JLab results: TMD measurements

M. Aghasyan Aug 30, 2011 Transversity 2011 Veli Lošinj (Croatia)

Outline

- Physics motivation
- Unpolarized and polarized target data.
 - Single Spin asymmetries
 - Double Spin asymmetries
- TMD extraction
- Summary

SIDIS kinematical plane and observables

transverse spin and transverse momentum of quarks.

SIDIS cross section

Bacchetta et al., JHEP 0702:093,2007

Nucleon TMDs

 $d\sigma^h \propto \sum f^{H \to q}(x, \mathbf{k}_T) \otimes \mathrm{d}\sigma_q(y) \otimes D^{q \to h}(z, \mathbf{p}_\perp)$

leading twist TMDs

+ Higher twist distribution functions

Jefferson Lab Experimental Halls

HallA: two HRS'

Hall B:CLAS

Hall C: HMS+SOS

Hall A

JLab Polarized ³He Target

- ✓ longitudinal, transverse
- ✓ Luminosity=10³⁶ (1/s)
 (highest in the world)
- ✓ High in-beam
 polarization
 ~ 60%
- ✓ Effective polarized neutron target

E06-010 Experiment ${}^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$

- First measurement on n (³He)
- Polarized ³He Target
- Polarized Electron Beam, 5.9 GeV
 - $-\sim 80\%$ Polarization
 - Fast Flipping at 30 Hz
- BigBite at 30° as Electron Arm
 P_e = 0.7 ~ 2.2 GeV/c
- HRS_L at 16^o as Hadron Arm
 - $P_h = 2.35 \, \text{GeV}/c$
 - Excellent PID for $\pi/K/p$
- 7 PhD Thesis Students (5 graduated)

³He Target Single-Spin Asymmetry in SIDIS

arXiv: 1106.0363, submitted to PRL

³He[†](*e*, *e*'*h*), $h = \pi^+, \pi^-$

Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Results on Neutron

Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Asymmetry A_{LT} Result

To leading twist:

$$A_{\mathrm{LT}}^{\cos(\phi_h - \phi_s)} \propto F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

• ³He *A*_{LT}

Positive for π -

Neutron A_{LT} Extraction

•
$$A_{LT}^{^{3}\text{He}} = P_{n} \frac{\sigma_{n}}{\sigma_{^{3}\text{He}}} A_{LT}^{n} + P_{p} \frac{2\sigma_{p}}{\sigma_{^{3}\text{He}}} A_{LT}^{p}$$
 $\begin{cases} P_{n} = 0.86^{+0.036}_{-0.02} \\ P_{p} = -0.028^{+0.009}_{-0.004} \end{cases}$

- Corrected for proton dilution, f_p
- Predicted proton asymmetry contribution < 1.5% (π^+), 0.6% (π^-)
- $A_{\mathrm{LT}}^n \propto g_{1T}^q \otimes D_{1q}^h$
 - Dominated by L=0 (S) and L=1 (P) interference
- Consist w/ model in signs, suggest larger asymmetry

Hall B

CLAS configurations

DF from E05-113 (NH3)

Longitudinally polarized NH3 target E05-113

Avakian PRL105 (2010)

The sin2 φ moment of the π^+ at large x_B is dominated by *u*-quarks, therefore with additional input from other experiments can provide a first glimpse of twist 2 h_{1L}^{\perp} function CLAS data suggests that width of g_1 is

less than the width of f_1

New data

Avakian PRL105 (2010)

statistical errors and allows more than one dimensional extraction of A_{UL} an A_{LL} .

Extraction of kinematic dependences of TMD

Boer, Gamberg, Musch & Prokudin arXiv:1107.5294

$$2\pi \int_{0}^{\frac{\pi}{2}} d\phi_{h} \int_{0}^{\infty} d|\mathbf{P}_{h\perp}||\mathbf{P}_{h\perp}|J_{0}(|\mathbf{P}_{h\perp}||\mathbf{b}_{T}|) \begin{bmatrix} \frac{d\sigma}{dx_{B}dyd\phi_{S}dz_{h}d\phi_{h}} |\mathbf{P}_{\perp}d|\mathbf{P}_{h\perp}| \end{bmatrix}$$

$$= \frac{\alpha^{2}}{yQ^{2}} \frac{y^{2}}{(1-\epsilon)} (1 + \frac{\gamma^{2}}{2x_{B}}) \sum_{\alpha} e_{\alpha}^{2} \left\{ \tilde{f}_{1}^{a}(x, z^{2}\mathbf{b}_{T}^{2}) + S_{\parallel}\lambda_{e}\sqrt{1-\epsilon^{2}}\tilde{g}_{1}^{a}(x, z^{2}\mathbf{b}_{T}^{2}) \right\} \tilde{D}_{1}^{a}(z\mathbf{b}_{T}^{2})$$

$$\Delta u(x, b_{T})/u(x, b_{T}) = \frac{S_{\pi}^{pol+} - S_{\pi}^{pol-}}{S_{\pi}^{unp+} + S_{\pi}^{unp-}} \int_{acceptance}^{0.035} \int_{acceptance}^{0.025} \int_{acceptance}^{0.025} \int_{acceptance}^{0.025} \int_{acceptance}^{0.025} \int_{acceptance}^{0.005} \int_{acceptance}^{0.05} \int_{acceptance}^{0.05} \int_{acceptance}^{0.05} \int_{b_{T}}^{0.05} \int_{b_{T}}^{0.0$$

the ${f b}_{{\sf T}}$ -dependence of the $\Delta u/u$ ratio has

been recovered in a wide range of b_T

Wide P_T range required for the extraction of b_T dependences for all relevant range of b_T (up to 2 fm)

Beam Spin Asymmetry of π^0

Beam Spin Asymmetry of π^0

For fixed $P_T x$ dependence is flat.

Models and Data

Hall C

Cross sections for semi-inclusive charged pions (p/D data)

The P_t² dependence of differential cross-sections per nucleus for charged pions production on hydrogen and deuterium targets at <z>=0.55, <x>=0.32

The P_t dependence from the deuteron is found to be slightly weaker than from the proton.

There is an indication that the initial transverse momenta width of d quarks is larger than for u quarks and the transverse momentum width of the favored fragmentation function is larger than the unfavored one.

Summary

Variety of SIDIS measurements with polarized and un-polarized targets performed at JLAB at 6 GeV polarized beam.

- P_t dependence of double spin asymmetries.
- Neutron transversity/TMD measurement
- Kinematic dependences of SSA with longitudinally polarized target (A_{LU} , A_{UL} and A_{LL} of $\pi^{0/+/-}$ in multidimensional bins is coming).
- Kinematic dependences of SSA with longitudinally polarized beam and un-polarized target.

The k_T-dependent TMD flavor decomposition procedure, based on the Bessel weighting technique, has been tested using the new dedicated SIDIS MC, allowing simulation in 8D (x,y,z, ϕ , ϕ_s , p_T , λ ,h).

Reasonable-agreement of kinematic distributions with realistic LUND simulation

Beam Spin asymmetry of π^0

E01-113 experiment results on A_{LU} extends the x_B range and improves uncertainties.

SIDIS kinematic coverage with IC

Scattering of 5.9 GeV electrons off unpolarized and polarized proton and deuteron targets

CLAS provides a wide kinematical coverage

Exclusive $\pi^0\pi^+$ on proton

1.8

1.8

M. Aghasyan and H. Avakian