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Kepler’s “model”
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Comparison between them

CIRCULAR ORBIT
ELLIPTICAL ORBIT
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Models are predictive 
(and can be falsified)
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Models open the way to 
full theories
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We have more and more data

We can’t use first principles calculations 
yet (lattice?)
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We can’t use first principles calculations 
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Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],

– 3 –
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Models
(or model-based assumptions) 
are needed to get the full 
picture
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Models are nice 
(nicer than 
parametrizations?)
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How well do models 
reproduce data?
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Figure 11. The four nucleon electromagnetic Sachs FFs compared to the world data: MIT (purple stars),

MAMI (red circles), JLab (blue squares), as well as older results (black triangles and open symbols). The

references to the data can be found in [61]. Solid curves: results in the χQSM. Dashed curves: results from

the LCCQM of Ref. [62]. The values for the anomalous magnetic moments are given in table 2.

The LCCQM reproduces rather well the trend of the proton data up to Q2 ≈ 1

GeV2. At higher values of the momentum transfer, the slope of Gp
M is too steep and

the curve deviates from the data. This effect is somehow compensated if we look at the

ratio µpGp
E/G

p
M . Here the combined effect of a slightly overestimated Gp

M and a slightly

underestimated Gp
E gives a result for the ratio which follows the fall-off of the data up to

Q2 ≈ 2 GeV2. In the neutron case, the description of the form factors within the LCCQM

is less satisfactory. In particular Gn
E is largely underestimated and we are not able to

reproduce the slope at low Q2. The neutron radius originates as a partial cancellation

between the Dirac radius and the contribution of the anomalous magnetic moment (the

so-called Foldy term) which dominates. In the LCCQM, the Dirac radius is much larger

as compared with the χQSM, leading to a larger cancellation in the neutron radius, which

reaches only 2/3 of the value in the χQSM. As it was shown in Ref. [62], the description in

the LCCQM can be improved by taking into account the contribution of the meson cloud

– 22 –
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Figure 8. Results for the unpolarized PDF xf1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the CTEQ

analysis at NLO of ref. [45].
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Figure 9. Results for the polarized PDF xg1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the analysis of

Ref. [46].

scale of the models to the relevant experimental scales. A key question emerging not

only here but in any nonperturbative calculation concerns the scale at which the model

results for the parton distributions hold. From the point of view of QCD where both

quarks and gluon degrees of freedom contribute, the role of low-energy quark models is

to provide initial conditions for the QCD evolution equations. Therefore, we assume the

existence of a low scale Q2
0 where glue and sea-quark contributions are suppressed, and

the dynamics inside the nucleon is described in terms of three valence quarks confined by

an effective long-range interaction. The actual value of Q2
0 is fixed by evolving back the

unpolarized data, until the valence distribution matches the condition that its first moment

< x >v is equal to the momentum fraction carried by the valence quarks as computed in

the model. Since in our models only valence quarks contribute, the matching condition is

< x(Q2
0) >v= 1. Starting from the initial value < x(Q2) >v≈ 0.36 at Q2 = 10 GeV2 and

fixing the values of ΛQCD and heavy-quark masses as in Ref. [45], we find Q2
0|LO = 0.172

GeV2 and Q2
0|NLO = 0.259 GeV2 after LO and NLO backward evolution, respectively [47].

– 19 –

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

NS

x

x
 f

1
u

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75 1

NS

x

x
 f

1
d

Figure 8. Results for the unpolarized PDF xf1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the CTEQ

analysis at NLO of ref. [45].

0

0.2

0.4

0.6

0 0.25 0.5 0.75 1

NS

x

x
 g

1
u

-0.2

-0.1

0

0 0.25 0.5 0.75 1

NS

x

x
 g

1
d

Figure 9. Results for the polarized PDF xg1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the analysis of
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Sea quarks from χQSM
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Figure 2: The predictions of the SU(2) and SU(3) CQSM for the longitudinally polarized

sea-quark distribution functions, x∆ū(x) and x∆d̄(x) at Q2 = 10GeV2, in comparison with

the DSSV global fit.

fit. A noteworthy feature of the new global fit is the observed pattern of the flavor symmetry

breaking. It indicates that∆ū(x) > 0 and∆d̄(x) < 0 with the magnitude correlation |∆ū(x)| <

|∆d̄(x)|. We emphasize that this characteristic of the flavor symmetry breaking pattern of the

polarized sea-quark distribution is just what the CQSM predicts [28]. An interesting question is

therefore how this unique pattern of symmetry violation arises in the CQSM. Since the physics

is basically common in two versions of the CQSM, we explain it in simpler SU(2) CQSM. To

this end, we first recall the fact that, within the theoretical framework of the CQSM, the

isoscalar and isovector distributions have different theoretical structure due to their different

Nc-dependence [23],[25],[28], so that the longitudinally polarized distribution functions with

each flavor is evaluated as linear combinations of the isoscalar and isovector parts as

∆ū(x) =
1

2

[

(∆ū(x) +∆d̄(x)) + (∆ū(x)−∆d̄(x))
]

, (2)

∆d̄(x) =
1

2

[

(∆ū(x) +∆d̄(x)) − (∆ū(x)−∆d̄(x))
]

. (3)

Shown in Fig.3 are the predictions of the SU(2) CQSM for the isoscalar and isovector com-

binations of the longitudinally polarized quark distribution functions [25]. In this figure, the

distribution functions with negative value of x should be interpreted as antiquark distribution

5

M. Wakamatsu, arXiv:0910.5271

the magnitudes of ∆ū(x) and ∆d̄(x) such that |∆ū(x)| < |∆d̄(x)| in conformity with the new

DSSV global fit. We point out that the above-mentioned feature comes from the basic ansatz

of this semi-phenomenological treatment, which demands that the product

∆q(x, µ2)∆q̄(x, µ2) ≡ P (x), (5)

is universal flavor-independent function P (x) with µ being an low energy input scale of their

evolution program, since the effect of Pauli blocking is only related to the spin of quarks and

antiquarks irrespective of their flavor degrees of freedom. Since it is empirically known that

|∆u(x)| > |∆d(x)|, it naturally follows that |∆ū(x)| < |∆d̄(x)|. It may be of some interest

to check to what extent the above ansatz holds in our explicit dynamical model predictions.

Shown in Fig.4 are the predictions of the SU(2) CQSM for the product of∆u(x) and∆ū(x) and

that of ∆d(x) and ∆d̄(x) at the model energy scale, which we identify with µ2 = 0.30GeV2.

One clearly sees that the ansatz ∆u(x)∆ū(x) = ∆d(x)∆d̄(x) does not hold good at least in

the CQSM. This seems to be an indication that the nontrivial chiral dynamics of QCD besides

the Pauli blocking effect plays some important roles in the physics of the flavor asymmetry of

sea-quark distributions in the nucleon.
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Figure 5: The prediction of the SU(3) CQSM for the polarized strange quark distribution

x∆s(x) in comparison with the DSSV global fit. Here, the solid curve is the prediction of the
SU(3) CQSM for the polarized s-quark distribution, whereas the long-dashed curve is that for

the polarized s̄-quark distribution.
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Unpolarized and helicity PDFs

16

By splitting the total proton momentum sum rule into the contributions of quarks, Pq, and of diquarks, PX , using
the symmetry property (126) we get

Pq + PX =

∫ 1

0
dxx

[

c2
s fu(s)

1 norm(x) + c2
a fu(a)

1 norm(x) + c′2a fd(a′)
1 norm(x)

]

+

∫ 1

0
dxx

[

c2
s fs(u)

1 norm(x) + c2
a fa(u)

1 norm(x) + c′2a fa′(d)
1 norm(x)

]

=

∫ 1

0
dx

[

c2
s fu(s)

1 norm(x) + c2
a fu(a)

1 norm(x) + c′2a fd(a′)
1 norm(x)

]

= c2
s + c2

a + c′2a .

(127)

It is therefore impossible in our spectator model to fulfill at the same time the momentum sum rule and the quark
number sum rule.

Although from the fundamental point of view it is more important to satisfy the momentum sum rule, from the
phenomenological point of view it is impossible to reproduce the parametrizations in a satisfactory way. We decided
therefore to avoid imposing the momentum sum rule and let the fit choose the values of the parameters cX .
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FIG. 4: The distribution functions f1(x) (above) and g1(x) (below) for the up quark (left panel) and the down quark (right
panel). Data are a selection of 25 equidistant points in 0.1 ≤ x ≤ 0.7 from the parametrizations of Ref. [63] (ZEUS2002)
and Ref. [64] (GRSV2000) at LO, respectively (we assigned a constant relative error of 10% to gu

1 and 25% to gd
1 based on

comparisons with similar fits [65]). The curves represent the best fit (χ2/d.o.f. = 3.88) obtained with our spectator model. The
statistical uncertainty bands correspond to ∆χ2 = 1.

In summary, we have 9 free parameters for the model. We fix them by fitting at the same time fu
1 , fd

1 at Q2 = 0.3
GeV2 from Ref. [63], and gu

1 , gd
1 at Q2 = 0.26 GeV2 from Ref. [64] at LO. The fit was performed using the MINUIT

program. A χ2/d.o.f. = 3.88 was reached. The results are shown in Fig. 4. In spite of the very high χ2, the agreement
is acceptable, except perhaps for the down quark helicity distribution. The error band is deduced from the covariance
matrix given by MINUIT and represents the standard 1-σ statistical uncertainty (∆χ2 = 1). The corresponding
values for the various model parameters are listed in Tab. I.
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0. chiral color-dielectric model [Barone et al. PLB 390 
(97)]
1. Soffer bound [Soffer et al. PRD 65 (02)]
2. h1=g1 [Korotkov et al. EPJC 18 (01)]
3. chiral quark-soliton model [Schweitzer et al., PRD 64 
(01)]
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5. light-cone constituent quark model [Pasquini et al., 
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(08)]
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8. parametrization [Anselmino et al., arXiv:0807.0173] 
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Figure 2.22. Results for the (1)-moments of the quark Sivers (upper panels) and Boer-Mulders (lower
panels) functions as function of x. The different curves correspond to the results after (approximate)
evolution from the model scale to Q2 = 2.5 GeV2. Solid curves: light-cone constituent quark model
of ref. [298]. Dashed curves: spectator model of ref. [337]. Dotted curves: bag model of ref. [339, 436].
In the case of the Sivers function, the lighter and darker shaded areas indicate statistical uncertainties
of the parameterizations of ref. [332] and [328, 331]. For the Boer-Mulders function the dashed-dotted
curves are the results of the phenomenological parametrization of refs. [366, 367].

tions [328, 332, 331], valid at an average scale of Q2 = 2.5 GeV2, extracted by a fit to
available experimental data for pion and kaon production in semi-inclusive deep inelastic
scattering. The model results are evolved from the corresponding hadronic scale toQ2 = 2.5
GeV2, by employing those evolution equations which seem most promising to be able to
simulate the correct evolution, which is presently not available. In particular, we evolved
the (1)-moment of the Sivers function by means of the evolution pattern of the unpolarized
parton distribution, while for the (1)-moment Boer-Mulders function we used the evolution
pattern of the chiral-odd transversity. Within the large error bar, the results of both the
LCCQM and spectator model for the Sivers function are compatible with the parameter-
izations for both up and down quark, although the shapes of the distributions and the
magnitude of the up- and down-quark contributions are quite different. On the other hand,
the bag model predicts much smaller results, for both the Sivers and Boer-Mulders func-
tions. In all the models the Boer-Mulders function has the same sign for both the up and
down contributions, confirming theoretical expectations [334, 448]. Furthermore, the up
and down contributions to the Boer-Mulders function are expected to have the same order
of magnitude within the available parametrizations [366, 367, 370, 449]. This is confirmed
from the predictions of the LCCQM and bag model, while it is at variance with the specta-
tor model where the up distribution is more than twice bigger than the down distribution.
However, we note that the available data do not allow yet a full fit of h⊥1 with its x and k2⊥
dependence and the available phenomenological parameterizations are only first attempts
to extract information on this distribution. New experimental data will play a crucial role
to better constrain these analyses.
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Ji vs. Jaffe-Manohar
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JiJaffe & Manohar
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FIG. 1: Schematic comparison between the two decompositions (1) and (4) of the nucleon spin. In general, only 1

2
∆Σ ≡

1

2

P

q
∆q

is common to both decompositions.

into quark spin, quark OAM, and gluon (total) angular momentum is obtained from the expectation value of

M0xy =
∑

q

1

2
q†Σzq +

∑

q

q†
(

!r × i !D
)z

q +
[

!r ×
(

!E × !B
)]z

(5)

with i !D = i!∂ − g !A. Its main advantages are that each term can be expressed as the expectation value of a manifestly
gauge invariant local operator and that the quark total angular momentum Jz

q = 1
2
∆q+Lz

q can be related to generalized
parton distributions (GPDs), using [3]

Jz
q =

1

2

∫ 1

0

dxx [q(x) + Eq(x, 0, 0)] , (6)

and can thus be measured in deeply virtual Compton scattering or calculated in lattice gauge theory. Its main
disadvantage is that both quark OAM Lz

q as well as gluon angular momentum Jz
g contain interactions through the

vector potential in the gauge covariant derivative, which complicates their physical interpretation.
Since the expectation value of q̄γzΣzq vanishes for a parity eigenstate, one can replace q†Σzq −→ q̄γ+Σzq = q†+γ5q+,

i.e. the ∆q are common to both decompositions. This is not the case for all the other terms. For example, the angular
momenta in these decompositions (1),(4) are not defined through matrix elements of the same operator and one should
not expect them to have the same numerical value. However, no intuition exists as to how large that difference is.

In the matrix element defining Lz
q , one may make the replacement

q†
(

!r × i !D
)z

q = q̄γ0
(

!r × i !D
)z

q −→ q̄
(

γ0 + γz
)

(

!r × i !D
)z

q = q†+

(

!r × i !D
)z

q+, (7)

provided that the expectation value is taken in a parity eigenstate. While the Dirac structure of the operator on the
r.h.s. of (7) is now the same as that appearing in (2), Eq. (7) still contains the transverse component of the vector
potential through the gauge covariant derivative, and therefore, even in light-cone gauge, Lz

q and Lz
q differ by the

expectation value of q†+

(

!r × g !A
)z

q+. While it has long been realized that in general Lz
q $= Lz

q , The main purpose of

this paper is to address this issue first in the context of a scalar diquark model and then in QED.

II. ORBITAL ANGULAR MOMENTUM IN THE SCALAR DIQUARK MODEL

In a two particle system we introduce center of momentum and relative ⊥ coordinates as

P⊥ ≡ p1⊥ + p2⊥ (8)

R⊥ ≡ x1r1⊥ + x2r2⊥ = xr1⊥ + (1 − x)r2⊥

k⊥ ≡ x2p1⊥ − x1p2⊥ = (1 − x)p1⊥ − xp2⊥

r⊥ ≡ r1⊥ − r2⊥ (9)

see talk by M. Burkardt
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Lq = −h⊥(1)q
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9

The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
[

W+∞
(

− 1
2z; 1

2z
)

−W−∞
(

− 1
2z; 1

2z
)
] ∣
∣
∣z+=0+

!zT =!0T

= 0 . (67)

The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds

i ∂i
T

[

W+∞
(

− 1
2z; 1

2z
)

−W−∞
(

− 1
2z; 1

2z
)
] ∣
∣
∣z+=0+

!zT =!0T

= g

∫

dy− W
(

− 1
2z; y

)

ta F+i
a

(

y
)

W
(

y; 1
2z

)
∣
∣
∣y+=z+=0+

!yT =!zT =!0T

= 2W
(

− 1
2z; 1

2z
)

Iq,i
(

1
2z

)
∣
∣
∣z+=0+

!zT =!0T

, (68)

where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by

Iq,i
(

1
2z

)

=
g

2

∫

dy− W
(

1
2z; y

)

ta F+i
a

(

y
)

W
(

y; 1
2z

)
∣
∣
∣y+=z+

!yT =!zT

. (69)

Plugging the results together one arrives at the following
expression for the average transverse momentum,

〈

kq,i
T (x)

〉

UT

=
1

2

∫
dz−

2π
eik·z 〈

P ; #ST

∣
∣ ψ̄

(

− 1
2z

)

γ+

×W
(

− 1
2z; 1

2z
)

Iq,i
(

1
2z

)

ψ
(

1
2z

) ∣
∣P ; #ST

〉
∣
∣
∣z+=0+

!zT =!0T

.(70)

Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form

〈

kq,i
T (x)

〉

UT

=
1

2

∫

d2#bT

∫
dz−

2π
eixP+z− 〈

P+,#0T ; S
∣
∣ ψ̄

(

z1

)

γ+

×W
(

z1; z2

)

Iq,i
(

z2

)

ψ
(

z2

) ∣
∣P+,#0T ; S

〉

, (71)

with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type

〈

kq,i
T (x)

〉

UT
=

∫

d2#kT ki
T Φq(x,#kT ; S)

#
∫

d2#bT Iq,i(x,#bT )Fq(x,#bT ; S) , (72)

where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads
〈

kq,i
T (x)

〉

UT

= −
∫

d2#kT ki
T

εjk
T kj

T Sk
T

M
f⊥q
1T (x,#k 2

T )

#
∫

d2#bT Iq,i(x,#bT )
εjk
T bj

T Sk
T

M

(

Eq(x,#b 2
T )

)′

. (73)

Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
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The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds
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where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by
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Plugging the results together one arrives at the following
expression for the average transverse momentum,
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type
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where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads
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Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)
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UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
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where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type

〈
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=

∫
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T Φq(x,#kT ; S)

#
∫

d2#bT Iq,i(x,#bT )Fq(x,#bT ; S) , (72)

where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads
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Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
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The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds
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where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by
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Plugging the results together one arrives at the following
expression for the average transverse momentum,
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type
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=
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where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.
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Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum
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caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
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the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already

9

The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
[
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The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds
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where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by
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Plugging the results together one arrives at the following
expression for the average transverse momentum,
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type
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#
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where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.
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Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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FIG. 4: (a) Lowest order diagram for T-odd TMDs in spectator model calculations containing the interaction of the active
quark with the target remnant. The eikonal propagator arising from the Wilson line in the operator definition of TMDs is
indicated by a double line. Note that only the imaginary part of the box diagram on the left-hand side (LHS) of the cut
is relevant for the calculation of T-odd functions. The Hermitian conjugate diagram (h.c.) is not shown. (b) Lowest order
diagram for GPDs in spectator model calculations. The topology of diagram (a) matches with the one of diagram (b) if the
quark-spectator interaction, described by the lensing function I

q,i, is factored out.

in perturbation theory. In addition, we find that those
gluon distributions in the quark target model, which en-
ter the relation of third type as indicated in (84), satisfy
a relation with exactly the structure of (109).

As expected, the general structure of the relation
in (101) and in (109) is different. Note that due to the
Wilson line contribution to the T-odd TMDs, the prefac-
tor on the RHS in (101) contains couplings which do not
appear in (109). Moreover, the relative power of (1− x)
between the moments of the TMDs and of the GPDs
differs for both types of relations.

Evaluating (109) for three specific values of n one finds

h⊥q (0)
1T (x) =

3

(1 − x)2
H̃q

T (x, 0, 0) , (110)

h⊥q (1/2)
1T (x) =

8

(2π)2 (1 − x)2
H̃q (1/2)

T (x) , (111)

h⊥q (1)
1T (x) =

1

(2π) (1 − x)2
H̃q (1)

T (x) . (112)

Equations (110)–(112) are the counterparts of the rela-
tions of second type in (104)–(106).

Keeping in mind the discussion in Sec. III C [see in par-
ticular (76)] one may wonder if the relation of third type
in (109) can be rewritten such that the second deriva-
tive of the impact parameter distribution H̃q

T shows up.
This is indeed possible for arbitrary values of n. Instead
of providing a general formula we limit this discussion
to the particular case n = 1 in which the most compact
and appealing result follows. To this end we exploit the
model-independent identity

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

= −π

∫ ∞

0
db2

T
1

2M2
2

(

H̃q
T (x,"b 2

T )

)′

=
π

M2
H̃q

T (x, 0)

=
1

(2π) (1 − x)2
H̃q (1)

T (x) . (113)

In (113) integration by parts is used in order to perform
the first step. Combining now Eqs. (112) and (113) one
immediately obtains

h⊥q (1)
1T (x) =

∫

d2"kT

"k 2
T

2M2
h⊥q

1T (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

. (114)

Note that this relation has a strong similarity to the re-
lations of first type in Eqs. (61)–(63). Exactly the same
result holds for the relation of third type containing the
gluon distributions [see (76)], i.e.,

h⊥g (1)
1 (x) =

∫

d2"kT

"k 2
T

2M2
h⊥g

1 (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

Eg
T (x,"b 2

T ) + 2H̃g
T (x,"b 2

T )

)′′

. (115)

E. Relation of fourth type

Eventually, the relation of fourth type indicated in (77)
and (85) is considered. In the framework of the quark
target model calculation at lowest order such a relation
is satisfied because both the TMD h⊥g

1T and the GPD
H̃g

T vanish [see Eqs. (B18) and (B30)]. In order to ob-
tain nonzero results for those distributions higher order
diagrams have to be studied. At present one can say nei-
ther if higher order results obey a relation of fourth type
nor how the specific form of such a relation could look
like. One can only speculate that a possible relation of
fourth type may be similar to the relation of second type
because in both cases a T-odd TMD enters.

F. Higher order diagrams

As already pointed out above so far nontrivial relations
between GPDs and TMDs are only established if the
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)

∗Electronic address: alessandro.bacchetta@unipv.it
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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Constraining quark angular momentum through semi-inclusive measurements
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)

∗Electronic address: alessandro.bacchetta@unipv.it
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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Constraining quark angular momentum through semi-inclusive measurements
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].
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Constraining quark angular momentum through semi-inclusive measurements
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-

x f
1 T

!!1" !x"

!0.04

!0.03

!0.02

!0.01

0.00

u

0.00

0.01

0.02

0.03

0.04
d

!0.004

0.000

0.004
u

0.2 0.4 0.6 0.8

x

!0.004

0.000

0.004

d

FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].

2

At the starting scale Q0, we use the following unpolarized
distribution and fragmentation functions

fa
1 (x, p

2
T ;Q

2
0) =

fa
1 (x;Q

2
0)

π〈p2T 〉
e−p2

T /〈p2
T 〉, (5)

Da
1(z, k

2
T ;Q

2
0) =

Da
1(z;Q

2
0)

πz2〈k2T 〉
e−k2

T /〈k2
T 〉, (6)

where z is the fraction of the energy of the fragment-
ing parton a carried by the detected hadron. For fa

1 (x)
we use the MSTW08LO set [17], for Da

1(z) we use the
DSS LO set [18]. We fix the width of the transverse-
momentum distributions for initial and fragmenting par-
tons, respectively, as

〈p2T 〉 = 0.14 GeV2, z2〈k2T 〉 = 0.42 z0.54(1− z)0.37 GeV2.
(7)

These parameters have been implemented in the HER-
MES gmc trans Monte Carlo generator and are known
to give a good description of the HERMES data [19]. In
principle, these functions should be evolved according to
TMD evolution [20]. However, we choose here to imple-
ment only the evolution of their collinear part.

Neglecting the contribution of heavier c, b, t flavors, we
parametrize the Sivers function in the following way (in-
spired by [15]):

f⊥a
1T (x, p2T ;Q

2
0) = f⊥(0)a

1T (x;Q2
0)

M2
1 + 〈p2T 〉

πM2
1 〈p2T 〉

e−p2
T /M2

1 e−p2
T /〈p2

T 〉
(8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f⊥(0)qv
1T (x;Q2

0) = Cqv
√
2e

MM1

M2
1 + 〈p2T 〉

1− x/αqv

|αqv − 1| (1− x)fqv
1 (x;Q2

0),

(9)

f⊥(0)q̄
1T (x;Q2

0) = C q̄
√
2e

MM1

M2
1 + 〈p2T 〉

(1− x) f q̄
1 (x;Q

2
0).

(10)

Note that atQ0 we establish a relation between the Sivers
function for the combinations qv, q̄, and the correspond-
ing unpolarized PDF, at variance with what has been
done in the literature [15, 16]. This will turn out to be im-
portant when establishing a relation with the anomalous
magnetic moment, since it guarantees that the valence
Sivers function is integrable at any scale. We multiply
the unpolarized PDF by (1− x) to respect the predicted
high-x behavior of the Sivers function [21]. We intro-
duce the free parameter αqv to allow for the presence of
a node in the Sivers function at x = αqv , as suggested by
diquark model calculations [9, 10] and phenomenological
studies [22] (see the discussion in Ref. [23]). We imposed
constraints on the parameters Ca in order to respect the
positivity bound for the Sivers function [24], neglecting

the contribution of the helicity distribution g1(x) (as in
Ref. [15]).
Also for f⊥

1T , we neglect the effect of TMD scale

evolution [25]. We assume that f⊥(0)
1T (x;Q2) evolves

in the same way as f1(x;Q2), based on the results of
Refs. [26, 27] (note however that a slightly different re-
sult has been obtained in Ref. [28]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

Asin(φh−φS)
UT (x, z, P 2

h⊥, Q
2) = −M2

1 (M
2
1 + 〈p2T 〉)

〈P 2
Siv〉2

Ph⊥
M

z3
(
1 +

〈k2T 〉
〈p2T 〉

)3

e
− P2

h⊥
〈P2

Siv〉

∑
a e

2
a f⊥(0)a

1T (x;Q2) Da
1(z;Q

2)∑
a e

2
a fa

1 (x;Q
2) Da

1(z;Q
2)

,

(11)

where

〈P 2
Siv〉 = z2M2

1

(
1 +

〈k2T 〉
〈p2T 〉

)(
1 +

〈k2T 〉
〈p2T 〉

+
〈k2T 〉
M2

1

)
, (12)

and Ph⊥ is the modulus of the transverse momentum of
the detected final hadron in the lab frame.
For the lensing function we assume the following

Ansatz

L(x) =
K

(1− x)η
. (13)

The choice of this form is guided by model calcula-
tions [6–10], by the large-x limit of the GPD E [21],
and by the phenomenological analysis of the GPD E pro-
posed in Ref. [29]. We checked a posteriori that there is
no violation of the positivity bound on the GPD Eqv as
expressed in Ref. [30], again neglecting the contribution
of g1(x). The nucleon anomalous magnetic moments are
computed as

κp =

∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =

∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

(14)

We perform a combined χ2 fit to 105 HERMES proton
data [31], to 104 COMPASS deuteron data [32], and to
8 JLab neutron data [33], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental nor-
malization uncertainty. Since the HERMES and COM-
PASS data are presented as three projections of the same
data set (binned in three different ways: in x, z, Ph⊥),
we consider all three projections but we multiply their
statistical errors by a factor

√
3 and we divide by 3 the

number of these bins (105 and 104) when counting the
number of degrees of freedom. The anomalous magnetic
moments are known to a precision of 10−7 or higher [34].
However, given the typical uncertainties on PDF extrac-
tions, our computation of κ is affected by a theoretical
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Fitting data

Constraining quark angular momentum through semi-inclusive measurements

Alessandro Bacchetta1, 2, ∗ and Marco Radici2, †

1Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, and
2INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy

The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)

∗Electronic address: alessandro.bacchetta@unipv.it
†Electronic address: marco.radici@pv.infn.it

where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.

ar
X

iv
:1

1
0

7
.5

7
5

5
v

1
  

[h
ep

-p
h
] 

 2
8
 J

u
l 

2
0
1

1

3

Cuv Cdv Cū C d̄

−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-

x f
1 T
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].

2

At the starting scale Q0, we use the following unpolarized
distribution and fragmentation functions

fa
1 (x, p

2
T ;Q

2
0) =

fa
1 (x;Q

2
0)

π〈p2T 〉
e−p2

T /〈p2
T 〉, (5)

Da
1(z, k

2
T ;Q

2
0) =

Da
1(z;Q

2
0)

πz2〈k2T 〉
e−k2

T /〈k2
T 〉, (6)

where z is the fraction of the energy of the fragment-
ing parton a carried by the detected hadron. For fa

1 (x)
we use the MSTW08LO set [17], for Da

1(z) we use the
DSS LO set [18]. We fix the width of the transverse-
momentum distributions for initial and fragmenting par-
tons, respectively, as

〈p2T 〉 = 0.14 GeV2, z2〈k2T 〉 = 0.42 z0.54(1− z)0.37 GeV2.
(7)

These parameters have been implemented in the HER-
MES gmc trans Monte Carlo generator and are known
to give a good description of the HERMES data [19]. In
principle, these functions should be evolved according to
TMD evolution [20]. However, we choose here to imple-
ment only the evolution of their collinear part.

Neglecting the contribution of heavier c, b, t flavors, we
parametrize the Sivers function in the following way (in-
spired by [15]):

f⊥a
1T (x, p2T ;Q

2
0) = f⊥(0)a

1T (x;Q2
0)

M2
1 + 〈p2T 〉

πM2
1 〈p2T 〉

e−p2
T /M2

1 e−p2
T /〈p2

T 〉
(8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f⊥(0)qv
1T (x;Q2

0) = Cqv
√
2e

MM1

M2
1 + 〈p2T 〉

1− x/αqv

|αqv − 1| (1− x)fqv
1 (x;Q2

0),

(9)

f⊥(0)q̄
1T (x;Q2

0) = C q̄
√
2e

MM1

M2
1 + 〈p2T 〉

(1− x) f q̄
1 (x;Q

2
0).

(10)

Note that atQ0 we establish a relation between the Sivers
function for the combinations qv, q̄, and the correspond-
ing unpolarized PDF, at variance with what has been
done in the literature [15, 16]. This will turn out to be im-
portant when establishing a relation with the anomalous
magnetic moment, since it guarantees that the valence
Sivers function is integrable at any scale. We multiply
the unpolarized PDF by (1− x) to respect the predicted
high-x behavior of the Sivers function [21]. We intro-
duce the free parameter αqv to allow for the presence of
a node in the Sivers function at x = αqv , as suggested by
diquark model calculations [9, 10] and phenomenological
studies [22] (see the discussion in Ref. [23]). We imposed
constraints on the parameters Ca in order to respect the
positivity bound for the Sivers function [24], neglecting

the contribution of the helicity distribution g1(x) (as in
Ref. [15]).
Also for f⊥

1T , we neglect the effect of TMD scale

evolution [25]. We assume that f⊥(0)
1T (x;Q2) evolves

in the same way as f1(x;Q2), based on the results of
Refs. [26, 27] (note however that a slightly different re-
sult has been obtained in Ref. [28]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

Asin(φh−φS)
UT (x, z, P 2

h⊥, Q
2) = −M2

1 (M
2
1 + 〈p2T 〉)

〈P 2
Siv〉2

Ph⊥
M

z3
(
1 +

〈k2T 〉
〈p2T 〉

)3

e
− P2

h⊥
〈P2

Siv〉

∑
a e

2
a f⊥(0)a

1T (x;Q2) Da
1(z;Q

2)∑
a e

2
a fa

1 (x;Q
2) Da

1(z;Q
2)

,

(11)

where

〈P 2
Siv〉 = z2M2

1

(
1 +

〈k2T 〉
〈p2T 〉

)(
1 +

〈k2T 〉
〈p2T 〉

+
〈k2T 〉
M2

1

)
, (12)

and Ph⊥ is the modulus of the transverse momentum of
the detected final hadron in the lab frame.
For the lensing function we assume the following

Ansatz

L(x) =
K

(1− x)η
. (13)

The choice of this form is guided by model calcula-
tions [6–10], by the large-x limit of the GPD E [21],
and by the phenomenological analysis of the GPD E pro-
posed in Ref. [29]. We checked a posteriori that there is
no violation of the positivity bound on the GPD Eqv as
expressed in Ref. [30], again neglecting the contribution
of g1(x). The nucleon anomalous magnetic moments are
computed as

κp =

∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =

∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

(14)

We perform a combined χ2 fit to 105 HERMES proton
data [31], to 104 COMPASS deuteron data [32], and to
8 JLab neutron data [33], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental nor-
malization uncertainty. Since the HERMES and COM-
PASS data are presented as three projections of the same
data set (binned in three different ways: in x, z, Ph⊥),
we consider all three projections but we multiply their
statistical errors by a factor

√
3 and we divide by 3 the

number of these bins (105 and 104) when counting the
number of degrees of freedom. The anomalous magnetic
moments are known to a precision of 10−7 or higher [34].
However, given the typical uncertainties on PDF extrac-
tions, our computation of κ is affected by a theoretical
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Fitting data

Constraining quark angular momentum through semi-inclusive measurements
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The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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Cuv Cdv Cū C d̄

−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].

2

At the starting scale Q0, we use the following unpolarized
distribution and fragmentation functions

fa
1 (x, p

2
T ;Q

2
0) =

fa
1 (x;Q

2
0)

π〈p2T 〉
e−p2

T /〈p2
T 〉, (5)

Da
1(z, k

2
T ;Q

2
0) =

Da
1(z;Q

2
0)

πz2〈k2T 〉
e−k2

T /〈k2
T 〉, (6)

where z is the fraction of the energy of the fragment-
ing parton a carried by the detected hadron. For fa

1 (x)
we use the MSTW08LO set [17], for Da

1(z) we use the
DSS LO set [18]. We fix the width of the transverse-
momentum distributions for initial and fragmenting par-
tons, respectively, as

〈p2T 〉 = 0.14 GeV2, z2〈k2T 〉 = 0.42 z0.54(1− z)0.37 GeV2.
(7)

These parameters have been implemented in the HER-
MES gmc trans Monte Carlo generator and are known
to give a good description of the HERMES data [19]. In
principle, these functions should be evolved according to
TMD evolution [20]. However, we choose here to imple-
ment only the evolution of their collinear part.

Neglecting the contribution of heavier c, b, t flavors, we
parametrize the Sivers function in the following way (in-
spired by [15]):

f⊥a
1T (x, p2T ;Q

2
0) = f⊥(0)a

1T (x;Q2
0)

M2
1 + 〈p2T 〉

πM2
1 〈p2T 〉

e−p2
T /M2

1 e−p2
T /〈p2

T 〉
(8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f⊥(0)qv
1T (x;Q2

0) = Cqv
√
2e

MM1

M2
1 + 〈p2T 〉

1− x/αqv

|αqv − 1| (1− x)fqv
1 (x;Q2

0),

(9)

f⊥(0)q̄
1T (x;Q2

0) = C q̄
√
2e

MM1

M2
1 + 〈p2T 〉

(1− x) f q̄
1 (x;Q

2
0).

(10)

Note that atQ0 we establish a relation between the Sivers
function for the combinations qv, q̄, and the correspond-
ing unpolarized PDF, at variance with what has been
done in the literature [15, 16]. This will turn out to be im-
portant when establishing a relation with the anomalous
magnetic moment, since it guarantees that the valence
Sivers function is integrable at any scale. We multiply
the unpolarized PDF by (1− x) to respect the predicted
high-x behavior of the Sivers function [21]. We intro-
duce the free parameter αqv to allow for the presence of
a node in the Sivers function at x = αqv , as suggested by
diquark model calculations [9, 10] and phenomenological
studies [22] (see the discussion in Ref. [23]). We imposed
constraints on the parameters Ca in order to respect the
positivity bound for the Sivers function [24], neglecting

the contribution of the helicity distribution g1(x) (as in
Ref. [15]).
Also for f⊥

1T , we neglect the effect of TMD scale

evolution [25]. We assume that f⊥(0)
1T (x;Q2) evolves

in the same way as f1(x;Q2), based on the results of
Refs. [26, 27] (note however that a slightly different re-
sult has been obtained in Ref. [28]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

Asin(φh−φS)
UT (x, z, P 2

h⊥, Q
2) = −M2

1 (M
2
1 + 〈p2T 〉)

〈P 2
Siv〉2

Ph⊥
M

z3
(
1 +

〈k2T 〉
〈p2T 〉

)3

e
− P2

h⊥
〈P2

Siv〉

∑
a e

2
a f⊥(0)a

1T (x;Q2) Da
1(z;Q

2)∑
a e

2
a fa

1 (x;Q
2) Da

1(z;Q
2)

,

(11)

where

〈P 2
Siv〉 = z2M2

1

(
1 +

〈k2T 〉
〈p2T 〉

)(
1 +

〈k2T 〉
〈p2T 〉

+
〈k2T 〉
M2

1

)
, (12)

and Ph⊥ is the modulus of the transverse momentum of
the detected final hadron in the lab frame.
For the lensing function we assume the following

Ansatz

L(x) =
K

(1− x)η
. (13)

The choice of this form is guided by model calcula-
tions [6–10], by the large-x limit of the GPD E [21],
and by the phenomenological analysis of the GPD E pro-
posed in Ref. [29]. We checked a posteriori that there is
no violation of the positivity bound on the GPD Eqv as
expressed in Ref. [30], again neglecting the contribution
of g1(x). The nucleon anomalous magnetic moments are
computed as

κp =

∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =

∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

(14)

We perform a combined χ2 fit to 105 HERMES proton
data [31], to 104 COMPASS deuteron data [32], and to
8 JLab neutron data [33], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental nor-
malization uncertainty. Since the HERMES and COM-
PASS data are presented as three projections of the same
data set (binned in three different ways: in x, z, Ph⊥),
we consider all three projections but we multiply their
statistical errors by a factor

√
3 and we divide by 3 the

number of these bins (105 and 104) when counting the
number of degrees of freedom. The anomalous magnetic
moments are known to a precision of 10−7 or higher [34].
However, given the typical uncertainties on PDF extrac-
tions, our computation of κ is affected by a theoretical
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Results for the Sivers function3

Cuv Cdv Cū C d̄

−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].

Tuesday, 30 August 2011



Results for the Sivers function3

Cuv Cdv Cū C d̄
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GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
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anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
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at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the
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Finally, using Eq. (1), we can compute the total angu-
lar momentum carried by each flavor q and q̄ at Q2

L = 1
GeV2. We get

Ju = 0.266± 0.002+0.009
−0.014, J ū = 0.014± 0.004+0.001

−0.000,

Jd = −0.012± 0.003+0.024
−0.006, J d̄ = 0.022± 0.006+0.001

−0.000,

Js = 0.005+0.000
−0.007, J s̄ = 0.004+0.000

−0.005.

As before, the first symmetric error is statistical and
related to the errors on the fit parameters, while the
second asymmetric error is theoretical and reflects the
uncertainty introduced by the other possible scenarios.
Our present estimates agree with other analyses based
on the forward limit of the GPD E extracted from ex-
periments [29, 30, 38], including also sea quarks [39]. It
indicates a total contribution to the nucleon spin from
quarks and antiquarks of 0.299 ± 0.008+0.035

−0.032, of which
89% is carried by the up quark.

In summary, we have presented a determination of
the quark angular momentum assuming a connection be-

tween the collinear limit of the generalized parton dis-
tribution E and the Sivers transverse-momentum distri-
bution. We have shown that it is possible to fit at the
same time the nucleon anomalous magnetic moments and
data for semi-inclusive single-spin asymmetries produced
by the Sivers effect. Several different scenarios produce
equally good χ2 fits. Our strategy opens a plausible way
to quantifying the quark angular momentum, and im-
poses additional constraints on the Sivers function.
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Figure 4.2. The isosinglet moment Bu+d
20 (t) as a function of simulated pion mass and t [604].

Figure 4.3. Lattice results for Ju and Jd compared with various models [582, 701, 605, 702] and
constraints derived from experiment (colored bands)

2. The difference between the two sheets gives the variation of HBChPT fits. However, it
would be safer to only use ensembles with squared pion masses belowm2

π ≤ 0.25GeV2,
where ChPT is rather well under control, which was obviously not possible with the
ensembles available for this analysis.

3. One is especially interested in the t = 0 limit of B20 in view of Ji’s sum rule,
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Already today lattice simulations give rather precise results for the total angular
momentum carried by the different quark species in a nucleon, see Fig. 4.3. In future
these results will further improve, e.g. due to the use of twisted boundary conditions
to realize proton momenta different from the natural ones on a lattice, i.e. different
from pj =

2π
L nj.

Thus, much has been done already, and much more will be done in future. Extrapolating
the progress of recent years to the time an EIC will start operation it seems realistic to expect
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Using model relations, 
we can obtain
information on
angular momentum
from TMDs
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