Transversity 2011

 $3^{\text {rd }}$ international workshop onTransverse Polarization Phenomena in Hard Scattering Veli Lošinj (Croatia), Aug. 29th - Sept. 2nd 2011

Unpolarized and Polarized Fragmentation Functions (only for light quarks in vacuum)

for a review see also

Parton fragmentation in the vacuum and in the medium
Mini-workshop ECT*, 25-28 Feb. 2008 arXiv:0804.2021 [hep-ph]

Marco Radici

Outline

- Unpol. 1-hadron Fragm. Functions (1h FF)
status of "collinear" parametrizations what do we know about 1h "TMD" FF ?
- Pol. 1h FF: the Collins function
- Models of 1 h FF
- 2h FF (or Dihadron Fragm. Functions - DiFF) BELLE (+BaBar?) data and parametrizations (next 2 talks) BELLE+HERMES (+COMPASS) data and extraction of h_{1} (Braun) extraction of e and $h_{\llcorner }$with DiFF at JLab (Avakian)
- Conclusions and Outlooks

unpolarized 1h FF

1h FF main source of data

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{hX} \\
& \mathrm{~h}=\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{K}_{\mathrm{s}}^{0}, \mathrm{p}, \overline{\mathrm{p}}, \wedge, \bar{\Lambda}
\end{aligned}
$$

Energy range

- $\sqrt{ } \mathrm{s}=12-36 \mathrm{GeV}$
- $\sqrt{ } \mathrm{s}=29$
- $\sqrt{ } \mathrm{s}=58$
- $\sqrt{ } \mathrm{s}=91.2$ (ZO)
- $\sqrt{ } \mathrm{s}=133-209$

- $5 \times 10^{-3} \leq \mathrm{z} \leq 0.8$

$$
\begin{array}{rlrl}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h} & \frac{1}{\sigma_{\mathrm{tot}}} \frac{d \sigma^{h}}{d z} & \equiv F^{h}\left(z, Q^{2}\right) \\
& =\sum_{i=q, \bar{q}} D_{i}^{h}\left(z, Q^{2}\right) \quad \text { at LO } \\
\mathrm{e}^{+} & & \sum_{\mathrm{e}^{-}} C_{i}\left(z, Q^{2}\right) \otimes D_{i}^{h}\left(z, Q^{2}\right) \quad \text { beyond }
\end{array}
$$

- direct connection (at LO) to parton-to-hadron FF
- Ci known up to NNLO in MS (mitov \& Moch (2006))
- flavor analysis $\sim\{u, d, s\}+c+b$ except OPAL (full separation)

but

* $D_{g}{ }^{h}$ less constrained
* access only to $D_{q}{ }^{h}+D_{q}{ }^{h}=D_{q}{ }^{h / \bar{h}}$ (at LO)
* virtuality fixed by c.m. energy $Q=\sqrt{ } s / 2$

$$
\begin{aligned}
& \mathrm{e}^{ \pm} \mathrm{p} \rightarrow \mathrm{e}^{ \pm} \mathrm{hX} \\
& \mathrm{~h}=\pi^{ \pm}, \mathrm{K}^{ \pm}, h^{ \pm}, \wedge, \AA
\end{aligned}
$$

Energy range

- $1 \leq \mathrm{Q} \leq 200 \mathrm{GeV}$ at HERA (h1, zeus, hermes)
- $1 \leq \mathrm{Q} \leq 5 \quad$ at CERN (compass)
- $1 \leq \mathrm{Q} \leq 10$ also at nomad with v_{μ} probes
- $0.1 \leq z<1$
- larger phase space in $\left\{\mathrm{z}, \mathrm{Q}^{2}\right\}$ than in $\mathrm{e}^{+} \mathrm{e}^{-}$
- separate $D_{q}{ }^{h}$ from $D_{\bar{q}}{ }^{h} \quad$ (at least for $x_{B} \geq 0.1$)
$e^{ \pm} p \rightarrow e^{ \pm} h X$
$\mathrm{h}=\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{h}^{ \pm}, \wedge, \bar{\Lambda}$

- SIDIS in Breit frame
$X_{p}=\mathrm{Ph}_{\mathrm{h}} / \mathrm{Q} / 2$
$\mathrm{h}^{ \pm}$scaled mom. distr.
$1 / \mathrm{Ndn} / \mathrm{dxp}$
- compare with $\mathrm{e}^{+} \mathrm{e}^{-}$ at $\mathrm{E}^{\star} \equiv \mathrm{Q}=\sqrt{ } \mathrm{s} / 2$
$>$ universality test

H1 Coll., P.L. B654 (2007) 148

$$
\begin{aligned}
& \mathrm{pp} \rightarrow \mathrm{hXX} \\
& \mathrm{~h}=\pi^{ \pm, 0}, \mathrm{~K}^{ \pm}, \mathrm{K}_{\mathrm{s}}{ }^{0}, \mathrm{p}, \overline{\mathrm{p}}, \Lambda, \bar{\Lambda}
\end{aligned}
$$

Energy range

- mid $\eta, 1 \leq P_{\perp}\left(\pi^{0}\right) \leq 20 \mathrm{GeV}$
- large $\eta>0,1 \leq P_{\perp}\left(\pi^{0}-\Pi^{ \pm}, K^{ \pm}\right) \leq 10$
- mid $\eta, 1 \leq P_{\perp}\left(K_{s}{ }^{0}, p, \bar{p}, \wedge, \bar{\Lambda}\right) \leq 10$
- $80 \leq M_{\mathrm{jj}} \leq 600,1 \leq \mathrm{P}_{\perp}\left(\mathrm{h}^{ \pm}\right) \leq 20$
$\left.\begin{array}{l}\text { at RHIC (phenix) } \\ \text { at RHIC (star - brahms) } \\ \text { at RHIC (star) }\end{array}\right\} \quad \mathrm{pp} \sqrt{\mathrm{s}=200}$ at RHIC (star) at CDF
- constrain $D_{g}{ }^{h}$, especially at $X_{B}<1$
- probe FF at large z (complementary to $\mathrm{e}^{+} \mathrm{e}^{-}$)
$-1 / N d n / d x_{p}$ test universality with $e^{+} e^{-}$and SIDIS

status of parametrizations

before 2007

- AKK Albino, Kniehl, Kramer, 2005
- BKK Binnewies, Kniehl, Kramer, 1995
- BFG Bourhis, Fontannaz, Guillet, 1998
- BFGW Bourhis, Fontannaz, Guillet, Werlen, 2001
- CGRW Chiappetta, Greco, Guillet, Rolli, Werlen, 1994
- GRV Glück, Reya, Vogt, 1993
- KKP Kniehl, Kramer, Potter, 2000
- Kr Kretzer, 2000

status of parametrizations

before 2007

- AKK
- BKK
- BFG
- BFGW
- GRV
- KKP
- Kr

Bourhis, Fontannaz, Guillet, 1998
Bourhis, Fontannaz, Guillet, Werlen, 2001

- CGRW Chiappetta, Greco, Guillet, Rolli, Werlen, 1994
Albino, Kniehl, Kramer, 2005
Binnewies, Kniehl, Kramer, 1995 Glück, Reya, Vogt, 1993
Kniehl, Kramer, Potter, 2000
Kretzer, 2000

fail to reproduce scaling violations of recent H1 data

$0.3<\mathrm{x}_{\mathrm{p}}<0.4$

status of parametrizations

- AKK08 Albino, Kniehl, Kramer, 2008

after 2007
 - DSS
 - HKNS
 De Florian, Sassot, Stratmann, 2007
 Hirai, Kumano, Nagai, Sudoh, 2007

main ingredients

DSS	AKK08	HKNS
$\mathrm{e}^{+} \mathrm{e}^{-}$SIDIS pp	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{pp} \quad \mathrm{p} \overline{\mathrm{p}}$	$\mathrm{e}^{+} \mathrm{e}^{-}$
$\Pi^{ \pm}, K^{ \pm}, \mathrm{p}, \overline{\mathrm{p}}, \mathrm{h}^{ \pm}(, \wedge)$	$\Pi^{ \pm}, K^{ \pm}, K_{s}{ }^{0}, \mathrm{p}, \overline{\mathrm{p}}, \wedge, \bar{\Lambda}$	$\Pi^{ \pm}, \Pi^{0}, K^{ \pm}, K^{0}+\bar{K}^{0}, n, p+\bar{p}$
$0.05-0.1 \leq z \quad 1 \leq Q^{2} \leq 10^{5} \mathrm{GeV}^{2}$	$0.05 \leq z \quad 2 \leq Q^{2} \leq 4 \times 10^{4} \mathrm{GeV}^{2}$	$0.01 \leq$ z $\quad 1 \leq \mathrm{Q}^{2} \leq 10^{8} \mathrm{GeV}^{2}$
NLO DGLAP in Mellin space $\mathrm{D}\left(\mathrm{z}, \mathrm{Q}_{0}\right)=\mathrm{Nz}^{\mathrm{a}}(1-\mathrm{z})^{\mathrm{b}}\left[1-\mathrm{c}(1-\mathrm{z})^{\mathrm{d}}\right]$ N fixed by $\sum \mathrm{h} \int \mathrm{dz} \mathrm{ZD}_{\mathrm{i}} \mathrm{h}\left(\mathrm{z}, \mathrm{Q}^{2}\right)=1$	NLO DGLAP in Mellin space + resum $\log ^{n}(1-z) / 1-z$ at NLL $D\left(z, Q_{0}\right)$ and N fixed as DSS	NLO DGLAP direct integration $D\left(z, Q_{0}\right)=N z^{\mathrm{a}}(1-z)^{b}$ N fixed as DSS
SU(2) symmetric unfavoured $d+\bar{d} \propto u+\bar{u}$	SU(2) symmetric favoured (π) and unfavoured build $D_{i}{ }^{\text {h+ }}{ }^{-h-}$, $D_{i}{ }^{\text {h+-h- }}$	SU(2) symmetric favoured and unfavoured $s=\text { unfavoured }$
Lagrange multipliers	no error analysis	Hessian errors
	$m_{h} \neq 0 \text { effect } \rightarrow z \neq x_{p}$ resum log's at NLL also in C_{i}	

main differences

- HKNS: no constrain on $\mathrm{D}_{\mathrm{g}}{ }^{\mathrm{h}}$ from pp data, reliable at LHC ?
- AKK08-DSS discrepancies at large z
and

charge asym.

$H=\Delta_{c} \pi^{ \pm}, i=\bar{d}, M_{f}=91.2 \mathrm{GeV}$

STAR Coll., P.R.C 75 (07) 064901

main differences

- HKNS: no constrain on $\mathrm{D}_{\mathrm{g}}{ }^{\mathrm{h}}$ from pp data, reliable at LHC ?
- AKK08-DSS discrepancies at large z
and

charge asym.

- the puzzle of STAR \wedge, \wedge data

STAR Coll., P.R.C 75 (07) 064901

future of parametrizations

- towards NNLO analysis

Almasy, Moch, Vogt, arXiv:1107.2263 [hep-ph] Albino et al., arXiv:1108.3948 [hep-ph]

$$
\frac{d D_{i}^{h}\left(z, Q^{2}\right)}{d \ln Q^{2}}=\sum_{i=q, \bar{q}, g} P_{j i}\left(z, Q^{2}\right) \otimes D_{j}^{h}\left(z, Q^{2}\right) \quad \text { non-singlet } o\left(\alpha_{s}{ }^{3}\right)
$$

future of parametrizations

- towards NNLO analysis

Almasy, Moch, Vogt, arXiv:1107.2263 [hep-ph] Albino et al., arXiv:1108.3948 [hep-ph]

$$
\frac{d D_{i}^{h}\left(z, Q^{2}\right)}{d \ln Q^{2}}=\sum_{i=q, \bar{q}, g} P_{j i}\left(z, Q^{2}\right) \otimes D_{j}^{h}\left(z, Q^{2}\right) \quad \text { non-singlet } o\left(\alpha_{s}^{3}\right)
$$

$-\sigma^{K^{ \pm}}-2 \sigma^{K_{s}^{0}}=\left[C_{u}-C_{d}\right] \otimes D_{u-d}^{K^{ \pm}} \quad$ at any order for $\mathrm{SU}(2)$ sym.
NS K ${ }^{ \pm}$FF directly from data with NNLO C_{i}
but data put not enough constrains yet
Albino, Christova, P.R.D81 (10) 094031

future of parametrizations

- towards NNLO analysis

Almasy, Moch, Vogt, arXiv:1107.2263 [hep-ph] Albino et al., arXiv:1108.3948 [hep-ph]

$$
\frac{d D_{i}^{h}\left(z, Q^{2}\right)}{d \ln Q^{2}}=\sum_{i=q, \bar{q}, g} P_{j i}\left(z, Q^{2}\right) \otimes D_{j}^{h}\left(z, Q^{2}\right) \quad \text { non-singlet } o\left(\alpha_{\mathrm{s}}{ }^{3}\right)
$$

$-\sigma^{K^{ \pm}}-2 \sigma^{K_{s}^{0}}=\left[C_{u}-C_{d}\right] \otimes D_{u-d}^{K^{ \pm}} \quad$ at any order for $\mathrm{SU}(2)$ sym.
NS K ${ }^{ \pm}$FF directly from data with NNLO C_{i}
but data put not enough constrains yet
Albino, Christova, P.R.D81 (10) 094031

- determine "non-perturbative" error from FF
> need a common interface like LHAPDF at present only http://www.pv.infn.it/ ~radici/FFdatabase

what about 1h TMD FF ?

Gaussian ansatz for SIDIS douu

$$
\begin{aligned}
f_{1}^{q}\left(x, \mathbf{p}_{T}\right) & =f_{1}^{q}(x) \frac{\exp \left[-\mathbf{p}_{T}^{2} /\left\langle\mathbf{p}_{T}^{2}\right\rangle\right]}{\pi\left\langle\mathbf{p}_{T}^{2}\right\rangle} \\
D_{1}^{q}\left(z, \mathbf{K}_{T}\right) & =D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2} /\left\langle\mathbf{K}_{T}^{2}\right\rangle\right]}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}
\end{aligned} \longrightarrow \frac{d \sigma_{U U}\left(P_{h \perp}\right)}{d z d \mathbf{P}_{h \perp}^{2}}=\frac{d \sigma_{U U}(0)}{d z d \mathbf{P}_{h \perp}^{2}} \exp \left[-\mathbf{P}_{h \perp}^{2} /\left\langle\mathbf{P}_{h \perp}^{2}\right\rangle\right]
$$

$$
\left\langle\mathbf{P}_{h \perp}^{2}\right\rangle=z^{2}\left\langle\mathbf{p}_{T}^{2}\right\rangle+\left\langle\mathbf{K}_{T}^{2}\right\rangle \quad \mathbf{K}_{T}=-z \mathbf{k}_{T}
$$

$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.25,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.20 \mathrm{GeV}^{2}$ by fitting Cahn effect in EMC data ('83)
(Anselmino et al., P.R.D71 (05) 074006)
$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.33,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \mathrm{GeV}^{2}$ by reproducing HERMES $\left\langle\mathrm{Ph}_{\perp}>\right.$ data ('98-'00) (Collins et al., P.R.D73 (06) 014021)
used in many phenomenological studies, but...
$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.25,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.20 \mathrm{GeV}^{2} \quad A_{U U}^{\text {eos } \phi}$ in EMC not only from Cahn effect
$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.33,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \mathrm{GeV}^{2} \quad$ HERMES data not corrected for acceptance effects
$\left\langle\mathbf{P}_{T}^{2}\right\rangle=0.25,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.20 \mathrm{GeV}^{2} \quad A_{U U}^{\text {cos } \phi}$ in EMC not only from Cahn effect
$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.33,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \mathrm{GeV}^{2} \quad$ HERMES data not corrected for acceptance effects

Since 2007, new data (including $\cos \varphi$ and $\cos 2 \varphi$) from JLab, HERMES, COMPASS
combined analysis of SIDIS and (old+new) DY data
(Schweitzer, Teckentrup, Metz, P.R.D81 (10) 094019)
> new parameters $\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.38 \pm 0.06,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \pm 0.01 \mathrm{GeV}^{2}$
> various tests of Gaussian ansatz
$>\mathrm{p}_{\mathrm{T}}$ and K_{T} broadening with $\mathrm{S}>$

$$
\begin{aligned}
\left\langle\mathbf{p}_{T}^{2}(s)\right\rangle=0.3+C_{h} & \\
& \\
C_{p} & =7 \times 10^{-4} \\
C_{\pi} & =2.1 \times 10^{-3}
\end{aligned}
$$

$\left\langle\mathbf{P}_{T}^{2}\right\rangle=0.25,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.20 \mathrm{GeV}^{2} \quad A_{U U}^{\text {cos } \phi}$ in EMC not only from Cahn effect
$\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.33,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \mathrm{GeV}^{2} \quad$ HERMES data not corrected for acceptance effects

Since 2007, new data (including $\cos \varphi$ and $\cos 2 \varphi$) from JLab, HERMES, COMPASS
combined analysis of SIDIS and (old+new) DY data
(Schweitzer, Teckentrup, Metz, P.R.D81 (10) 094019)
> new parameters $\left\langle\mathbf{p}_{T}^{2}\right\rangle=0.38 \pm 0.06,\left\langle\mathbf{K}_{T}^{2}\right\rangle=0.16 \pm 0.01 \mathrm{GeV}^{2}$
> various tests of Gaussian ansatz
$>\mathrm{p}_{\mathrm{T}}$ and K_{T} broadening with $\mathrm{S} \boldsymbol{\lambda}$
BUT...

$$
\begin{aligned}
&\left\langle\mathbf{p}_{T}^{2}(s)\right\rangle=0.3+C_{h} \\
& \qquad \begin{aligned}
C_{p} & =7 \times 10^{-4} \\
C_{\pi} & =2.1 \times 10^{-3}
\end{aligned}
\end{aligned}
$$

$>$ ơmc_trans MC (Schnell, ECT* '07)

$$
\begin{aligned}
& \left\langle\mathbf{P}_{h \perp}^{2}\right\rangle=z^{2}\left\langle\mathbf{p}_{T}^{2}\right\rangle+\left\langle\mathbf{K}_{T}^{2}\right\rangle \\
& \left\langle\mathbf{P}_{h \perp}^{2}\right\rangle=z^{2}\left\langle\mathbf{p}_{T}^{2}\right\rangle+\left\langle\mathbf{K}_{T}^{2}(z)\right\rangle \\
& \left\langle\mathbf{p}_{T}^{2}\right\rangle=0.14 \mathrm{GeV}^{2} \\
& \left\langle\mathbf{K}_{T}^{2}\right\rangle=0.42 z^{0.54}(1-z)^{0.37} \mathrm{GeV}^{2}
\end{aligned}
$$

> similarly COMPASS (Rajotte, arXiv:1008.5125)

$$
\begin{array}{rll}
\left\langle\mathbf{p}_{T}^{2}\right\rangle_{h^{+}} & =0.15 \mathrm{GeV}^{2} & \\
\left\langle\mathbf{K}_{T}^{2}\right\rangle_{h^{+}} & =0.45 z^{0.5}(1-z)^{1.5} \mathrm{GeV}^{2} & \\
\left\langle\mathbf{p}_{T}\right\rangle_{h^{-}} & =0.06 \mathrm{GeV}^{2} & \\
\text { fit with constant } \\
\left\langle\mathbf{K}_{T}^{2}\right\rangle_{h^{-}} & =0.48 z^{0.5}(1-z)^{1.5} \mathrm{GeV}^{2} & \\
\left\langle\mathrm{pT}^{2}\right\rangle,\left\langle\mathrm{KT}^{2}\right\rangle
\end{array}
$$

also

$<\mathrm{PT}^{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)>_{\mathrm{h}+} \neq\left\langle\mathrm{PT}^{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)\right\rangle_{\mathrm{h}}$
> gmc_trans MC (schmell, ECT" 0or)

$$
\begin{align*}
& \left\langle\mathbf{P}_{h \perp}^{2}\right\rangle=z^{2}\left\langle\mathbf{p}_{T}^{2}\right\rangle+\left\langle\mathbf{K}_{T}^{2}\right\rangle \\
& \left\langle\mathbf{P}_{h \perp}^{2}\right\rangle=z^{2}\left\langle\mathbf{p}_{T}^{2}\right\rangle \tag{T}\\
& \left\langle\mathbf{p}_{T}^{2}\right\rangle=0.14 \mathrm{GeV}^{2} \\
& \left\langle\mathbf{K}_{T}^{2}\right\rangle=0.42 z^{0.54}(1-z)^{0.37} \mathrm{GeV}^{2}
\end{align*}
$$

> similarly COMPASS (Rajotte, arxiv:1008.5125)

$$
\begin{array}{lll}
\left\langle\mathbf{p}_{T}^{2}\right\rangle_{h^{+}} & =0.15 \mathrm{GeV}^{2} & \\
\left\langle\mathbf{K}_{T}^{2}\right\rangle_{h^{+}} & =0.45 z^{0.5}(1-z)^{1.5} \mathrm{GeV}^{2} & \\
\left\langle\mathbf{p}_{T}^{2}\right\rangle_{h^{-}} & =0.06 \mathrm{GeV}^{2} & \text { fit with consta } \\
\left\langle\mathbf{K}_{T}^{2}\right\rangle_{h^{-}} & =0.48 z^{0.5}(1-z)^{1.5} \mathrm{GeV}^{2} & \\
\left\langle\mathbf{p T}^{2}\right\rangle,\left\langle\mathrm{KT}^{2}\right\rangle
\end{array}
$$

also

$\left.<\mathrm{PT}^{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)\right\rangle_{\mathrm{h}+} \neq\left\langle\mathrm{PT}^{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)\right\rangle_{\mathrm{h}}$ Moreover,...

> HERMES multiplicity Joosten, DIS 2011)

Results: Projections vs $z p_{T}$

- Disentanglement of z and p_{T}
- Access to the transverse intrinsic quark p_{T} and fragmentation k_{T}.

Sylvester J. Joosten (HERMES, Illinois)
HERMES SIDIS multiplicities

moreover,

> HERMES multiplicity Joosten, DIS 2011)

Results: Projections vs $z p_{T}$

- Disentanglement of z and p_{T}

Access to the transverse intrinsic quark p_{T} and fragmentation k_{T}

 HERMES SIDIS multiplicities

moreover

definition:

$$
A_{d-p}^{h} \equiv \frac{\mathcal{M}_{d}^{h}-\mathcal{M}_{p}^{h}}{\mathcal{M}_{d}^{h}+\mathcal{M}_{p}^{h}}
$$

- Reflects different valence quark content
- Improved precision by cancellations in the systematic uncertainty

- HERMES multiplicity Joosten, DIS 2011)

Results: Projections vs $z p_{T}$

- Disentanglement of z and p_{T}

Access to the transverse intrinsic quark p_{T} and fragmentation k_{T}.

evidence for flavor dependence

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities

moreover

1h TMD FF evolution

in config. space
$\mathrm{D}_{\mathrm{i}}{ }^{\mathrm{h}}(\mathbf{z}, \mathbf{b} ; \mathbf{Q}, \zeta)=\mathrm{A}$
B
$\times \quad \mathrm{C}$

1h TMD FF evolution

in config. space

$$
D_{i}{ }^{h}\left(\mathbf{z}, \mathbf{b}_{T} ; Q, \zeta\right)=A \quad \times \quad \mathrm{C}
$$

$$
\sum_{j} C_{i j} \otimes D_{j}^{h}(z)
$$

1h TMD FF evolution

in config. space

$$
\begin{aligned}
& D_{i}{ }^{h}\left(z, b_{T} ; Q, \zeta\right)=A \times B \quad \times \\
& \sum C_{i j} \otimes D_{j}^{h}(z) \sim \exp [\text { anom } . \\
& \text { dim.] }
\end{aligned}
$$

1h TMD FF evolution

in config. space

$$
\begin{aligned}
& D_{i}(\mathbf{Z}, \mathbf{b} ; \mathbf{Q}, \zeta)=A \\
& \sum_{j} C_{i j} \otimes D_{j}^{h}(z) \\
& \times \quad B \\
& e^{-g^{\downarrow}(Q) \mathbf{b}_{T}^{2}} \\
& \text { nonperturb. } \\
& \text { g universal } \\
& \text { scale dep. } \\
& \text { at low } \mathrm{K}_{\mathrm{T}}
\end{aligned}
$$

1h TMD FF evolution

in config. space
dim.]
scale dep.
$o\left(\alpha_{s}{ }^{0}\right) \quad \approx \mathrm{D}_{\mathrm{i}}^{\mathrm{h}}(\mathrm{z}) \quad \exp \left[-\mathrm{g}(\mathrm{Q}) \mathbf{b}^{2}{ }^{2}\right]$
Gaussian \leftarrow TMD FF \rightarrow BLNY fit \Rightarrow fix $g(Q)$
$\mathrm{Q}_{0}{ }^{2}=2.4$

$$
\mathrm{Q}^{2}=\mathrm{Mz}^{2}
$$

1h TMD FF evolution

in config. space

$$
\begin{aligned}
& \sum C_{i j} \otimes D_{j}^{h}(z) \quad \sim \exp \left[\text { anom } . \quad e^{-g(Q) \mathbf{b}_{T}^{2}} \quad\right. \text { g universal } \\
& \text { dim.] scale dep. }
\end{aligned}
$$

$$
o\left(\alpha_{s}{ }^{0}\right) \quad \approx \mathrm{D}_{\mathrm{i}}^{\mathrm{h}}(\mathrm{z}) \quad \exp \left[-\mathrm{g}(\mathrm{Q}) \mathbf{b}_{T^{2}}{ }^{2}\right]
$$

Gaussian \leftarrow TMD FF \rightarrow BLNY fit \Rightarrow fix $g(Q)$
$\mathrm{Q}_{0}{ }^{2}=2.4$
$\mathrm{Q}^{2}=\mathrm{Mz}^{2}$
strong evolution effects
$<\mathrm{KT}^{2}>^{1 / 2}\left(\mathrm{Mz}^{2}\right)$

$\mathrm{b}_{\text {Tmax }}$ GeV^{-1}	Gauss GeV	TMD FF GeV
0.5	1.74	2.15
1.5	1.06	1.85

gaussian ansatz: too narrow point of view?

gaussian ansatz: too narrow point of view?

polarized 1h TMD FF

the Collins function

positivity bound

$$
\left|H_{1}^{\perp q}\left(z, \mathbf{K}_{T}^{2}\right)\right| \frac{\left|\mathbf{K}_{T}\right|}{z M_{h}} \leq D_{1}^{q}\left(z, \mathbf{K}_{T}^{2}\right)
$$

Schäfer-Teryaev sum rule

Meissner, Metz, Pitonyak, P.L.B690 (10) 296

$$
\begin{aligned}
\sum_{h, S_{h}} \int_{0}^{1} d z z M_{h} H_{1}^{\perp(1) q}(z)=0 \\
H_{1}^{\perp(n) q}(z)=\int d \mathbf{K}_{T} \frac{1}{2}\left(\frac{\mathbf{K}_{T}^{2}}{z^{2} M_{h}^{2}}\right)^{n} H_{1}^{\perp q}\left(z, \mathbf{K}_{T}^{2}\right)
\end{aligned}
$$

extraction of Collins function
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-X}$
$A^{\cos \left(\phi_{1}+\phi_{2}\right)}(\cos \theta, z, \bar{z})=\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \frac{\sum_{q} e_{q}^{2} H_{1, q \rightarrow h_{1}}^{\perp(1 / 2)}(z) H_{1, \bar{q} \rightarrow h_{2}}^{\perp(1 / 2)}(\bar{z})}{\sum_{q} e_{q}^{2} D_{1, q \rightarrow h_{1}}(z) D_{1, \bar{q} \rightarrow h_{2}}(\bar{z})}$

Old data: Abe et al. (Belle), P.R.L. 96 (06) 232002 new data: seidl et al. (Belle), P.R.D78 (08) 032011
"thrust axis" method, or Collins-Soper frame also " $\cos \left(2 \phi_{0}\right)$ " method, or Gottfried-Jackson frame

in combination with SIDIS

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \propto-\frac{\sum_{q} e_{q}^{2}\left[h_{1}^{q} \otimes H_{1, q \rightarrow h}^{\perp}\right]_{\left(x, z, P_{h \perp}^{2}\right)}}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q \rightarrow \pi}(z)}
$$

Old data: Airapetian et al. (HERMES), P.R.L. 94 (05) 012002 Ageev et al. (COMPASS), N.P.B765 (07) 31
new data: Diefenthaler et al. (HERMES), arXiv:0706.2242 Alekseev et al. (COMPASS), P.L.B673 (09) 127

extraction of Collins function

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-X}
$$

$$
A^{\cos \left(\phi_{1}+\phi_{2}\right)}(\cos \theta, z, \bar{z})=\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \frac{\sum_{q} e_{q}^{2}\left(H_{1, q \rightarrow h_{1}}^{\perp(1 / 2)}(z) H_{1, \bar{q} \rightarrow h_{2}}^{\perp(1 / 2)}(\bar{z})\right.}{\sum_{q} e_{q}^{2} D_{1, q \rightarrow h_{1}}(z) D_{1, \bar{q} \rightarrow h_{2}}(\bar{z})}
$$

old data:
Abe et al. (Belle), P.R.L.96 (06) 232002
new data: seidl et al. (Belle), P.R.D/8 (08) 032011
"thrust axis" method, or Collins-Soper frame also " $\cos \left(2 \phi_{0}\right)$ " method, or Gottfried-Jackson frame

in combination with SIDIS

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \propto-\frac{\sum_{q} e_{q}^{2}\left(h_{1}^{q} \otimes H_{1, q \rightarrow h}^{\perp}\right)\left(x, z, P_{h \perp}^{2}\right)}{\sum_{q} e_{q}^{2 f_{1}^{(x)} D_{1, q \rightarrow \pi}(z)}}
$$

Old data: Airapetian et al. (HERMES), P.R.L. 94 (05) 012002 Ageev et al. (COMPASS), N.P.B765 (07) 31
new data: Diefenthaler et al. (HERMES), arXiv:0706.2242 Alekseev et al. (COMPASS), P.L.B673 (09) 127

extraction of Collins function

$$
H_{1 q \rightarrow h_{1}}^{\perp(1 / 2)} H_{1 \bar{q} \rightarrow h_{2}}^{\perp(1 / 2)}
$$

Gaussian ansatz:

$$
D_{1}^{q}\left(z, \mathbf{K}_{T}\right)=D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2} /\left\langle\mathbf{K}_{T}^{2}\right\rangle\right]}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}
$$

$$
H_{1}^{\perp q}\left(z, \mathbf{K}_{T}\right)=F_{N^{q}, \gamma, \delta}(z) D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2} /\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}\right]}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}}
$$

extraction of Collins function

$$
H_{1 q \rightarrow h_{1}}^{\perp(1 / 2)} H_{1 \bar{q} \rightarrow h_{2}}^{\perp(1 / 2)}
$$

$$
D_{1}^{q}\left(z, \mathbf{K}_{T}\right)=D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left(\left\langle\mathbf{K}_{T}^{2}\right\rangle\right]_{k}\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}
$$

$$
H_{1}^{\perp q}\left(z, \mathbf{K}_{T}\right)=F_{N^{q}, \gamma, \delta}(z) D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left\langle\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}\right.\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}}
$$

2 channels: favoured, unfavoured 5 params: $\mathrm{N}^{\text {fav }}, \mathrm{N}^{\text {unfav }}, \mathrm{Y}, \delta, \mathrm{M}_{\mathrm{H}}$

extraction of Collins function

$$
H_{1 q \rightarrow h_{1}}^{\perp(1 / 2)} H_{1 \bar{q} \rightarrow h_{2}}^{\perp(1 / 2)}
$$

$$
h_{1}^{q} \otimes H_{1 q \rightarrow h}^{\perp}
$$

Gaussian ansatz:

$$
D_{1}^{q}\left(z, \mathbf{K}_{T}\right)=D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left(\left\langle\mathbf{K}_{T}^{2}\right\rangle\right]_{z}\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}
$$

$$
H_{1}^{\perp q}\left(z, \mathbf{K}_{T}\right)=F_{N^{q}, \gamma, \delta}(z) D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left\langle\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}\right.\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}}
$$

2 channels: favoured, unfavoured 5 params: $\mathrm{N}^{\text {fav }}, \mathrm{N}^{\text {unfav }}, \mathrm{\gamma}, \delta, \mathrm{M}_{\mathrm{H}}$

- factoriz. th. \square
- universality \square
- evolution $x \longleftrightarrow$ LO DGLAP for $\mathrm{D}_{1}(\mathrm{z})$ and $\mathrm{H}_{1}{ }^{\perp(\mathrm{n})}(\mathrm{z}) \sim \mathrm{D}_{1}(\mathrm{z})$

extraction of Collins function

Gaussian ansatz:
$D_{1}^{q}\left(z, \mathbf{K}_{T}\right)=D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left(\left\langle\mathbf{K}_{T}^{2}\right\rangle\right)\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}$
$H_{1}^{\perp q}\left(z, \mathbf{K}_{T}\right)=F_{N^{q}, \gamma, \delta}(z) D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left\langle\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}\right)\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}}$
2 channels: favoured, unfavoured 5 params: $\mathrm{N}^{\text {fav }}, \mathrm{N}^{\text {unfav }}, \mathrm{\gamma}, \delta, \mathrm{M}_{\mathrm{H}}$

- universality \square
- evolution $x \longleftrightarrow$ LO DGLAP for $\mathrm{D}_{1}(\mathrm{z})$ and $\mathrm{H}_{1}{ }^{\perp(\mathrm{n})}(\mathrm{z}) \sim \mathrm{D}_{1}(\mathrm{z})$

old data \square
Anselmino et al., P.R.D75 (07) 054032
error band $\Delta x^{2} \approx 17$
new data \square
Anselmino et al., N.P.B191(Pr.Sup.) (09) 98
positivity bound
see also Vogelsang \& Yuan, P.R.D72 (05) 054028
Efremov, Goeke, Schweitzer, P.R.D73 (06) 094025

extraction of Collins function

Gaussian ansatz:
$D_{1}^{q}\left(z, \mathbf{K}_{T}\right)=D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left\langle\left\langle\mathbf{K}_{T}^{2}\right\rangle\right)\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle}$
$H_{1}^{\perp q}\left(z, \mathbf{K}_{T}\right)=F_{N^{q}, \gamma, \delta}(z) D_{1}^{q}(z) \frac{\exp \left[-\mathbf{K}_{T}^{2}\left\langle\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}\right)\right.}{\pi\left\langle\mathbf{K}_{T}^{2}\right\rangle_{C}}$
2 channels: favoured, unfavoured
5 params: $\mathrm{N}^{\text {fav }}, \mathrm{N}^{\text {unfav }}, \mathrm{\gamma}, \delta, \mathrm{M}_{\mathrm{H}}$

- factoriz. th. \square
- universality \square
- evolution $x \longleftrightarrow$ LO DGLAP for $\mathrm{D}_{1}(\mathrm{z})$ and $\mathrm{H}_{1}{ }^{\perp(\mathrm{n})}(\mathrm{z}) \sim \mathrm{D}_{1}(\mathrm{z})$

$>$ unfav. $\approx-$ fav.

old data \square
Anselmino et al., P.R.D75 (07) 054032
error band $\Delta x^{2} \approx 17$

new data

\square
Anselmino et al., N.P.B191(Pr.Sup.) (09) 98
positivity bound
see also Vogelsang \& Yuan, P.R.D72 (05) 054028
Efremov, Goeke, Schweitzer, P.R.D73 (06) 094025

But...

$>$ access only to $\mathrm{H}_{1}{ }^{\perp(n)}(z) \Rightarrow \mathrm{K}_{\mathrm{T}}$ dep. unconstrained $\left\langle\mathrm{K}^{2}\right\rangle_{\mathrm{C}} \neq\left\langle\mathrm{K}^{2}\right\rangle$ but flavor-/ $\mathrm{z}-/ \mathrm{Q}^{2}$-independent $>$ SIDIS kin.: $x \leq 0.3,0.2 \leq z \leq 0.7, \mathrm{Q}^{2}=2.5$ (need EIC)
> only fav./unfav. flavors (u \& d)

- LO DGLAP evolution of $\mathrm{H}_{1}{ }^{\perp(\mathrm{n})}(\mathrm{z}) \sim \mathrm{D}_{1}(\mathrm{z})$
but the chiral-odd kernel of $\mathrm{H}_{1}{ }^{\perp(1)} \sim \mathrm{h}_{1}$ (Kang, P.R.D83 (11) 036006)
> full TMD evolution missing [Q Belle $^{2} \sim 100 \leftrightarrow$ Qsids $\left.^{2} \sim 2.5\right]$
$\mathrm{H}_{1}{ }^{\perp(1)}$ kernel: diag. piece $\left(\sim h_{1}\right)+$ off-diag. piece (small ?)
$\mathrm{D}_{1 T^{\perp(1)}}$ kernel: diag. piece $\left(\sim D_{1}\right)+$ off-diag. piece
(Kang, P.R.D83 (11) 036006; see also Meissner, Metz, P.R.L. 102 (09) 172003; Yuan, Zhou, P.R.L. 103 (09) 052001) Boer et al., P.R.L. 105 (10) 202001; Gamberg et al., P.R.D83 (11) 071503(R)

models of 1 h (TMD) FF

$1^{\text {st }}$ category: the spectator approximation

on-shell spectator
$>\delta$ funct. $\Rightarrow q-q$ correlator analytic
> off-shell $\mathrm{k}^{2}(\mathrm{z})$ analytic

* only favoured channel

- qTi vertex: PS $g_{\pi q \text { 5Ti (Jakob et al., N.P.A626 (97); Bacchetta et al., P.L.B506 (01), B659 (08); }}$ (05)

Gamberg et al., P.R.D68 (03); Amrath et al., P.R.D71 (05))

$$
\text { PV } g_{\pi q} \gamma_{5} \not P_{h} \quad \text { (Bacchetta et al., P.R.D65 (02), P.L.B574 (03); Amrath et al., P.R.D71 (05)) }
$$

$g_{\pi q}\left(z, k^{2}\right) \sim \exp \left[-k^{2} / \Lambda^{2}(z)\right]$ (Gamberg et al., P.R.D68 (03); Bacchetta et al., P.L.B659 (08))
fit $D_{1}{ }^{9}$ to Kretzer
@ $\mathrm{Q}^{2}=0.4 \mathrm{GeV}^{2}$

the spectator approximation: the Collins funct.

 interference from:π loops

and / or

(a)

(b)

(c) needed in $\stackrel{(\mathrm{C})}{\mathrm{PV}}$ coupl.
g loops

(a)

(b)

(c)

(d)

the spectator approximation: the Collins funct.

 interference from:π loops

and / or

g loops

(a)
large cancellations

(b)

(c)
$=0$

(d)
dominant

the spectator approximation: the Collins funct.

 interference from:π loops

and / or

(b)

(a)

needed in $\stackrel{(c)}{P V}$ coupl. \Rightarrow c) dominant

$2^{\text {nd }}$ category: the NJL-jet model

- elementary fragm. $\mathrm{d}_{\mathrm{q}}{ }^{\mathrm{h}}(\mathrm{z})$ from

- multiplicative ansatz

$$
D_{q}{ }^{h}(z)=d_{q}{ }^{h}(z)+\sum Q\left[d_{q}{ }^{Q} \otimes D_{Q}{ }^{h}\right](z)
$$

- mom. sum rule satisfied in Bjorken limit (\#h's $\rightarrow \infty$)
- probabilistic interpretation \rightarrow Monte Carlo (sample based on $d_{q}{ }^{h}$)

$$
\mathrm{D}_{\mathrm{q}}{ }^{\mathrm{h}}(\mathrm{z}) \Delta \mathrm{z}=1 / \mathrm{N} \sum \mathrm{~N} \mathrm{~N}_{\mathrm{q}}{ }^{\mathrm{h}}(\mathrm{z}, \mathrm{z}+\Delta \mathrm{z}) \quad \mathrm{MC} \text { for } \mathrm{N} \rightarrow \infty \rightarrow \text { ansatz }
$$

$-h=\pi, K, \rho, K^{*}, \phi, \mathrm{P}, \mathrm{n} \rightarrow \begin{aligned} & \text { spect. diquark model } \\ & \text { only scalar }\end{aligned}$

results for the MC ~ NJL-jet model

(Matevosyan et al., P.R.D83 (11) 114010)
fav. $u \rightarrow \pi^{+}$

fav. $u \rightarrow K^{+}$

unfav. $u \rightarrow \pi^{-}$

$\mathrm{Q}_{0}{ }^{2}=0.2 \mathrm{GeV}^{2}$
NLO-evolved to $\mathrm{Q}^{2}=4$
$* z D\left(z, Q_{0}{ }^{2}\right) \rightarrow$ const for $z \rightarrow 0\left(\right.$ mult. $\rightarrow \infty$), larger effect at $Q^{2}=4$

* LB regular. scheme $\Rightarrow \mathrm{Z}_{\text {min }}(\mathrm{h}) \leq \mathrm{z} \leq \mathrm{Z}_{\max }(\mathrm{h})$
$3^{\text {rd }}$ category: recursive model with spin

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q}_{0} \overline{\mathrm{q}}_{-1} \rightarrow \mathrm{~h}_{1}+\mathrm{h}_{2}+\ldots \mathrm{h}_{\mathrm{N}}
$$

$$
\mathrm{p}_{\mathrm{q} 0}=\mathrm{p}_{\mathrm{h} 1}+\mathrm{p}_{\mathrm{q} 1}
$$

$$
\mathrm{p}_{\mathrm{q} 1}=\mathrm{p}_{\mathrm{h} 2}+\mathrm{p}_{\mathrm{q} 2}
$$

$$
\mathcal{M}=\overline{\mathrm{v}}(-1) \Gamma(\mathrm{N}) \Delta(\mathrm{N}-1) \ldots \Delta(1) \Gamma(1) \mathrm{u}(0)
$$

$3^{\text {rd }}$ category: recursive model with spin

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q}_{0} \overline{\mathrm{q}}_{-1} \rightarrow \mathrm{~h}_{1}+\mathrm{h}_{2}+\ldots \mathrm{h}_{\mathrm{N}} \\
& \mathrm{p}_{\mathrm{q} 0}=\mathrm{ph}_{\mathrm{h} 1}+\mathrm{p}_{\mathrm{q} 1} \\
& \mathrm{p}_{\mathrm{q} 1}=\mathrm{p}_{\mathrm{h} 2}+\mathrm{p}_{\mathrm{q} 2}
\end{aligned}
$$

$$
\mathcal{M}=\overline{\mathrm{v}}(-1) \Gamma(\mathrm{N}) \Delta(\mathrm{N}-1) \ldots \Delta(1) \Gamma(1) \mathrm{u}(0)
$$

Simplifications:

1- $\Gamma=$ const.
$2-\Delta\left(p_{q}\right) \approx \exp \left[-b \mathbf{p}_{q T^{2}} / 2\right]\left[\mu\left(\mathbf{p}_{\mathrm{q}}{ }^{2}\right)+\mathrm{i} \boldsymbol{\sigma} \cdot \boldsymbol{z} \times \mathbf{p}_{\mathrm{qT}}\right]$ with b some parameter

$3^{\text {rd }}$ category: recursive model with spin

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q}_{0} \overline{\mathrm{q}}_{-1} \rightarrow \mathrm{~h}_{1}+\mathrm{h}_{2}+\ldots \mathrm{h}_{\mathrm{N}} \\
& \mathrm{p}_{\mathrm{q} 0}=\mathrm{p}_{\mathrm{h} 1}+\mathrm{p}_{\mathrm{q} 1} \\
& \mathrm{p}_{\mathrm{q} 1}=\mathrm{p}_{\mathrm{h} 2}+\mathrm{p}_{\mathrm{q} 2}
\end{aligned}
$$

$$
\mathcal{M}=\overline{\mathrm{v}}(-1) \Gamma(\mathrm{N}) \Delta(\mathrm{N}-1) \ldots \Delta(1) \Gamma(1) \mathrm{u}(0)
$$

Simplifications :
1- $\Gamma=$ const.
$2-\Delta\left(p_{q}\right) \approx \exp \left[-b \mathbf{p}_{q T^{2}} / 2\right]\left[\mu\left(\mathbf{p}_{\mathrm{q}}{ }^{2}\right)+\mathrm{i} \boldsymbol{\sigma} \cdot\right.$ ž $\left.^{\times} \times \mathbf{p}_{\mathrm{qT}}\right]$ with b some parameter
$\mathcal{M} \mathcal{M}^{\dagger} \approx \exp \left[-b p_{h 1 T^{2}} \ldots-b p_{h N T}{ }^{2}\right] \operatorname{Tr}\left\{M_{1} . . M_{N}\left(1+S_{0} \cdot \boldsymbol{\sigma}\right) M_{N}{ }^{\dagger} . . M_{1}{ }^{\dagger}\right\}$

$$
M_{i}=\left[\mu\left(\mathbf{p}_{\mathrm{hiT}^{2}}{ }^{2}\right)+\mathrm{i} \boldsymbol{\sigma} \cdot \check{z} \times \mathbf{p}_{\mathrm{hiT}}\right] \sigma_{\mathrm{z}}
$$

recursive model with spin: Collins and jet handedness

(Artru, arXiv:1001.1061)

$\mathrm{N}=1$: the Collins effect

$\mathcal{M M}^{\dagger} \approx \exp \left[-b p_{h 1 T^{2}}\right] \operatorname{Tr}\left\{M_{1}\left(1+\mathbf{S}_{0} \cdot \sigma\right) M_{1}{ }^{\dagger}\right\}$
$=\exp \left[-b \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}^{2}}\right]\left[\sigma^{0}\left(\mathbf{p}_{\mathrm{h} 1 \mathrm{~T}^{2}}\right)+\operatorname{Im}(\mu) \mathbf{S}_{0} \cdot \check{\mathbf{z}} \times \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}}\right]$

recursive model with spin: Collins and jet handedness
(Artru, arXiv:1001.1061)
$\mathrm{N}=1$: the Collins effect
$\mathcal{M} \mathcal{M}^{\dagger} \approx \exp \left[-b p_{h 1} T^{2}\right] \operatorname{Tr}\left\{M_{1}\left(1+\mathbf{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathbf{M}_{1}{ }^{\dagger}\right\}$
$=\exp \left[-b p_{h 1 T^{2}}\right]\left[\sigma^{0}\left(\mathbf{p}_{\mathrm{h} 1 T^{2}}\right)+\operatorname{Im}(\mu) \mathbf{S}_{0} \cdot \check{z} \times \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}}\right]$

$\mathrm{N}=2$: iterated Collins effect + jet handedness
$\mathcal{M} \mathcal{M}^{+} \approx \exp \left[-b \boldsymbol{p}_{h 1 T^{2}}-b \boldsymbol{p}_{\mathrm{h} 2 \mathrm{~T}^{2}}\right] \operatorname{Tr}\left\{\mathrm{M}_{1} \mathrm{M}_{2}\left(1+\mathbf{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathrm{M}_{2}{ }^{+} \mathrm{M}_{1}{ }^{\dagger}\right\}$
$=\ldots+A\left(p_{h 2 T^{2}}\right) \operatorname{Im}(\mu) \boldsymbol{S} \cdot \check{z} \times \mathbf{p}_{h 1 T}+A^{\prime}\left(p_{h 1 T^{2}}\right) \operatorname{Im}(\mu) \boldsymbol{S} \cdot \check{z} \times p_{h 2 T}$
$-2 \operatorname{Im}\left(\mu^{2}\right) S_{z} \check{z} \cdot \boldsymbol{p}_{h 1 T} \times \mathbf{p}_{h 2 T}$
recursive model with spin: Collins and jet handedness
(Artru, arXiv:1001.1061)
$\mathrm{N}=1$: the Collins effect
$\mathcal{M} \mathcal{M}^{\dagger} \approx \exp \left[-b p_{h 1} T^{2}\right] \operatorname{Tr}\left\{M_{1}\left(1+\mathbf{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathbf{M}_{1}{ }^{\dagger}\right\}$
$=\exp \left[-b p_{h 1 T^{2}}\right]\left[\sigma^{0}\left(\mathbf{p}_{h 1 T^{2}}\right)+\operatorname{Im}(\mu) \mathbf{S}_{0} \cdot z ̌ \times p_{h 1 T}\right]$

$\mathrm{N}=2$: iterated Collins effect + jet handedness
$\mathcal{M} \mathcal{M}^{+} \approx \exp \left[-b \boldsymbol{p}_{h 1 T^{2}}-b \boldsymbol{p}_{\mathrm{h} 2 \mathrm{~T}^{2}}\right] \operatorname{Tr}\left\{\mathrm{M}_{1} \mathrm{M}_{2}\left(1+\mathbf{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathrm{M}_{2}{ }^{+} \mathrm{M}_{1}{ }^{\dagger}\right\}$
$=\ldots+A\left(p_{h 2 T^{2}}\right) \operatorname{Im}(\mu) \boldsymbol{S} \cdot \check{z} \times \mathbf{p}_{h 1 T}+A^{\prime}\left(p_{h 1 T^{2}}\right) \operatorname{Im}(\mu) \mathbf{S} \cdot \check{z} \times p_{h 2 T}$
$-2 \operatorname{Im}\left(\mu^{2}\right) S_{z} \check{z} \cdot \mathbf{p}_{h 1 T} \times \mathbf{p}_{\text {h }}$ T
why?

recursive model with spin: Collins and jet handedness

- define recursive property
$\mathrm{R}_{\mathrm{N}}=\mathrm{M}_{1} . . \mathrm{M}_{\mathrm{N}}\left(1+\mathrm{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathrm{M}_{\mathrm{N}}{ }^{\dagger} . . \mathrm{M}_{1}{ }^{\dagger}$
$R_{N}=M_{N} R_{N-1} M_{N}{ }^{\dagger}$
recursive model with spin: Collins and jet handedness
(Artru, arXiv:1001.1061)
- define
$R_{N}=M_{1} . . M_{N}\left(1+S_{0} \cdot \sigma\right) M_{N}{ }^{\dagger} . . M_{1}{ }^{\dagger}$ recursive property $\quad R_{N}=M_{N} R_{N-1} M_{N}{ }^{\dagger}$
- implies $\mathbf{S}_{N}=1 / \operatorname{Tr}\left\{\mathrm{R}_{N}\right\}\left[\operatorname{Im}(\mu) \quad \check{z} \times \mathbf{p}_{\mathrm{qNT}}+\mathcal{R}\left(\check{z} ; \mu, \mathbf{p}_{\mathrm{qT}}{ }^{2}\right) \mathrm{S}_{\mathrm{N}-1}\right]$
$>\operatorname{Im}(\mu) \neq 0 \Rightarrow S_{N T} \neq 0$ even if $S_{N-1}=0$
helicity $\mathrm{S}_{\mathrm{N}-1 \mathrm{z}} \leftrightarrow$ transversity S_{NT}

recursive model with spin: Collins and jet handedness

(Artru, arXiv:1001.1061)

- define recursive property $R_{N}=M_{N} R_{N-1} M_{N}{ }^{\dagger}$
- implies $\mathbf{S}_{\mathrm{N}}=1 / \operatorname{Tr}\left\{R_{N}\right\}\left[\operatorname{Im}(\mu) \quad \check{z} \times \mathbf{p}_{\mathrm{qNT}}+\mathcal{R}\left(\check{z} ; \mu, \mathbf{p}_{\mathrm{GT}}{ }^{2}\right) \mathbf{S}_{\mathrm{N}-1}\right]$
$>\operatorname{Im}(\mu) \neq 0 \Rightarrow S_{\mathrm{NT}} \neq 0$ even if $\mathrm{S}_{\mathrm{N}-1}=0$
helicity $\mathrm{S}_{\mathrm{N}-1 \mathrm{z}} \leftrightarrow$ transversity S_{NT}
$>$ jet handedness $=1) \mathrm{S}_{0 \mathrm{z}} \rightarrow \mathrm{S}_{1 \mathrm{~T}} \| \mathrm{p}_{\mathrm{h} 1 \mathrm{~T}} \neq 0$

2) Collins effect $\check{z} \cdot \mathbf{p}_{\mathrm{h} 2 \mathrm{~T}} \times \mathbf{S}_{1 T} \Rightarrow \check{z} \cdot \mathbf{p}_{\mathrm{h} 2 \mathrm{~T}} \times \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}}$
recursive model with spin: Collins and jet handedness
(Artru, arXiv:1001.1061)

- define
$\mathrm{R}_{\mathrm{N}}=\mathrm{M}_{1} . . \mathrm{M}_{\mathrm{N}}\left(1+\mathrm{S}_{0} \cdot \boldsymbol{\sigma}\right) \mathrm{M}_{\mathrm{N}}{ }^{\dagger} . . \mathrm{M}_{1}{ }^{\dagger}$
recursive property $\quad R_{N}=M_{N} R_{N-1} M_{N}{ }^{\dagger}$
- implies $\mathbf{S}_{N}=1 / \operatorname{Tr}\left\{\mathrm{R}_{N}\right\}\left[\operatorname{Im}(\mu) \quad \check{\mathbf{z}} \times \mathbf{p}_{\mathrm{qNT}}+\mathcal{R}\left(\check{\mathbf{z}} ; \mu, \mathbf{p}_{\mathrm{qT}}{ }^{2}\right) \mathbf{S}_{\mathrm{N}-1}\right]$
$>\operatorname{Im}(\mu) \neq 0 \Rightarrow S_{N T} \neq 0$ even if $S_{N-1}=0$
helicity $\mathrm{S}_{\mathrm{N}-1 \mathrm{z}} \leftrightarrow$ transversity S_{NT}
$>$ jet handedness $=1) \mathrm{S}_{0 \mathrm{z}} \rightarrow \mathrm{S}_{1 \mathrm{~T}} \| \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}} \neq 0$

2) Collins effect $\check{z} \cdot \mathbf{p}_{\mathrm{h} 2 \mathrm{~T}} \times \mathbf{S}_{1 \mathrm{~T}} \Rightarrow \check{z} \cdot \mathbf{p}_{\mathrm{h} 2 \mathrm{~T}} \times \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}}$

- implies $S_{N z}=D_{L L}\left(\left|\mu^{2}\right|\right) S_{N-1 z} ; S_{N T}=D_{T T}\left(\left|\mu^{2}\right|\right) S_{N-1 T} \quad 2\left|D_{T T}\right| \leq 1+D_{L L}$ - $\mathrm{D}_{\mathrm{T}}<0 \Rightarrow$ alternate Collins effects on h_{1}, h_{2}.. as in Lund ${ }^{3} P_{0}$ model unfav. ~ - fav.

recursive model with spin: Collins and jet handedness
(Artru, arXiv:1001.1061)
- define
$R_{N}=M_{1} . . M_{N}\left(1+S_{0} \cdot \sigma\right) M_{N}{ }^{\dagger} . . M_{1}{ }^{\dagger}$
recursive property $R_{N}=M_{N} R_{N-1} M_{N}{ }^{\dagger}$
- implies $\mathbf{S}_{N}=1 / \operatorname{Tr}\left\{\mathrm{R}_{N}\right\}\left[\operatorname{Im}(\mu) \quad \check{\mathbf{z}} \times \mathbf{p}_{\mathrm{qNT}}+\mathcal{R}\left(\check{\mathbf{z}} ; \mu, \mathbf{p}_{\mathrm{qT}}{ }^{2}\right) \mathbf{S}_{\mathrm{N}-1}\right]$
$>\operatorname{Im}(\mu) \neq 0 \Rightarrow S_{N T} \neq 0$ even if $S_{N-1}=0$
helicity $\mathrm{S}_{\mathrm{N}-1 \mathrm{z}} \leftrightarrow$ transversity S_{NT}
$>$ jet handedness $=1) \mathrm{S}_{0 \mathrm{z}} \rightarrow \mathrm{S}_{1 \mathrm{~T}} \| \mathbf{p}_{\mathrm{h} 1 \mathrm{~T}} \neq 0$

2) Collins effect $\check{z} \cdot \mathbf{p}_{\mathrm{h} 2 \mathrm{~T}} \times \mathbf{S}_{1 T} \Rightarrow \check{z} \cdot p_{h 2 T} \times p_{\mathrm{h}} 1 \mathrm{~T}$

- implies $S_{N z}=D_{L L}\left(\left|\mu^{2}\right|\right) S_{N-1 z} ; S_{N T}=D_{T T}\left(\left|\mu^{2}\right|\right) S_{N-1 T} \quad 2\left|D_{T T}\right| \leq 1+D_{L L}$ - $\mathrm{D}_{\mathrm{T}}<0 \Rightarrow$ alternate Collins effects on $h_{1}, h_{2} .$. as in Lund ${ }^{3} P_{0}$ model unfav. ~ - fav.

BUT Aut ${ }^{\text {Coll }}\left(K^{-}\right) \sim 0$ at Hermes different trend at COMPASS large $A \cup u^{\cos 2 \phi}\left(\mathrm{~K}_{-}\right)$at HERMES

2h FF (DiFF)

Di-hadron Fragm. Functions (DiFF)

from q-q correlator $\Delta\left(\mathbf{z}_{1}, \mathrm{z}_{2}, \mathbf{K}_{\mathrm{T}}, \mathbf{R}_{\mathrm{T}}\right)$ project out (at leading twist):

$$
\begin{aligned}
\operatorname{Tr}\left[\Delta \gamma^{-}\right] & \rightarrow D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, K_{T}^{2}, R_{T}^{2}, \mathbf{K}_{T} \cdot \mathbf{R}_{T}\right) \\
\operatorname{Tr}\left[\Delta \gamma^{-} \gamma_{5}\right] & \rightarrow \quad\left(\mathbf{R}_{T} \times \mathbf{K}_{T}\right) G_{1}^{\perp q \rightarrow h_{1} h_{2}} \\
\operatorname{Tr}\left[\Delta i \sigma^{i-} \gamma_{5}\right] & \rightarrow\left(\mathbf{S}_{T}^{q} \times \mathbf{K}_{T}\right) H_{1}^{\perp q \rightarrow h_{1} h_{2}}+\left(\mathbf{S}_{T}^{q} \times \mathbf{R}_{T}\right) H_{1}^{\triangleleft q \rightarrow h_{1} h_{2}}
\end{aligned}
$$

First suggested in Konishi et al., P.L.B78 (78)
Polarized DiFF in Collins et al., N.P.B420 (94); Jaffe et al., P.R.L. 80 (98); Artru \& Collins, Z.Ph.C69 (96) Jet handedness in Efremov et al.,P.L.B284 (92); Stratmann \& Vogelsang, P.L.B295 (92); Boer et al.,P.R.D67 (03) full analysis at twist 2 Bianconi et al., P.R.D62 (00); at twist 3 Bacchetta \& Radici, P.R.D69 (04) LO evolution eqs. Ceccopieri et al., P.L.B650 (07)

chiral-odd $H_{1}^{\varangle q \rightarrow h_{1} h_{2}}$ survives $\int \mathrm{d} \mathbf{K}_{T} \quad\left(H_{1}^{\perp q \rightarrow h}\right.$ doesn't $)$ (memo: h_{1}, h_{2} must be distinguishable!)

chiral-odd $H_{1}^{\varangle q \rightarrow h_{1} h_{2}}$ survives $\int \mathrm{d} \mathbf{K}_{T} \quad\left(H_{1}^{\perp q \rightarrow h}\right.$ doesn't $)$ (memo: h_{1}, h_{2} must be distinguishable!)

partner of transversity

$$
\begin{aligned}
& A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, z, M_{h}^{2} ; Q^{2}\right)= \\
& \\
& \qquad C_{y} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) H_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}
\end{aligned}
$$

- coll. fact. \rightarrow simple product (no \otimes)

Radici et al., PR D65 (02) Bacchetta \& Radici, PR D67 (03)

- DGLAP (LO) evolution
- universality
- cleaner $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} \pi^{-}\right) \mathrm{X}$ (expect less background)

2007: preliminary SIDIS data on D from COMPASS: Aut ~ 0

Martin, hep-ex/0702002

2008: first SIDIS data on p^{\dagger} from HERMES

Airapetian et al. (HERMES), JHEP 06 (08)
2009: preliminary data on p^{\dagger} from COMPASS
Wollny (COMPASS), DIS 2009, arXiv:0907.0961

2007: preliminary SIDIS data on D from COMPASS: Aut ~ 0

Martin, hep-ex/0702002

2008: first SIDIS data on p^{\uparrow} from HERMES

Airapetian et al. (HERMES), JHEP 06 (08)

2009: preliminary data on p^{\dagger} from COMPASS

 Wollny (COMPASS), DIS 2009, arXiv:0907.0961observable is
$A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}$

$$
H_{1}^{\varangle}=H_{1, s p}^{\varangle}\left(z, M_{h}^{2}\right)+\cos \theta H_{1, p p}^{\varangle}\left(z, M_{h}^{2}\right)
$$

access to interference $\left(\pi^{+} \pi^{-}\right)_{s} \leftrightarrow\left(\pi^{+} \pi^{-}\right)_{p}$
model prediction Bacchetta \& Radici, P.R.D74 (06) model analysis Bacchetta et al., P.R.D79 (09); She et al., P.R.D77 (08)

2011: the BELLE data for $a_{12 R}$ $e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} \pi^{-}\right) X$

Artru \& Collins, Z.Ph.C69 (96) Boer et al., P.R.D67 (03)

$$
A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \equiv a_{12 R} \propto
$$

$$
\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{\left|\mathbf{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\mathbf{R}}_{T}\right|}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, q \rightarrow \pi^{+} \pi^{-}}^{\varangle}\left(z, M_{h}^{2}\right) H_{1, \bar{q} \rightarrow \pi^{+} \pi^{-}}^{\varangle}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1, q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) D_{1, \bar{q} \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

parametrizing DiFF: fitting BELLE data

$a_{12 R}=\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{\langle\sin \theta\rangle|\boldsymbol{R}|}{M_{h}} \frac{\langle\sin \bar{\theta}\rangle|\overline{\boldsymbol{R}}|}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, q \rightarrow \pi^{+} \pi^{-}}^{\varangle}\left(z, M_{h}^{2}\right) H_{1, \bar{q} \rightarrow \pi^{+} \pi^{-}}^{\varangle}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1, q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) D_{1, \bar{q} \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}$

$$
|\boldsymbol{R}|=\frac{M_{h}}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{n}^{2}}}
$$

strategy

1. fit the denominator using the unpolarized cross section generated by PYTHIA MC adapted to BELLE
2. fit the asymmetry $a_{12 R}$ multiplied by denominator (\approx [statistical error] ${ }^{-1}$)
\rightarrow get the numerator, bin by bin

1. fitting the BELLE (MC) d $\sigma^{0} \rightarrow D_{1} 9 \rightarrow \pi+\pi-$

1. flavor decomposition:\{uds\} - charm
2. resonant (ρ, ω; only \{uds\}) and nonresonant contributions

$\mathrm{M}_{\mathrm{h}}(\mathrm{GeV})$

1. fitting the BELLE (MC) $d \sigma^{0} \rightarrow D_{1} q \rightarrow \pi+\pi-$

1. flavor decomposition: \{uds\} - charm
2. resonant (ρ, ω; only \{uds\}) and nonresonant contributions

- big effect from charm
- no factorization of ($\mathrm{z}, \mathrm{M}_{\mathrm{h}}$) depend.
work in progress for $\mathrm{d} \mathrm{\sigma}^{0} \times \mathrm{a}_{12 \mathrm{R}} \ldots$
... but ...

$\mathrm{M}_{\mathrm{h}}(\mathrm{GeV})$

$1^{\text {st }}$ extraction of transversity in coll. framework

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, z, M_{h}^{2} ; Q^{2}\right)=-C_{y} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) H_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}
$$

$\int d z \int d M_{h}^{2}$

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\perp}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$1^{\text {st }}$ extraction of transversity in coll. framework

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, z, M_{h}^{2} ; Q^{2}\right)=-C_{y} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) H_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}
$$

$$
\int d z \int d M_{h}^{2}
$$

$$
A_{U T}^{\mathrm{SDIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\perp}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

assume charge/isospin symmetry

$$
\begin{gathered}
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \\
D_{1}^{s}=D_{1}^{\bar{s}}=N_{s} D_{1}^{u} \quad D_{1}^{c}=D_{1}^{\bar{c}} \\
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}} \\
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
\end{gathered}
$$

$1^{\text {st }}$ extraction of transversity in coll. framework

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, z, M_{h}^{2} ; Q^{2}\right)=-C_{y} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) H_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}
$$

$\int d z \int d M_{h}^{2}$

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\perp}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

assume charge/isospin symmetry

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}}
$$

$$
D_{1}^{s}=D_{1}^{\bar{s}}=N_{s} D_{1}^{u} \quad D_{1}^{c}=D_{1}^{\bar{c}}
$$

$$
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}}
$$

$$
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
$$

$$
\begin{aligned}
& x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \\
& \quad=-\frac{A_{U T}^{\mathrm{SIDIS}}\left(x, Q^{2}\right)}{C_{y}} \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2} N_{q}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
\end{aligned}
$$

$1^{\text {st }}$ extraction of transversity in coll. framework

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, z, M_{h}^{2} ; Q^{2}\right)=-C_{y} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) H_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{\varangle q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2} ; Q^{2}\right)}
$$

$\int d z \int d M_{h}^{2}$

$$
A_{U T}^{\mathrm{SIDIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\perp}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

assume charge/isospin symmetry

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}}
$$

$$
D_{1}^{s}=D_{1}^{\bar{s}}=N_{s} D_{1}^{u} \quad D_{1}^{c}=D_{1}^{\bar{c}}
$$

$$
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}}
$$

$$
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
$$

$$
\text { goal } \longrightarrow x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \quad \text { BELLE }
$$

$$
=-\frac{A_{U T}^{\mathrm{SIDIS}}\left(x, Q^{2}\right)}{C_{y}} \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2} N_{q}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

$1^{\text {st }}$ extraction of transversity

 in coll. framework1. start from $D_{1}{ }^{q=u, s, c}\left(z, M_{h} ; Q_{0}^{2}=1\right), H_{1}{ }^{<)} u\left(z, M_{h} ; Q_{0}^{2}=1\right) \quad$ Bacchetta \& Radici, P.R.D74 (06) resonant + nonresonant channel inspired by spect. model
2. evolve at LO with HOPPET (updating with chiral-odd kernel)
3. fit $d \sigma^{0}$ from PYTHIA (adatped to BELLE) and $d \sigma^{0} \times \mathrm{a}_{12 \mathrm{R}}$ bin by bin
4. integrate $D_{1}{ }^{q}$ and $\left.H_{1}<\right) u$ in HERMES range $0.5 \leq M_{h} \leq 1,0.2 \leq z \leq 0.7$
5. get $n_{u}{ }^{\dagger}\left(Q^{2}\right) / n_{u}\left(Q^{2}\right): Q^{2}=2.5 \mathrm{GeV}^{2} n_{u}{ }^{\uparrow} / n_{u}=-0.251 \pm 0.006_{\mathrm{ex}} \pm 0.023_{\text {th }}$ $\left[n_{u}{ }^{\dagger} / n_{u}(2.5)\right] /\left[n_{u}{ }^{\uparrow} / n_{u}(100)\right] \sim 92 \%(\pm 8 \%)$

$1^{\text {st }}$ extraction of transversity in coll. framework

1. start from $D_{1}{ }^{q=u, s, c}\left(z, M_{h} ; Q_{0}^{2}=1\right), H_{1}{ }^{<)} u\left(z, M_{h} ; Q_{0}^{2}=1\right) \quad$ Bacchetta \& Radici, P.R.D74 (06) resonant + nonresonant channel inspired by spect. model
2. evolve at LO with HOPPET (updating with chiral-odd kernel)
3. fit do ${ }^{0}$ from PYTHIA (adatped to BELLE) and $d^{0} \times \mathrm{a}_{12 \mathrm{R}}$ bin by bin
4. integrate $\mathrm{D}_{1}{ }^{\mathrm{q}}$ and $\left.\mathrm{H}_{1}<\right) \mathrm{u}$ in HERMES range $0.5 \leq \mathrm{M}_{\mathrm{h}} \leq 1,0.2 \leq \mathrm{z} \leq 0.7$
5. get $\mathrm{n}_{\mathrm{u}}{ }^{\uparrow}\left(\mathrm{Q}^{2}\right) / \mathrm{n}_{\mathrm{u}}\left(\mathrm{Q}^{2}\right): \mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2} \mathrm{n}_{\mathrm{u}}{ }^{\uparrow} / \mathrm{n}_{\mathrm{u}}=-0.251 \pm 0.006_{\mathrm{ex}} \pm 0.023_{\mathrm{th}}$ $\left[n_{u}{ }^{\dagger} / n_{u}(2.5)\right] /\left[n_{u}{ }^{\dagger} / n_{u}(100)\right] \sim 92 \%(\pm 8 \%)$

$1^{\text {st }}$ extraction of transversity in coll. framework

1. start from $\left.D_{1} q=u, s, c\left(z, M_{h} ; Q_{0}^{2}=1\right), H_{1}<\right) u\left(z, M_{h} ; Q_{0}{ }^{2}=1\right) \quad$ Bacchetta \& Radici, P.R.D74 (06) resonant + nonresonant channel inspired by spect. model
2. evolve at LO with HOPPET (updating with chiral-odd kernel)
3. fit $d \sigma^{0}$ from PYTHIA (adatped to BELLE) and $d \sigma^{0} \times a_{12 R}$ bin by bin
4. integrate $\mathrm{D}_{1}{ }^{q}$ and $\left.\mathrm{H}_{1}<\right) \mathrm{u}$ in HERMES range $0.5 \leq \mathrm{M}_{\mathrm{h}} \leq 1,0.2 \leq \mathrm{z} \leq 0.7$
5. get $\mathrm{n}_{\mathrm{u}}{ }^{\uparrow}\left(\mathrm{Q}^{2}\right) / \mathrm{n}_{\mathrm{u}}\left(\mathrm{Q}^{2}\right): \mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2} \mathrm{n}_{\mathrm{u}}{ }^{\uparrow} / \mathrm{n}_{\mathrm{u}}=-0.251 \pm 0.006_{\mathrm{ex}} \pm 0.023_{\mathrm{th}}$ $\left[n_{u}{ }^{\dagger} / n_{u}(2.5)\right] /\left[n_{u}{ }^{\dagger} / n_{u}(100)\right] \sim 92 \%(\pm 8 \%)$

$\Delta x^{2}=1\{$ HERMES
 COMPASS

several "BUT.." work in progress stay tuned..

