{1} physics should dominate. $
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Fig. 2: F2 for x ≤ 10−3, Q2 ≥ 0.1GeV2 [29].

γ∗N → KΛ

γ∗N → DΛc

Orbital angular momentum in the target may be reflected in the final momenta.


