Relation between TMDs and PDFs in the covariant parton model approach

Petr Zavada

Institute of Physics, Prague, Czech Rep.

(based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev)

TRANSVERSITY 2011

Third International Workshop on TRANSVERSE POLARIZATION PHENOMENA IN HARD SCATTERING

> 29 August - 2 September 2011 Veli Losinj, Croatia

Outline

- 3D covariant parton model
- PDF-TMD relations
- TMDs: numerical predictions
- general comment on DIS kinematics
- summary

3D covariant parton model

■ Model of non-interacting quarks fulfils the requirements of **Lorentz invariance & rotational symmetry** of (3D) quark momentum distribution in the nucleon rest frame.

Model implies relations and rules:

- between 3D distributions and structure functions
- between structure functions themselves

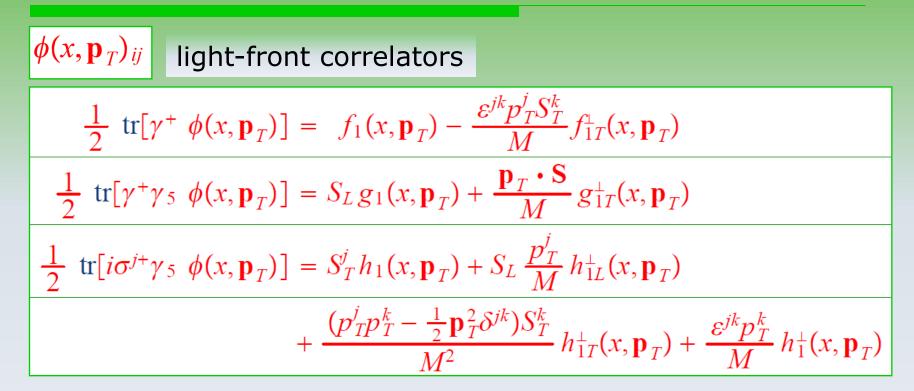
□ For example: WW relation, sum rules WW, BC, ELT; helicity↔transversity, transversity↔pretzelosity,...

Relations between different TMDs, recently also TMDs↔PDFs

See our recent paper and citations therein: A.Efremov, P.Schweitzer, O.Teryaev and P.Z., Phys.Rev.D 83, 054025(2011)

TMDs

(Transverse Momentum Dependent parton distributions)



[A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D 80, 014021(2009)]

PDF-TMD relations

1. UNPOLARIZED

$$f_1^a(x, \mathbf{p}_T) = -\frac{1}{\pi M^2} \frac{d}{dy} \left[\frac{f_1^a(y)}{y} \right]_{y=\xi(x, \mathbf{p}_T^2)} \qquad \xi(x, \mathbf{p}_T^2) = x \left(1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$

For details see: P.Z. Phys.Rev.D **83**, 014022 (2011) A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D **83**, 054025(2011)

The same relation was obtained indepedently: U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010)

In this talk we assume $m \rightarrow 0$

PDF-TMD relations

2. POLARIZED

$$g_1^a(x, \mathbf{p}_T) = \frac{2x - \xi}{2} K^a(x, \mathbf{p}_T) ,$$

$$h_1^a(x, \mathbf{p}_T) = \frac{x}{2} K^a(x, \mathbf{p}_T) ,$$

$$g_{1T}^{\perp a}(x, \mathbf{p}_T) = K^a(x, \mathbf{p}_T) ,$$

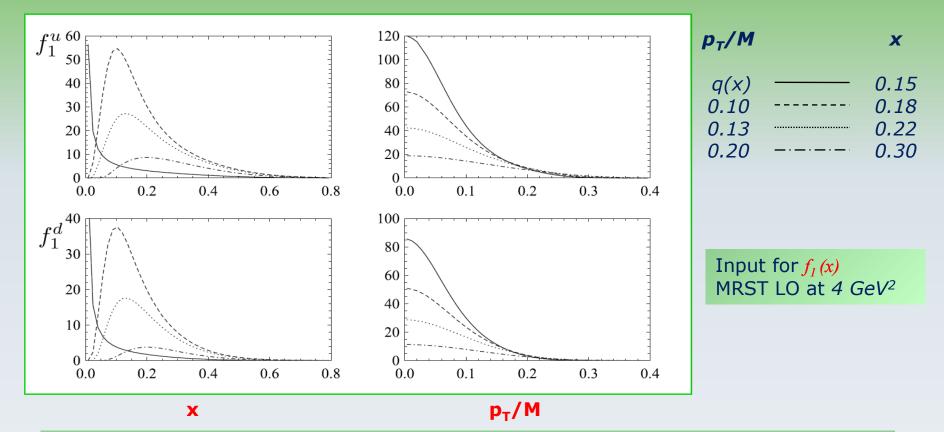
$$h_{1L}^{\perp a}(x, \mathbf{p}_T) = -K^a(x, \mathbf{p}_T) ,$$

$$h_{1T}^{\perp a}(x, \mathbf{p}_T) = -\frac{1}{x} K^a(x, \mathbf{p}_T) .$$

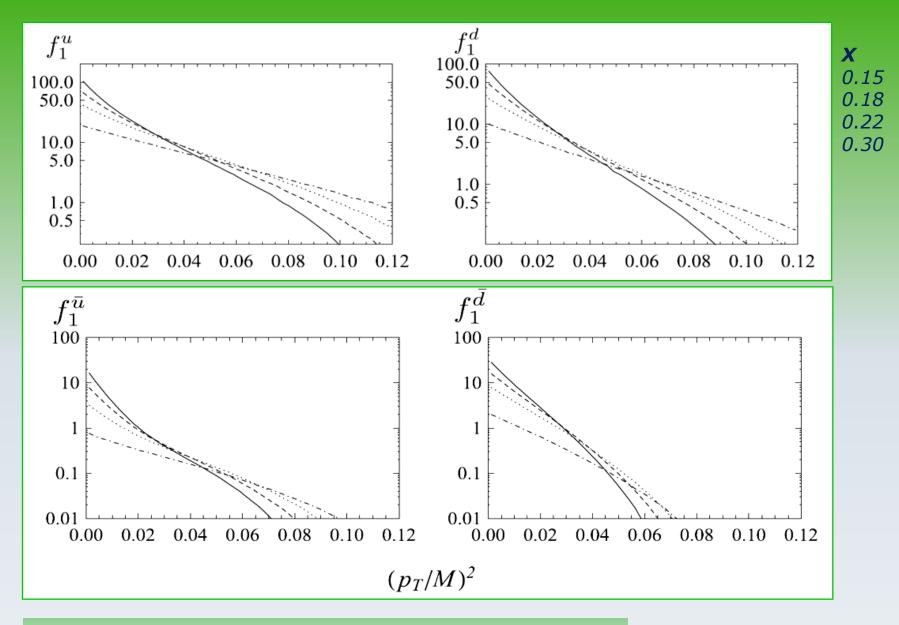
Known $f_1(x)$, $g_1(x)$ allow us to predict unknown TMDs

$$K^{a}(x,\mathbf{p}_{T}) = \frac{2}{\pi\xi^{3}M^{2}} \left(2\int_{\xi}^{1} \frac{dy}{y} g_{1}^{a}(y) + 3g_{1}^{a}(\xi) - x \frac{dg_{1}^{a}(\xi)}{d\xi} \right)$$

Numerical results:



Another model approaches to TMDs give compatible results: 1. U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010) 2. C.Bourrely, F.Buccellla, J.Soffer, Phys.Rev. D 83, 074008 (2011)



□ Gaussian shape – is supported by phenomenology □ $< p_T^2 >$ depends on x , is smaller for sea quarks ...corresponds to our former results on momentum distributions in the rest frame, see PZ, Eur.Phys.J. C52, 121

(2007)

$$f_1^q(x) \to P_q(p_T)$$

Input for $f_1(x)$ MRST LO at 4 GeV²

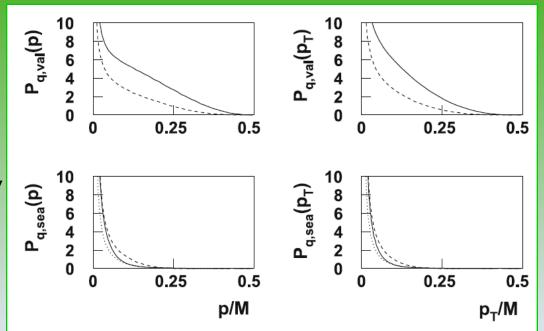
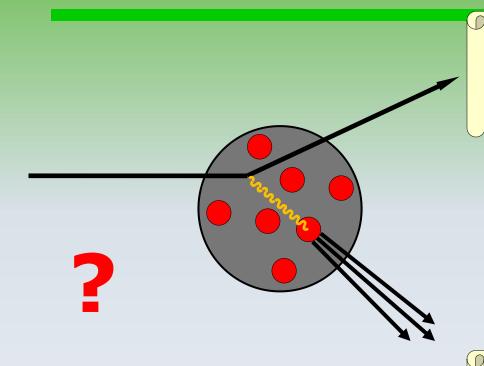


Fig. 1. The quark momentum distributions in the rest frame of the proton: the p and $p_{\rm T}$ distributions for valence quarks $P_{q,{\rm val}} = P_q - P_{\bar{q}}$ and sea quarks $P_{\bar{q}}$ at $Q^2 = 4 \,{\rm GeV}^2$. Notation: u, \bar{u} is indicated by a solid line, d, \bar{d} by a dashed line and \bar{s} by a dotted line

Calculation of $\langle p \rangle_{q,\text{val}}$ gives roughly 0.11 GeV/*c* for *u* and 0.083 GeV/*c* for *d* quarks. Since $G_q(p)$ has rotational symmetry, the average transversal momentum can be calculated to be $\langle p_T \rangle = \pi/4 \cdot \langle p \rangle$.

What do we know about intrinsic motion?



P. Schweitzer, T. Teckentrup, and A. Metz, Phys. Rev. D **81**, 094019 (2010).

M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, and A. Prokudin, Phys. Rev. D **71**, 074006 (2005). J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P. Schweitzer, Phys. Rev. D **73**, 014021 (2006).

Leptonic data: Models: statistical, covariant <p_T>≈0.1 GeV/c

R. S. Bhalerao, N. G. Kelkar, and B. Ram, Phys. Lett. B **476**, 285 (2000).

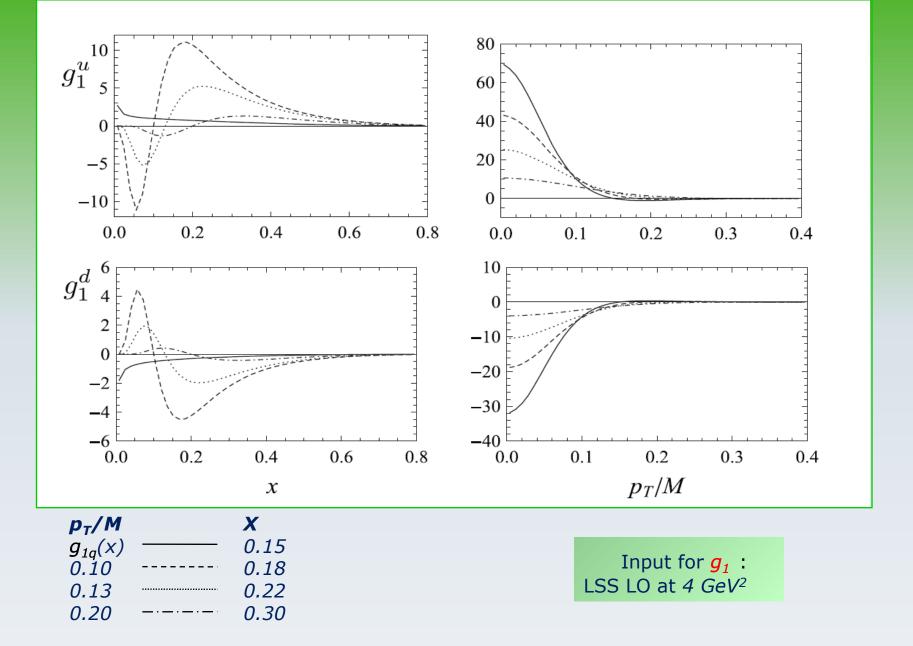
J. Cleymans and R. L. Thews, Z. Phys. C 37, 315 (1988).
C. Bourrely, J. Soffer, and F. Buccella, Eur. Phys. J. C 23, 487 (2002); Mod. Phys. Lett. A 18, 771 (2003); Eur. Phys. J. C 41, 327 (2005); Mod. Phys. Lett. A 21, 143 (2006); Phys. Lett. B 648, 39 (2007).

J. D. Jackson, G. G. Ross, and R. G. Roberts, Phys. Lett. B **226**, 159 (1989).

P. Zavada, Phys. Rev. D 83, 014022 (2011).

Hadronic data: SIDIS, Cahn effect $\langle p_T \rangle \approx 0.6 \text{ GeV/c}$

Further study is needed!



Comment

In general $g_{1q}(x, \mathbf{p}_T)$ changes sign at $p_T = Mx$. It is due to the factor:

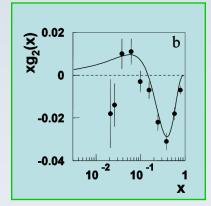
$$2x - \xi = x \left(1 - \left(\frac{p_T}{Mx} \right)^2 \right) = -2\bar{p}^1/M$$

The situation is similar to the $g_2(x)$ case:

$$g_2(x) = \frac{1}{2} \int H(p^0) \left(p^1 - \frac{(p^1)^2 - p_T^2/2}{p^0 + m} \right) \delta\left(\frac{p^0 - p^1}{M} - x\right) \frac{d^3p}{p^0}$$

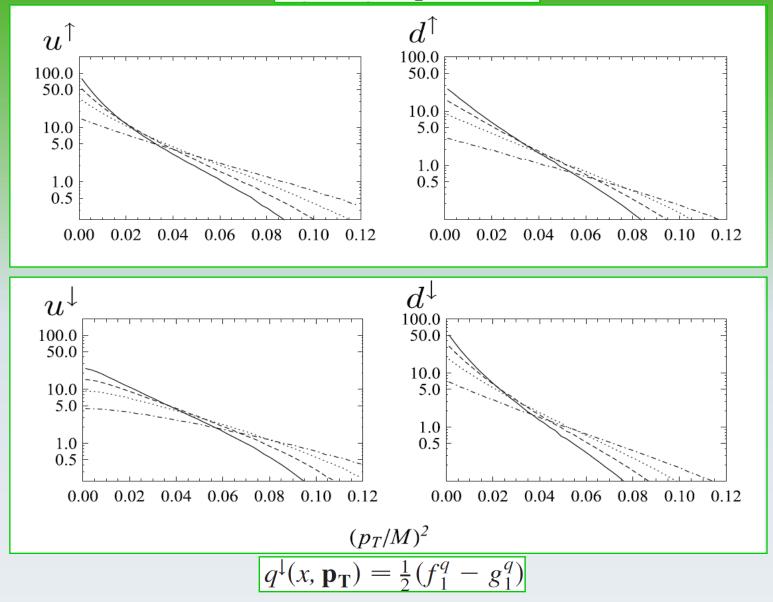
With our choice of the light-cone direction:

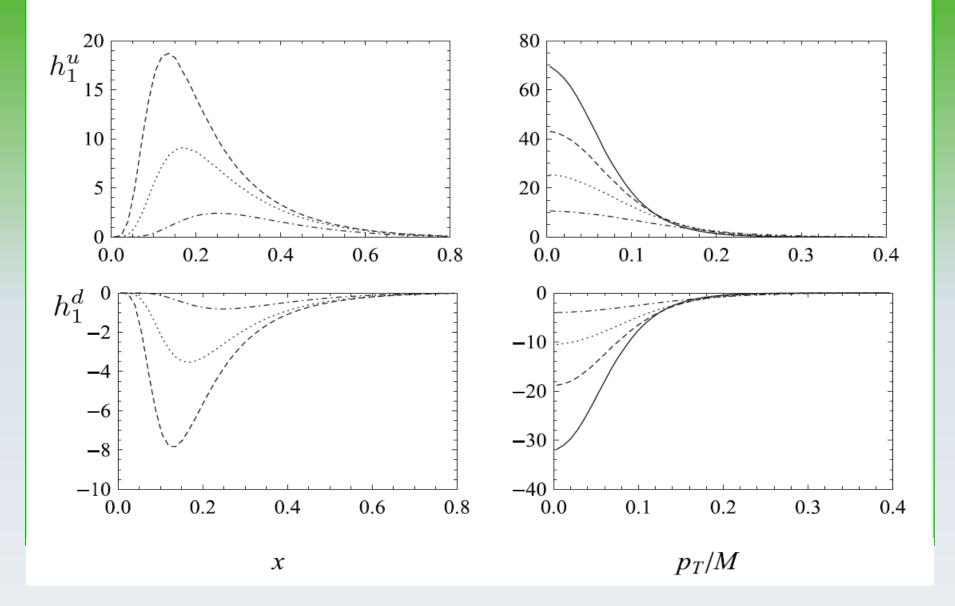
- Iarge x are correlated with large negative p¹
- Iow x are correlated with large positive p¹

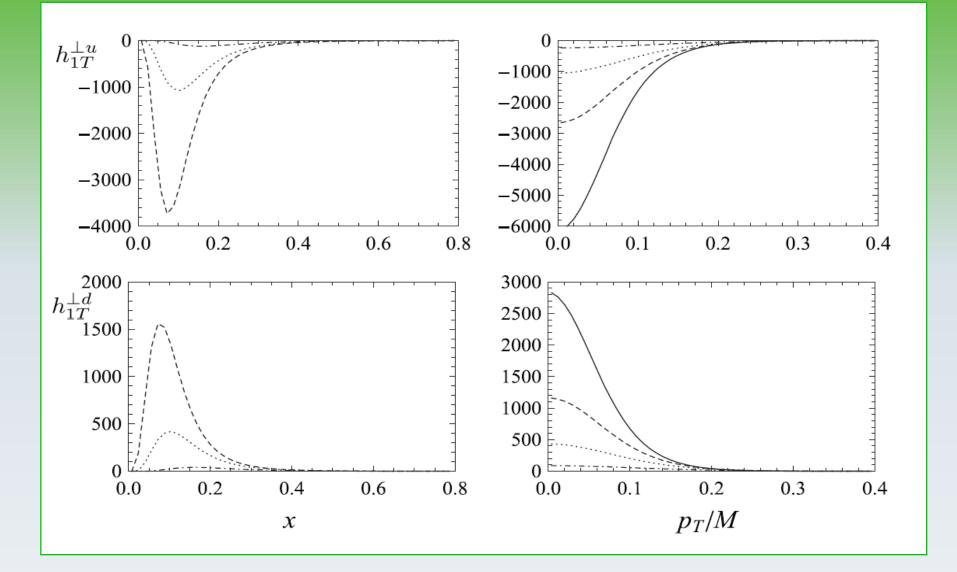


E155 experiment

 $q^{\uparrow}(x, \mathbf{p}_{\mathbf{T}}) = \frac{1}{2}(f_1^q + g_1^q)$



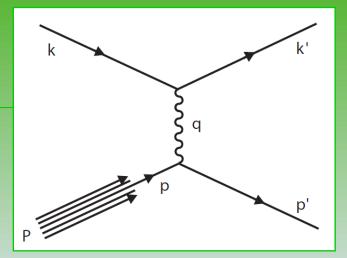




Kinematic constraints

Bjorken variable satisfies:

$$x_B = \frac{Q^2}{2Pq} \qquad \mathbf{0} \le x_B \le \mathbf{1}$$



For sufficiently large Q^2 , $Q^2 \gg \delta m^2 \equiv p'^2 - p^2$ AND

 $Q^2 \gg 4M^2 x_B^2$

one can replace (in <u>any</u> reference frame): $x_B \simeq x \equiv \frac{p_0 - p_1}{P_0 - P_1}$

For details see P.Z. arXiv:1106.5607[hep-ph]

Rest frame:

$$x = \frac{p_0 - p_1}{M} \quad \text{AND} \quad \begin{array}{l} 0 \leq \frac{p_0 - p_1}{M} \leq 1 \\ \text{rot. sym.} \end{array}$$
$$0 \leq \frac{p_0 + p_1}{M} \leq 1 \end{array}$$

Combinations (+,-) of both imply:

Shortly:

$$x_B \simeq x \equiv \frac{p_0 - p_1}{P_0 - P_1} \implies p_T < M/2$$

Conditions for equality x, x_B are satisfied

OR:

$$p_T > M/2$$

$$\Rightarrow$$

$$x_B \neq x$$

x, *x*_{*B*} cannot be identified!

We still assume rotational symmetry in the rest frame

Remarks:

- □ $x \neq x_B$ would imply experimentally measured structure functions (x_B) cannot be compared with the light cone calculations (x)
- $\Box x = x_B$ and $p_T > M/2$ are contradictory statements
- Obtained constraints are model-independent
- Our covariant model assumes $x = x_B$ and we observe that p_T , p obtained from corresponding analysis of structure functions are always less then M/2. It is only consequence and illustration of general conditions above.

Summary

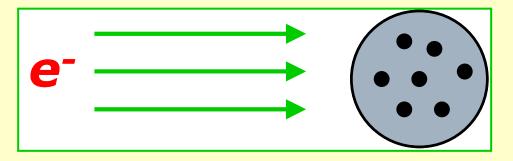
- **1.** We discussed some aspects of quark motion inside nucleon within 3D covariant parton model:
- We derived the relations between TMDs and PDFs.
- With the use of these relations we calculated the set of unpolarized and polarized TMDs.
- We again demonstrated Lorentz invariance + rotational symmetry represent powerful tool for obtaining new (approximate) relations among distribution functions, including PDFs ↔ TMDs.

2. We discussed kinematic constraints due to rotational symmetry (model independent)

Backup slides

3D covariant parton model

General framework



$$\Delta \sigma(x, Q^2) \sim |A|^2$$
$$|A|^2 = L_{\alpha\beta} W^{\alpha\beta}$$

The quarks are represented by the quasifree fermions, which are in the proton rest frame described by the set of distribution functions with spheric symmetry

$$G_q^{\pm}(p_0)d^3p;$$
 $p_0 = \sqrt{m^2 + \mathbf{p}^2},$

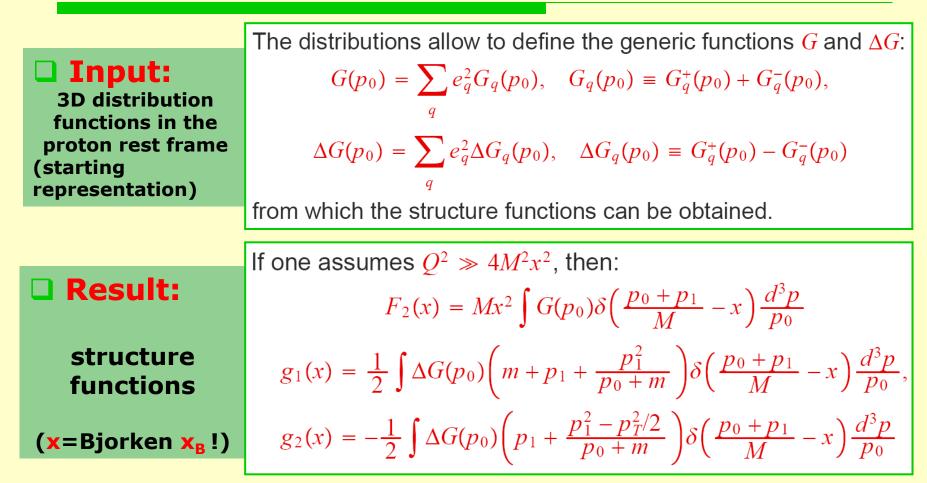
which are expected to depend effectively on Q^2 . These distributions measure the probability to find a quark in the state

$$u(p,\lambda\mathbf{n}) = \frac{1}{\sqrt{N}} \begin{pmatrix} \phi_{\lambda\mathbf{n}} \\ \frac{\mathbf{p}\sigma}{p_0+m}\phi_{\lambda\mathbf{n}} \end{pmatrix}; \qquad \frac{1}{2}\mathbf{n}\sigma\phi_{\lambda\mathbf{n}} = \lambda\phi_{\lambda\mathbf{n}}$$

where *m* and *p* are the quark mass and momentum, $\lambda = \pm 1/2$ and **n** coincides with the direction of target polarization **J**.

 $W^{\alpha\beta} \Rightarrow$ $F_1(x, Q^2)$ $F_2(x, Q^2)$ $g_1(x, Q^2)$ $g_2(x, Q^2)$

Structure functions



F₁, **F**₂ - manifestly covariant form:

$$F_1(x) = \frac{M}{2} \left(\frac{B}{\gamma} - A \right), \qquad F_2(x) = \frac{Pq}{2M\gamma} \left(\frac{3B}{\gamma} - A \right),$$
 where

$$A = \frac{1}{Pq} \int G\left(\frac{Pp}{M}\right) [m^2 - pq] \delta\left(\frac{pq}{Pq} - x\right) \frac{d^3p}{p_0},$$

$$B = \frac{1}{Pq} \int G\left(\frac{pP}{M}\right) \left[\left(\frac{Pp}{M}\right)^2 + \frac{(Pp)(Pq)}{M^2} - \frac{pq}{2}\right] \delta\left(\frac{pq}{Pq} - x\right) \frac{d^3p}{p_0},$$

$$\gamma = 1 - \left(\frac{Pq}{Mq}\right)^2.$$

$g_{1\prime}$ g_2 - manifestly covariant form:

$$g_1 = Pq\left(G_S - \frac{Pq}{qS}G_P\right), \qquad g_2 = \frac{(Pq)^2}{qS}G_P,$$

where

$$G_{P} = \frac{m}{2Pq} \int \Delta G\left(\frac{pP}{M}\right) \left[\frac{pS}{pP + mM}1 + \frac{1}{mM}\left(pP - \frac{pu}{qu}Pq\right)\right] \\ \times \delta\left(\frac{pq}{Pq} - x\right) \frac{d^{3}p}{P_{0}},$$

$$G_{S} = \frac{m}{2Pq} \int \Delta G\left(\frac{pP}{M}\right) \left[1 + \frac{pS}{pP + mM} \frac{M}{m}\left(pS - \frac{pu}{qu}qS\right)\right] \\ \times \delta\left(\frac{pq}{Pq} - x\right) \frac{d^{3}p}{P_{0}};$$

$$u = q + (qS)S - \frac{(Pq)}{M^{2}}P.$$

Comments

In the limit of usual approach assuming p = xP, (i.e. intrinsic motion is completely supressed) one gets known relations between the structure and distribution functions:

$$F_2(x) = x \sum_q e_q^2 q(x) \qquad g_1(x) = \frac{1}{2} \sum_q e_q^2 (q^+(x) - q^-(x))$$

We work with a 'naive' 3D parton model, which is based on covariant kinematics (and not infinite momentum frame). Main potential: implication of some old and new sum rules and relations among PDF's and TMDs. ROLE OF QUARKS IN PROTON SPIN

Intrinsic motion

1) electrons in atom:

 $d \approx 10^{-10} m$, $p \approx 10^{-3} MeV$, $m_e \approx 0.5 MeV$, $\beta \approx 0.002$

2) nucleons in nucleus:

 $d \approx 10^{-15} m$, $p \approx 10^2 MeV$, $m_N \approx 940 MeV$, $\beta \approx 0.1$

3) quarks in nucleon:

$$d \approx 10^{-15} m$$
, $p \approx 10^2 MeV$, $m_e \approx 5 MeV$, $\beta \approx 1$

Angular momentum

- Total angular momentum consists of j=l+s.
- In relativistic case *l,s* are not conserved separately, only *j* is conserved. So, we can have pure states of *j* (*j*²,*j_z*) only, which are represented by the bispinor spherical waves:

$$\psi_{kjljz}(\mathbf{p}) = \frac{\delta(p-k)}{p\sqrt{2p_0}} \begin{pmatrix} i^{-l}\sqrt{p_0+m}\,\Omega_{jljz}(\mathbf{\omega}) \\ i^{-\lambda}\sqrt{p_0-m}\,\Omega_{j\lambda jz}(\mathbf{\omega}) \end{pmatrix},$$

where $\mathbf{\omega} = \mathbf{p}/p, \ l = j \pm \frac{1}{2}, \ \lambda = 2j - l \ (l \ defines \ the \ parity) \ and$
$$\Omega_{j,ljz}(\mathbf{\omega}) = \begin{pmatrix} \sqrt{\frac{j+jz}{2j}} \ Y_{l,jz-1/2}(\mathbf{\omega}) \\ \sqrt{\frac{j-jz}{2j}} \ Y_{l,jz+1/2}(\mathbf{\omega}) \end{pmatrix}; \ l = j - \frac{1}{2},$$
$$\Omega_{j,ljz}(\mathbf{\omega}) = \begin{pmatrix} -\sqrt{\frac{j-jz+1}{2j+2}} \ Y_{l,jz-1/2}(\mathbf{\omega}) \\ \sqrt{\frac{j+jz+1}{2j+2}} \ Y_{l,jz+1/2}(\mathbf{\omega}) \end{pmatrix}; \ l = j + \frac{1}{2}.$$

[P.Z. Eur.Phys.J. C52, 121 (2007)]

For
$$j = j_z = 1/2$$
 and $l = 0$:

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \qquad Y_{10} = i\sqrt{\frac{3}{4\pi}}\cos\theta, \qquad Y_{11} = -i\sqrt{\frac{3}{8\pi}}\sin\theta\exp(i\phi),$$

$$\psi_{kjlj_z}(\mathbf{p}) = \frac{\delta(p-k)}{p\sqrt{8\pi p_0}} \begin{pmatrix} \sqrt{p_0 + m}\begin{pmatrix} 1\\ 0 \end{pmatrix} \\ -\sqrt{p_0 - m}\begin{pmatrix} \cos\theta\\ \sin\theta\exp(i\phi) \end{pmatrix} \end{pmatrix}.$$

For the superposition

$$\Psi(\mathbf{p}) = \int a_k \psi_{kjlj_z}(\mathbf{p}) dk; \quad \int a_k^* a_k dk = 1$$

the average spin contribution to the total angular momentum is calculated as

 σ_z

$$\langle s \rangle = \int \Psi^{\dagger}(\mathbf{p}) \Sigma_z \Psi(\mathbf{p}) d^3 p; \qquad \Sigma_z = \frac{1}{2} \begin{pmatrix} \sigma_z \\ \cdot \end{pmatrix}$$

Spin & orbital motion

$$\langle s_z \rangle = \int a_p^* a_p \frac{(p_0 + m) + (p_0 - m)(\cos^2 \theta - \sin^2 \theta)}{16\pi p^2 p_0} d^3 p$$

$$= \frac{1}{2} \int a_p^* a_p \left(\frac{1}{3} + \frac{2m}{3p_0}\right) dp.$$

$$\langle l_z \rangle = \frac{1}{3} \int a_p^* a_p \left(1 - \frac{m}{p_0}\right) dp.$$

In relativistic limit:

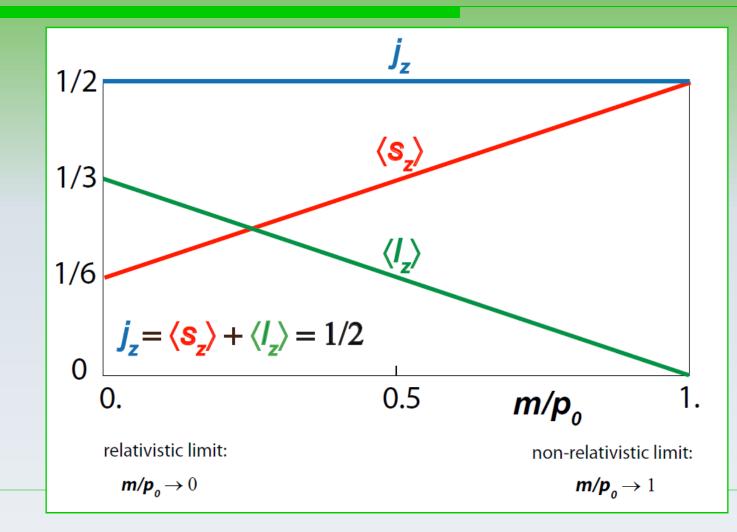
 \Rightarrow

$$m \ll p_0 \implies \langle s_z \rangle \rightarrow 1/6, \quad \langle l_z \rangle \rightarrow 1/3.$$

... in general:
$$\langle l_z \rangle = 2 \langle s_z \rangle$$
.

only 1/3 of j contributes to Σ

Interplay of spin and orbital motion



Spin and orbital motion from PDF's

$$\langle s^q \rangle = \int g_1^q(x) dx.$$

$$\langle l^q \rangle = -\int h_{1T}^{\perp(1)q}(x) dx.$$

H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan Phys.Rev.D81:074035(2010).

J. She, J. Zhu and B. Q. Ma Phys.Rev.D79 054008(2009).

Our model:

$$\int g_1^q(x)dx = \frac{1}{2} \int \Delta G_q(p_0) \left(\frac{1}{3} + \frac{2m}{3p_0}\right) d^3p.$$
$$-\int h_{1T}^{\perp(1)q}(x)dx = \frac{1}{3} \int \Delta G(p_0) \left(1 - \frac{m}{p_0}\right) d^3p.$$

Two pictures:

1. wavefunctions (bispinor spherical waves) & operators

2. probabilistic distributions & structure functions (in our model)

$$\int g_1^q(x) dx - \int h_{1T}^{\perp(1)q}(x) dx$$

$$\frac{1}{2} \int \Delta G_q(p_0) \Big(\frac{1}{3} + \frac{2m}{3p_0} \Big) d^3p \quad \frac{1}{3} \int \Delta G_q(p_0) (1 - \frac{m}{p_0}) d^3p$$

$$a_p^* a_p dp \Leftrightarrow \Delta G_q(p_0) d^3p; \quad \Delta G_q(p_0) = G_q^+(p_0) - G_q^-(p_0)$$

Also in our model OAM can be identified with pretzelosity!