Relation between TMDs and PDFs in the covariant parton model approach

Petr Zavada Institute of Physics, Prague, Czech Rep.
(based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev)

TRANSVERSITY 2011
Third International Workshop on
TRANSVERSE POLARIZATION
PHENOMENA IN HARD SCATTERING
29 August - 2 September 2011
Veli Losinj, Croatia

Outline

- 3D covariant parton model
\square PDF-TMD relations
\square TMDs: numerical predictions
\square general comment on DIS kinematics
\square summary

3D covariant parton model

Model of non-interacting quarks fulfils the requirements of Lorentz invariance \& rotational symmetry of (3D) quark momentum distribution in the nucleon rest frame.
\square Model implies relations and rules:

- between 3D distributions and structure functions
- between structure functions themselves
\square For example: WW relation, sum rules WW, BC, ELT; helicity \leftrightarrow transversity, transversity \leftrightarrow pretzelosity,...

Relations between different TMDs, recently also TMDs \leftrightarrow PDFs

See our recent paper and citations therein:
A.Efremov, P.Schweitzer, O.Teryaev and P.Z., Phys.Rev.D 83, 054025(2011)

TMDs

(Transverse Momentum Dependent parton distributions)

$\phi\left(x, \mathbf{p}_{T}\right)_{i j}$ light-front correlators

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \phi\left(x, \mathbf{p}_{T}\right)\right] & =f_{1}\left(x, \mathbf{p}_{T}\right)-\frac{\varepsilon^{j k} p_{T}^{j} S_{T}^{k}}{M} f_{1 T}^{\perp}\left(x, \mathbf{p}_{T}\right) \\
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \gamma_{5} \phi\left(x, \mathbf{p}_{T}\right)\right] & =S_{L} g_{1}\left(x, \mathbf{p}_{T}\right)+\frac{\mathbf{p}_{T} \cdot \mathbf{S}}{M} g_{1 T}^{\perp}\left(x, \mathbf{p}_{T}\right) \\
\frac{1}{2} \operatorname{tr}\left[i \sigma^{j+} \gamma_{5} \phi\left(x, \mathbf{p}_{T}\right)\right] & =S_{T}^{j} h_{1}\left(x, \mathbf{p}_{T}\right)+S_{L} \frac{p_{T}^{j}}{M} h_{1 L}^{\perp}\left(x, \mathbf{p}_{T}\right) \\
& +\frac{\left(p_{T}^{j} p_{T}^{k}-\frac{1}{2} \mathbf{p}_{T}^{2} \delta^{j k}\right) S_{T}^{k}}{M^{2}} h_{1 T}^{\perp}\left(x, \mathbf{p}_{T}\right)+\frac{\varepsilon^{j k} p_{T}^{k}}{M} h_{1}^{\perp}\left(x, \mathbf{p}_{T}\right)
\end{aligned}
$$

[A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D 80, 014021(2009)]

PDF-TMD relations

1. UNPOLARIZED

$$
f_{1}^{a}\left(x, \mathbf{p}_{T}\right)=-\frac{1}{\pi M^{2}} \frac{d}{d y}\left[\frac{f_{1}^{a}(y)}{y}\right]_{y=\xi\left(x, \mathbf{p}_{T}^{2}\right)}
$$

$$
\xi\left(x, \mathbf{p}_{T}^{2}\right)=x\left(1+\frac{\mathbf{p}_{T}^{2}}{x^{2} M^{2}}\right)
$$

For details see:
P.Z. Phys.Rev.D 83, 014022 (2011)
A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D 83, 054025(2011)

The same relation was obtained indepedently:
U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010)

In this talk we assume $\mathrm{m} \rightarrow 0$

PDF-TMD relations

2. POLARIZED

$$
\begin{aligned}
& g_{1}^{a}\left(x, \mathbf{p}_{T}\right)=\frac{2 x-\xi}{2} K^{a}\left(x, \mathbf{p}_{T}\right), \\
& h_{1}^{a}\left(x, \mathbf{p}_{T}\right)=\frac{x}{2} K^{a}\left(x, \mathbf{p}_{T}\right), \\
& g_{1 T}^{\perp a}\left(x, \mathbf{p}_{T}\right)=K^{a}\left(x, \mathbf{p}_{T}\right), \\
& h_{1 L}^{\perp a}\left(x, \mathbf{p}_{T}\right)=-K^{a}\left(x, \mathbf{p}_{T}\right), \\
& h_{1 T}^{\perp a}\left(x, \mathbf{p}_{T}\right)=-\frac{1}{x} K^{a}\left(x, \mathbf{p}_{T}\right) .
\end{aligned}
$$

Known $f_{I}(x), g_{I}(x)$ allow us to predict unknown TMDs

$$
K^{a}\left(x, \mathbf{p}_{T}\right)=\frac{2}{\pi \xi^{3} M^{2}}\left(2 \int_{\xi}^{1} \frac{d y}{y} g_{1}^{a}(y)+3 g_{1}^{a}(\xi)-x \frac{d g_{1}^{a}(\xi)}{d \xi}\right)
$$

Numerical results:

p_{T} / \mathbf{M}		\boldsymbol{X}
$q(x)$		0.15
0.10		0.18
0.13	\cdots	0.22
0.20	-.-.-.-	0.30

Input for $f_{1}(x)$
MRST LO at $4 \mathrm{GeV}^{2}$

Another model approaches to TMDs give compatible results:

1. U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010)
2. C.Bourrely, F.Buccellla, J.Soffer, Phys.Rev. D 83, 074008 (2011)

\square Gaussian shape - is supported by phenomenology
$\square\left\langle p_{T}^{2}\right\rangle$ depends on x, is smaller for sea quarks
...corresponds to our former results on momentum distributions in the rest frame, see
PZ, Eur.Phys.J. C52, 121 (2007)

$$
f_{1}^{q}(x) \rightarrow P_{q}\left(p_{T}\right)
$$

Input for $f_{1}(x)$
MRST LO at $4 \mathrm{GeV}^{2}$

Fig. 1. The quark momentum distributions in the rest frame of the proton: the p and p_{T} distributions for valence quarks $P_{q, \text { val }}=P_{q}-P_{\bar{q}}$ and sea quarks $P_{\underline{q}}$ at $Q^{2}=4 \mathrm{GeV}^{2}$. Notation: u, \bar{u} is indicated by a solid line, d, \bar{d} by a dashed line and \bar{s} by a dotted line

Calculation of $\langle p\rangle_{q, \text { val }}$ gives roughly $0.11 \mathrm{GeV} / c$ for u and $0.083 \mathrm{GeV} / c$ for d quarks. Since $G_{q}(p)$ has rotational symmetry, the average transversal momentum can be calculated to be $\left\langle p_{\mathrm{T}}\right\rangle=\pi / 4 \cdot\langle p\rangle$.

What do we know about intrinsic motion?

Leptonic data: Models: statistical, covariant $\left\langle p_{T}\right\rangle \approx 0.1 \mathrm{GeV} / \mathrm{c}$

R. S. Bhalerao, N. G. Kelkar, and B. Ram, Phys. Lett. B 476, 285 (2000).
J. Cleymans and R. L. Thews, Z. Phys. C 37, 315 (1988).
J. Cleymans and R. L. Thews, Z. Phys. C 37, 315 (1988).
C. Bourrely, J. Soffer, and F. Buccella, Eur. Phys. J. C 23, 487 (2002); Mod. Phys. Lett. A 18, 771 (2003); Eur. Phys. J. C 41, 327 (2005); Mod. Phys. Lett. A 21, 143 (2006); Phys. Lett. B 648, 39 (2007).
J. D. Jackson, G. G. Ross, and R. G. Roberts, Phys. Lett. B 226, 159 (1989).
P. Zavada, Phys. Rev. D 83, 014022 (2011).
P. Schweitzer, T. Teckentrup, and A. Metz, Phys. Rev. D 81, 094019 (2010).
M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, and A. Prokudin, Phys. Rev. D 71, 074006 (2005). J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P. Schweitzer, Phys. Rev. D 73, 014021 (2006).

> Hadronic data: SIDIS, Cahn effect $\left\langle p_{T}\right\rangle \approx 0.6 \mathrm{GeV} / \mathrm{c}$

$\boldsymbol{p}_{\boldsymbol{T}} / \boldsymbol{M}$		\boldsymbol{X}
$g_{1 q}(X)$	$-\cdots$	0.15
0.10	$-\cdots---$	0.18
0.13	\cdots	0.22
0.20	$-\cdots--$	0.30

Input for g_{1} : LSS LO at $4 \mathrm{GeV}^{2}$

Comment

In general $g_{1 q}\left(x, \mathbf{p}_{T}\right)$ changes sign at $p_{T}=M x$. It is due to the factor:

$$
2 x-\xi=x\left(1-\left(\frac{p_{T}}{M x}\right)^{2}\right)=-2 \bar{p}^{1} / M
$$

The situation is similar to the $\boldsymbol{g}_{2}(\boldsymbol{x})$ case:

$$
g_{2}(x)=\frac{1}{2} \int H\left(p^{0}\right)\left(p^{1}-\frac{\left(p^{1}\right)^{2}-p_{T}^{2} / 2}{p^{0}+m}\right) \delta\left(\frac{p^{0}-p^{1}}{M}-x\right) \frac{d^{3} p}{p^{0}}
$$

With our choice of the light-cone direction:

- large x are correlated with large negative \boldsymbol{p}^{1}
- low x are correlated with large positive \boldsymbol{p}^{1}

both expressions have opposite signs for large and low \boldsymbol{X}

E155 experiment

$q^{\uparrow}\left(x, \mathbf{p}_{\mathbf{T}}\right)=\frac{1}{2}\left(f_{1}^{q}+g_{1}^{q}\right)$

Kinematic constraints

Bjorken variable satisfies:

$$
x_{B}=\frac{Q^{2}}{2 P q} \quad 0 \leq x_{B} \leq 1
$$

For sufficiently large Q^{2},

$$
Q^{2} \gg \delta m^{2} \equiv p^{\prime 2}-p^{2} \quad \text { AND } \quad Q^{2} \gg 4 M^{2} x_{B}^{2}
$$

one can replace (in any reference frame):

$$
x_{B} \simeq x \equiv \frac{p_{0}-p_{1}}{P_{0}-P_{1}}
$$

For details see P.Z. arXiv:1106.5607[hep-ph]

Rest frame:

$$
\begin{array}{cc}
x=\frac{p_{0}-p_{1}}{M} \quad \text { AND } \quad & 0 \leq \frac{p_{0}-p_{1}}{M} \leq 1 \\
& \text { rot. sym. } \Rightarrow \\
& 0 \leq \frac{p_{0}+p_{1}}{M} \leq 1
\end{array}
$$

Combinations (+,-) of both imply:

$$
\begin{aligned}
& 0 \leq\left|p_{1}\right| \leq p_{0} \leq M, \quad\left|p_{1}\right| \leq \frac{M}{2} \\
& \text { rot. sym. } \Rightarrow \\
& 0 \leq p_{T} \leq p_{0} \leq M, \quad p_{T} \leq \frac{M}{2} \\
& p_{T}=\sqrt{p_{2}^{2}+p_{3}^{2}} \\
& 0 \leq|p| \leq p_{0} \leq M, \quad|p| \leq \frac{M}{2} \quad|p|=\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}
\end{aligned}
$$

Shortly:

$$
x_{B} \simeq x \equiv \frac{p_{0}-p_{1}}{P_{0}-P_{1}} \Rightarrow p_{T}<M / 2
$$

Conditions for equality x, x_{B} are satisfied

OR:

$$
p_{T}>M / 2
$$

$x_{B} \neq x$
x, x_{B} cannot be identified!

We still assume rotational symmetry in the rest frame

Remarks:

- $x \neq x_{B}$ would imply experimentally measured structure functions (x_{B}) cannot be compared with the light cone calculations (x)
■ $x=x_{B}$ and $p_{T}>M / 2$ - are contradictory statements
\square Obtained constraints are model-independent
\square Our covariant model assumes $x=x_{B}$ and we observe that p_{T}, p obtained from corresponding analysis of structure functions are always less then $M / 2$. It is only consequence and illustration of general conditions above.

Summary

1. We discussed some aspects of quark motion inside nucleon within 3D covariant parton model:
\square We derived the relations between TMDs and PDFs.
\square With the use of these relations we calculated the set of unpolarized and polarized TMDs.
\square We again demonstrated Lorentz invariance + rotational symmetry represent powerful tool for obtaining new (approximate) relations among distribution functions, including PDFs \leftrightarrow TMDs.
2. We discussed kinematic constraints due to rotational symmetry (model independent)

Thank you!

Backup slides

3D covariant parton model

General framework

$$
\begin{array}{|l|}
\hline \Delta \sigma\left(x, Q^{2}\right) \sim|A|^{2} \\
\hline|A|^{2}=L_{\alpha \beta} W^{\alpha \beta}
\end{array}
$$

The quarks are represented by the quasifree fermions, which are in the proton rest frame described by the set of distribution functions with spheric symmetry

$$
G_{q}^{ \pm}\left(p_{0}\right) d^{3} p ; \quad p_{0}=\sqrt{m^{2}+\mathbf{p}^{2}},
$$

which are expected to depend effectively on Q^{2}. These distributions measure the probability to find a quark in the state

$$
u(p, \lambda \mathbf{n})=\frac{1}{\sqrt{N}}\binom{\phi_{\lambda \mathbf{n}}}{\frac{\mathbf{p o}}{p_{0}+m} \phi_{\lambda \mathbf{n}}} ; \quad \frac{1}{2} \mathbf{n} \sigma \phi_{\lambda \mathbf{n}}=\lambda \phi_{\lambda \mathbf{n}},
$$

where m and p are the quark mass and momentum, $\lambda= \pm 1 / 2$ and n coincides with the direction of target polarization J .

$$
\begin{aligned}
W^{\alpha \beta} \Rightarrow & \\
& F_{1}\left(x, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right) \\
& g_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

Structure functions

\square Input:
 3D distribution functions in the proton rest frame (starting representation)

The distributions allow to define the generic functions G and ΔG :

$$
\begin{aligned}
G\left(p_{0}\right) & =\sum_{q} e_{q}^{2} G_{q}\left(p_{0}\right), \quad G_{q}\left(p_{0}\right) \equiv G_{q}^{+}\left(p_{0}\right)+G_{q}^{-}\left(p_{0}\right), \\
\Delta G\left(p_{0}\right) & =\sum e_{q}^{2} \Delta G_{q}\left(p_{0}\right), \quad \Delta G_{q}\left(p_{0}\right) \equiv G_{q}^{+}\left(p_{0}\right)-G_{q}^{-}\left(p_{0}\right)
\end{aligned}
$$

q
from which the structure functions can be obtained.
If one assumes $Q^{2} \gg 4 M^{2} x^{2}$, then:

$$
\begin{gathered}
F_{2}(x)=M x^{2} \int G\left(p_{0}\right) \delta\left(\frac{p_{0}+p_{1}}{M}-x\right) \frac{d^{3} p}{p_{0}} \\
g_{1}(x)=\frac{1}{2} \int \Delta G\left(p_{0}\right)\left(m+p_{1}+\frac{p_{1}^{2}}{p_{0}+m}\right) \delta\left(\frac{p_{0}+p_{1}}{M}-x\right) \frac{d^{3} p}{p_{0}}, \\
g_{2}(x)=-\frac{1}{2} \int \Delta G\left(p_{0}\right)\left(p_{1}+\frac{p_{1}^{2}-p_{T}^{2} / 2}{p_{0}+m}\right) \delta\left(\frac{p_{0}+p_{1}}{M}-x\right) \frac{d^{3} p}{p_{0}}
\end{gathered}
$$

$F_{1 r} F_{2}$ - manifestly covariant form:

$$
F_{1}(x)=\frac{M}{2}\left(\frac{B}{\gamma}-A\right), \quad F_{2}(x)=\frac{P q}{2 M \gamma}\left(\frac{3 B}{\gamma}-A\right)
$$

where

$$
\begin{gathered}
A=\frac{1}{P q} \int G\left(\frac{P p}{M}\right)\left[m^{2}-p q\right] \delta\left(\frac{p q}{P q}-x\right) \frac{d^{3} p}{p_{0}} \\
B=\frac{1}{P q} \int G\left(\frac{p P}{M}\right)\left[\left(\frac{P p}{M}\right)^{2}+\frac{(P p)(P q)}{M^{2}}-\frac{p q}{2}\right] \delta\left(\frac{p q}{P q}-x\right) \frac{d^{3} p}{p_{0}}, \\
\gamma=1-\left(\frac{P q}{M q}\right)^{2} .
\end{gathered}
$$

$g_{1 r} g_{2}$ - manifestly covariant form:

$$
g_{1}=P q\left(G_{S}-\frac{P q}{q S} G_{P}\right), \quad g_{2}=\frac{(P q)^{2}}{q S} G_{P}
$$

where

$$
\begin{aligned}
G_{P}= & \frac{m}{2 P q} \int \Delta G\left(\frac{p P}{M}\right)\left[\frac{p S}{p P+m M} 1+\frac{1}{m M}\left(p P-\frac{p u}{q u} P q\right)\right] \\
& \times \delta\left(\frac{p q}{P q}-x\right) \frac{d^{3} p}{p_{0}} \\
G_{S}= & \frac{m}{2 P q} \int \Delta G\left(\frac{p P}{M}\right)\left[1+\frac{p S}{p P+m M} \frac{M}{m}\left(p S-\frac{p u}{q u} q S\right)\right] \\
& \times \delta\left(\frac{p q}{P q}-x\right) \frac{d^{3} p}{p_{0}} \\
& u=q+(q S) S-\frac{(P q)}{M^{2}} P
\end{aligned}
$$

Comments

\square In the limit of usual approach assuming $p=x P$, (i.e. intrinsic motion is completely supressed) one gets known relations between the structure and distribution functions:

$$
F_{2}(x)=x \sum e_{q}^{2} q(x)
$$

$$
g_{1}(x)=\frac{1}{2} \sum_{q} e_{\eta}^{2}\left(q^{+}(x)-q^{-}(x)\right)
$$

\square We work with a 'naive' 3D parton model, which is based on covariant kinematics (and not infinite momentum frame). Main potential: implication of some old and new sum rules and relations among PDF's and TMDs.

ROLE OF QUARKS

 IN PROTON SPIN
Intrinsic motion

1) electrons in atom:
$d \approx 10^{-10} m, \quad p \approx 10^{-3} \mathrm{MeV}, \quad m_{e} \approx 0.5 \mathrm{MeV}, \quad \beta \approx 0.002$
2) nucleons in nucleus:

$$
d \approx 10^{-15} \mathrm{~m}, \quad p \approx 10^{2} \mathrm{MeV}, \quad m_{N} \approx 940 \mathrm{MeV}, \quad \beta \approx 0.1
$$

3) quarks in nucleon:

$$
d \approx 10^{-15} \mathrm{~m}, \quad p \approx 10^{2} \mathrm{MeV}, \quad m_{e} \approx 5 \mathrm{MeV}, \quad \beta \approx 1
$$

Angular momentum

$\square \quad$ Total angular momentum consists of $j=/+s$.
In relativistic case $\boldsymbol{I}, \mathbf{s}$ are not conserved separately, only \boldsymbol{j} is conserved. So, we can have pure states of $\boldsymbol{j}\left(\boldsymbol{j}^{2}, \boldsymbol{j}_{z}\right)$ only, which are represented by the bispinor spherical waves:

$$
\psi_{k j j_{z}}(\mathbf{p})=\frac{\delta(p-k)}{p \sqrt{2 p_{0}}}\binom{i^{-l} \sqrt{p_{0}+m} \Omega_{j j_{z}}(\boldsymbol{\omega})}{i^{-\lambda} \sqrt{p_{0}-m} \Omega_{j j_{z}}(\boldsymbol{\omega})},
$$

where $\omega=\mathbf{p} / p, l=j \pm \frac{1}{2}, \lambda=2 j-l(l$ defines the parity $)$ and

$$
\begin{aligned}
& \Omega_{j, l_{j}=}(\omega)=\binom{\sqrt{\frac{j+j_{z}}{2 j}} Y_{l, j_{z}-1 / 2}(\omega)}{\sqrt{\frac{j-j_{z}}{2 j}} Y_{l, j_{z}+1 / 2}(\omega)} ; \quad l=j-\frac{1}{2}, \\
& \Omega_{j, l_{j},}(\omega)=\binom{-\sqrt{\frac{j-j_{j}+1}{2 j+2}} Y_{l, j_{z}-1 / 2}(\omega)}{\sqrt{\frac{j+j_{j}+1}{2 j+2}} Y_{l, j_{z}+1 / 2}(\omega)} ; \quad l=j+\frac{1}{2} .
\end{aligned}
$$

$j=1 / 2$

$$
\begin{aligned}
& \text { For } j=j_{z}=1 / 2 \text { and } l=0: \\
& Y_{00}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{10}=i \sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{11}=-i \sqrt{\frac{3}{8 \pi}} \sin \theta \exp (i \varphi), \\
& \psi_{\text {kij } j_{z}}(\mathbf{p})=\frac{\delta(p-k)}{p \sqrt{8 \pi p_{0}}}\binom{\sqrt{p_{0}+m}\binom{1}{0}}{-\sqrt{p_{0}-m}\binom{\cos \theta}{\sin \theta \exp (i \varphi)}}
\end{aligned}
$$

For the superposition

$$
\Psi(\mathbf{p})=\int a_{k} \psi_{k j l j}^{z}(\mathbf{p}) d k ; \quad \int a_{k}^{\star} a_{k} d k=1
$$

the average spin contribution to the total angular momentum is calculated as

$$
\langle s\rangle=\int \Psi^{\dagger}(\mathbf{p}) \Sigma_{z} \Psi(\mathbf{p}) d^{3} p ; \quad \Sigma_{z}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{z} & \bullet \\
\bullet & \sigma_{z}
\end{array}\right)
$$

Spin \& orbital motion

$$
\begin{aligned}
\left\langle s_{z}\right\rangle & =\int a_{p}^{\star} a_{p} \frac{\left(p_{0}+m\right)+\left(p_{0}-m\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{16 \pi p^{2} p_{0}} d^{3} p \\
& =\frac{1}{2} \int a_{p}^{\star} a_{p}\left(\frac{1}{3}+\frac{2 m}{3 p_{0}}\right) d p . \\
\left\langle l_{z}\right\rangle & =\frac{1}{3} \int a_{p}^{\star} a_{p}\left(1-\frac{m}{p_{0}}\right) d p .
\end{aligned}
$$

In relativistic limit:

$$
m \ll p_{0} \quad \Rightarrow \quad\left\langle s_{z}\right\rangle \rightarrow 1 / 6, \quad\left\langle l_{z}\right\rangle \rightarrow 1 / 3 .
$$

... in general: $\left\langle l_{z}\right\rangle=2\left\langle s_{z}\right\rangle$.

only $1 / 3$ of j contributes to Σ

Interplay of spin and orbital motion

Spin and orbital motion from PDF's

$$
\left\langle s^{q}\right\rangle=\int g_{1}^{q}(x) d x
$$

$$
\left\langle l^{q}\right\rangle=-\int h_{1 T}^{\perp(1) q}(x) d x
$$

H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan Phys.Rev.D81:074035(2010).
J. She, J. Zhu and B. Q. Ma Phys.Rev.D79 054008(2009).

Our model:

$$
\int g_{1}^{q}(x) d x=\frac{1}{2} \int \Delta G_{q}\left(p_{0}\right)\left(\frac{1}{3}+\frac{2 m}{3 p_{0}}\right) d^{3} p .
$$

$$
-\int h_{1 T}^{\perp(1) q}(x) d x=\frac{1}{3} \int \Delta G\left(p_{0}\right)\left(1-\frac{m}{p_{0}}\right) d^{3} p
$$

Two pictures:

1. wavefunctions (bispinor spherical waves) \& operators

$\left\langle s^{q}\right\rangle$	$\left\langle l^{q}\right\rangle$
$\frac{1}{2} \int a_{p}^{*} a_{p}\left(\frac{1}{3}+\frac{2 m}{3 p_{0}}\right) d p$	$\frac{1}{3} \int a_{p}^{*} a_{p}\left(1-\frac{m}{p_{0}}\right) d p$

2. probabilistic distributions \& structure functions (in our model)

$$
\begin{array}{c|c|}
\int g_{1}^{q}(x) d x & -\int h_{1 T}^{\perp(1) q}(x) d x \\
\hline \frac{1}{2} \int \Delta G_{q}\left(p_{0}\right)\left(\frac{1}{3}+\frac{2 m}{3 p_{0}}\right) d^{3} p & \frac{1}{3} \int \Delta G_{q}\left(p_{0}\right)\left(1-\frac{m}{p_{0}}\right) d^{3} p \\
\hline
\end{array}
$$

$$
a_{p}^{*} a_{p} d p \Leftrightarrow \Delta G_{q}\left(p_{0}\right) d^{3} p ; \quad \Delta G_{q}\left(p_{0}\right)=G_{q}^{+}\left(p_{0}\right)-G_{q}^{-}\left(p_{0}\right)
$$

Also in our model OAM can be identified with pretzelosity!

