Models for TMDs and transversity

 Alessandro Bacchetta
Pavia University and INFN Pavia

INFN
C

Coming up during the week

MON: Mert Aybat, "Universality and evolution of TMDs and FFs"
MON: Marc Schlegel, "FSI and T-odd TMD PDFs"
TUE: Petr Zavada, "Relation between TMDs and PDFs in the covariant parton model approach"

THU: Masashi Wakamatsu, "Recent work on orbital angular momentum"

THU: Matthias Burkardt, "Accessing orbital angular momentum from TMDs and GPDs"

FRI: Cédric Lorcé, "Hadron tomography through Wigner distributions"

Why models?

Copernican "model"

Kepler's "model"

Comparison between them

Models are predictive (and can be falsified)

Models open the way to full theories

* We have more and more data

* We have more and more data

* We can't use first principles calculations yet (lattice?)
* We have more and more data
* We can't use first principles calculations yet (lattice?)
*We need models

The blind men and the elephant

It's a spear!

It's a snake!

Models (or model-based assumptions) are needed to get the full picture

Models are nice

 (nicer than parametrizations?)
How well do models reproduce data?

Models on the market

Models on the market

* Light-cone constituent quark models (ask Pasquini, Lorcé, Scopetta)

Models on the market

* Light-cone constituent quark models (ask Pasquini, Lorcé, Scopetta)
* Spectator models (ask Radici, Gamberg, Goldstein, Schlegel, Kotzinian, Brodsky)

Models on the market

* Light-cone constituent quark models (ask Pasquini, Lorcé, Scopetta)
* Spectator models (ask Radici, Gamberg, Goldstein, Schlegel, Kotzinian, Brodsky)
* Bag model (ask Avakian, Scopetta)

Models on the market

* Light-cone constituent quark models (ask Pasquini, Lorcé, Scopetta)
* Spectator models (ask Radici, Gamberg, Goldstein, Schlegel, Kotzinian, Brodsky)
* Bag model (ask Avakian, Scopetta)
* Chiral quark-soliton model (ask Wakamatsu, Lorcé)

Models on the market

* Light-cone constituent quark models (ask Pasquini, Lorcé, Scopetta)
* Spectator models (ask Radici, Gamberg, Goldstein, Schlegel, Kotzinian, Brodsky)
* Bag model (ask Avakian, Scopetta)
* Chiral quark-soliton model (ask Wakamatsu, Lorcé)
* Covariant parton model (ask Zavada)

Form factors

Form factors

* C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Unpolarized and helicity PDFs

........... LCCOM

+ + + MSTW08NLO LSS07
* C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Sea quarks from XQSM

* M. Wakamatsu, arXiv:0910.5271

Unpolarized and helicity PDFs

SPECTATOR VS. ZEUSO2 PDFS

SPECTATOR vs. GRSVOO PDFS

* Bacchetta, Conti, Radici, PRD

Transversity

0. chiral color-dielectric model [Barone et al. PLB 390 (97)]

1. Soffer bound [Soffer et al. PRD 65 (02)]
2. $h_{1}=g_{1}$ [Korotkov et al. EPJC 18 (01)]
3. chiral quark-soliton model [Schweitzer et al., PRD 64 (01)]
4. chiral quark-soliton model [Wakamatsu, PLB 509 (01)]
5. light-cone constituent quark model [Pasquini et al., PRD 72 (05)]
6. quark-diquark model [Cloet, Bentz, Thomas, PLB 659 (08)]
7. quark-diquark model [Bacchetta, Conti, Radici, PRD 78 (08)]
8. parametrization [Anselmino et al., arXiv:0807.0173]

THE SIGN OF TRANSVERSITY IS FIXED BY THE MODELS

THE SIGN OF TRANSVERSITY IS FIXED BY THE MODELS

MODELS TEND TO OVERSHOOT THE PARAMETRIZATION

CHIRAL QUARK-SOLITON

CHIRAL QUARK-SOLITON

CHIRAL QUARK-SOLITON

DIQUARK SPECTATOR
WITHIN THE SAME MODELS, DIFFERENT CHOICES CAN LEAD TO DIFFERENT RESULTS

Sivers function

Sivers function

SIGN (AND SOMETIMES SIZE) PREDICTED CORRECTLY

Present models give only a qualitative description

Open questions

Open questions

* Tune parameters in the best way

Open questions

* Tune parameters in the best way
* Include contributions from sea quarks and gluons

Open questions

* Tune parameters in the best way
** Include contributions from sea quarks and gluons
* Study the matching with pQCD

Model relations

Wandzura-Wilczek relations

$$
g_{T}=g_{1 T}^{(1)} / x+\widetilde{g}_{T}
$$

Wandzura-Wilczek relations

$$
g_{T}=g_{1 T}^{(1)} / x+\widetilde{g}_{T}
$$

TMD

Pure twist-3

Wandzura-Wilczek relations

$$
g_{T}=g_{1 T}^{(1)} / x+\widetilde{g}_{T}
$$

TMD

Pure twist-3

WW APPROXIMATION: REMOVE ALL PURE TWIST-3 (I.E., REMOVE INTERACTIONS)

Wandzura-Wilczek relations

$$
g_{T}=g_{1 T}^{(1)} / x+\widetilde{g}_{T}
$$

TMD

Pure twist-3

WW APPROXIMATION: REMOVE ALL PURE TWIST-3 (I.E., REMOVE INTERACTIONS)
implies also $f_{1 T}^{\perp}=0$

Experimental evidence?

* Accardi, Bacchetta, Melnitchouk, Schlegel, JHEP 11 (09)

Experimental evidence?

2 SIGMA BREAKING

Lorentz-invariance relations

$$
g_{T}=g_{1 L}+\frac{d}{d x} g_{1 T}^{(1)}+\widehat{g}_{T}
$$

Lorentz-invariance relations

$$
g_{T}=g_{1 L}+\frac{d}{d x} g_{1 T}^{(1)}+\widehat{g}_{T}
$$

Twist-2 PDF
TMD Pure twist-3

Lorentz-invariance relations

$$
g_{T}=g_{1 L}+\frac{d}{d x} g_{1 T}^{(1)}+\widehat{g}_{T}
$$

TMD Pure twist-3

LI APPROXIMATION: REMOVE SOME KIND OF PURE TWIST-3 (I.E., REMOVE GAUGE FIELDS)

Lorentz-invariance relations

Twist-2 PDF TMD Pure twist-3

LI APPROXIMATION: REMOVE SOME KIND OF PURE TWIST-3 (I.E., REMOVE GAUGE FIELDS)
 implies also $f_{1 T}^{\perp}=0$

Spherical-symmetry relations

\author{

* C. Lorcé, B. Pasquini, arXiv:1104.5651
}

Spherical-symmetry relations

$$
g_{1}-h_{1}=h_{1 T}^{\perp(1)}
$$

Spherical-symmetry relations

$g_{1}-h_{1}=h_{1 T}^{\perp(1)}$
HELICITY -TRANSVERSITY= PRETZELOSITY

* C. Lorcé, B. Pasquini, arXiv:1104.5651

Spherical-symmetry relations

$$
g_{1}-h_{1}=h_{1 T}^{\perp(1)}
$$

HELICITY -TRANSVERSITY= PRETZELOSITY

$h_{1 L}^{\perp}=-g_{1 T}$
WORM GEARS

* C. Lorcé, B. Pasquini, arXiv:1104.5651

Spherical-symmetry relations

$$
\begin{aligned}
& \qquad g_{1}-h_{1}=h_{1 T}^{\perp(1)} \\
& \text { HELICITY -TRANSVERSITY= PRETZELOSITY } \\
& h_{1 L}^{\perp}=-g_{1 T} \\
& \text { WORM GEARS }
\end{aligned} f_{1 T}^{\perp}=0
$$

\author{

* C. Lorcé, B. Pasquini, arXiv:1104.5651
}

Spherical-symmetry relations

$$
g_{1}-h_{1}=h_{1 T}^{\perp(1)}
$$

HELICITY -TRANSVERSITY= PRETZELOSITY

$$
\begin{array}{ll}
h_{1 L}^{\perp}=-g_{1 T} & f_{1 T}^{\perp}=0 \\
\text { WORM GEARS } & \text { SIVERS }
\end{array}
$$

VIOLATED BY VECTOR INTERACTIONS (E.G., WITH GLUONS)

\author{

* C. Lorcé, B. Pasquini, arXiv:1104.5651
}

Model relations are not rigorous but may still hold (especially at low scales)

TMDs and quark angular momentum

Ji vs. Jaffe-Manohar

Jaffe \& Manohar
Ji

* see talk by M. Burkardt

TMDs \& Jaffe-Manohar OAM

$$
\mathcal{L}^{q}=-h_{1 T}^{\perp(1) q}
$$

JAFFE-MANOHAR OAM IS CONNECTED TO PRETZELOSITY?

* Avakian, Efremov, Schweitzer, Yuan, PRD 81 (10)

Ji's total angular momentum

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left(H^{q}(x, 0,0)+E^{q}(x, 0,0)\right)
$$

Ji’s total angular momentum

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left(H^{q}(x, 0,0)+E^{q}(x, 0,0)\right)
$$

$$
-\int d^{2} \vec{k}_{T} k_{T}^{i} \frac{j_{T}^{j k} k_{T}^{j} S_{T}^{k}}{M} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right) \simeq \int d^{2} \vec{b}_{T} \mathcal{I}^{q, i}\left(x, \vec{b}_{T}\right) \frac{\epsilon_{T}^{j k} b_{T}^{j} S_{T}^{k}}{M}\left(\mathcal{E}^{q}\left(x, \vec{b}_{T}^{2}\right)\right)^{\prime}
$$

* Burkardt, PRD66 (02)
* Meissner, Metz, Goeke, PRD76 (07)
* see talk by M. Schlegel

Ji's total angular momentum

$$
\begin{gathered}
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left(H^{q}(x, 0,0)+E^{q}(x, 0,0)\right) \\
-\int d^{2} \vec{k}_{T} \vec{k}_{T}^{\frac{j}{\epsilon_{T}^{j k}} \frac{k_{T}^{j}}{M} S_{T}^{k}} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right) \simeq \int d^{2} \vec{b}_{T} \mathcal{I}^{q, i}\left(x, \vec{b}_{T}\right) \frac{e_{T}^{j k} b_{T}^{j} S_{T}^{k}}{M}\left(\mathcal{E}^{q}\left(x, \vec{b}_{T}^{2}\right)\right)^{\prime} \\
\text { SIVERS FUNCTION } \\
\text { LENSING FUNCTION F.T. OF E(x,0,0) }
\end{gathered}
$$

* Burkardt, PRD66 (02)
* Meissner, Metz, Goeke, PRD76 (07)
* see talk by M. Schlegel

Ji’s total angular momentum

$$
\begin{gathered}
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left(H^{q}(x, 0,0)+E^{q}(x, 0,0)\right) \\
-\int d^{2} \vec{k}_{T} k_{T}^{k} \frac{c_{T}^{j k} k_{T}^{j} k_{T}^{k}}{M} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right) \simeq \int d^{2} \vec{b}_{T} \mathcal{I}^{q, i}\left(x, \vec{b}_{T}\right) \frac{{ }_{T}^{j k} b_{T}^{j} S_{T}^{k}}{M}\left(\mathcal{E}^{q}\left(x, \vec{b}_{T}^{2}\right)\right)^{\prime} \\
\text { SIVERS FUNCTION LENSING FUNCTION F.T. OF E(x,0,0) }
\end{gathered}
$$

* Burkardt, PRD66 (02)
* Meissner, Metz, Goeke, PRD76 (07)
* see talk by M. Schlegel

Simplified relation

$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right)
$$

* Burkardt, Hwang, PRD69 (04) Lu, Schmidt, PRD75 (07)
A.B., F. Conti, M. Radici, PRD 78 (08)

Simplified relation

$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

* Burkardt, Hwang, PRD69 (04) Lu, Schmidt, PRD75 (07)
A.B., F. Conti, M. Radici, PRD 78 (08)

Fitting data NEWS
 $$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

Fitting data NEWS
 $$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

* Bacchetta, Radici, arXiv:1107.5755

Fitting data NEWS
 $$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

$$
\kappa^{p}=1.793 \pm 0.001, \kappa^{n}=-1 . \overline{9} 13 \pm 0 . \overline{0} 01
$$

* Bacchetta, Radici, arXiv:1107.5755

Fitting data

 NEWS$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

$$
\begin{aligned}
\kappa^{p} & =1.793 \pm 0.001, \kappa^{n}=-1.913 \pm 0 . \overline{0} 01 \\
\kappa^{p} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right]
\end{aligned}
$$

* Bacchetta, Radici, arXiv:1107.5755

Fitting data

$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right)
$$

$$
\begin{aligned}
\kappa^{p} & =1.793 \pm 0.001, \kappa^{n}=-1.913 \pm 0.001 \\
\kappa^{p} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right]
\end{aligned}
$$

USE SIDIS ASYMMETRY DATA TO

 CONSTRAIN SHAPE
Fitting data

 NEWS$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right),
$$

$$
\begin{aligned}
\kappa^{p} & =1.793 \pm 0.001, \kappa^{n}=-1.913 \pm 0 . \overline{0} 01 \\
\kappa^{p} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n} & =\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right]
\end{aligned}
$$

USE ANOMALOUS MAGNETIC MOMENTS TO CONSTRAIN INTEGRAL

Results for the Sivers function

Results for the Sivers function

Angular momenta from TMDs

$$
\begin{array}{ll}
J^{u}=0.266 \pm 0.002_{-0.014}^{+0.009}, & J^{\bar{u}}=0.014 \pm 0.004_{-0.000}^{+0.001}, \\
J^{d}=-0.012 \pm 0.003_{-0.006}^{+0.024}, & J^{\bar{d}}=0.022 \pm 0.006_{-0.000}^{+0.001}, \\
J^{s}=0.005_{-0.007}^{+0.000}, & J^{\bar{s}}=0.004_{-0.005}^{+0.000} .
\end{array}
$$

$$
Q^{2}=1 \mathrm{GeV}^{2}
$$

Angular momenta from TMDs $J^{u}=0.266 \pm 0.002_{-0.014}^{+0.009}, \quad J^{\bar{u}}=0.014 \pm 0.004_{-0.000}^{+0.001}$,
 $$
J^{d}=-0.012 \pm 0.003_{-0.006}^{+0.024}, \quad J^{\bar{d}}=0.022 \pm 0.006_{-0.000}^{+0.001}
$$
 $$
J^{s}=0.005_{-0.007}^{+0.000}, \quad J^{\bar{s}}=0.004_{-0.005}^{+0.000}
$$

$$
Q^{2}=1 \mathrm{GeV}^{2}
$$

Angular momenta from TMDs $J^{u}=0.266 \pm 0.002_{-0.014}^{+0.009}, \quad J^{\bar{u}}=0.014 \pm 0.004_{-0.000}^{+0.001}$,
 $$
J^{d}=-0.012 \pm 0.003_{-0.006}^{+0.024}, \quad J^{\bar{d}}=0.022 \pm 0.006_{-0.000}^{+0.001}
$$
 $$
J^{s}=0.005_{-0.007}^{+0.000}, \quad J^{\bar{s}}=0.004_{-0.005}^{+0.000}
$$

$$
Q^{2}=1 \mathrm{GeV}^{2}
$$

Using model relations, we can obtain information on angular momentum from TMDs

