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Outline
• Unpol. 1-hadron Fragm. Functions (1h FF)                        
status of “collinear” parametrizations                            
what do we know about 1h “TMD” FF ?   

• Pol. 1h FF: the Collins function                              

• Models of 1h FF  

• 2h FF (or Dihadron Fragm. Functions - DiFF)  
BELLE (+BaBar?) data and parametrizations  (next 2 talks)                      
BELLE+HERMES (+COMPASS) data and extraction of h1  (Braun) 
extraction of e and hL with DiFF at JLab  (Avakian)

• Conclusions and Outlooks
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unpolarized 1h FF
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1h FF main source of data 
e+e-→hX
h=π±,K±,K0s,p,p,Λ,Λ 

Energy range
• √s=12-36 GeV    at DESY (ARGO, JADE, CELLO, TASSO)
• √s=29                 at SLAC (HRS, MARK II, TPC) 
• √s=58                 at KEK (TOPAZ)
• √s=91.2 (Z0)       at LEP-1 (ALEPH, DELPHI, OPAL) 
•     “    “   “             at SLAC (SLD)
• √s=133-209       at LEP-2 (DELPHI, L3, OPAL)
• √s=10.58 (Y4S)    at B-factories (BaBar, BELLE, CLEO)
 
• 5×10-3 ≤ z ≤ 0.8

80’s}
} ’95-’06
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e+e-→hX 1

σtot

dσh

dz
≡ Fh

(z,Q2
)

=

�

i=q,q̄

Dh
i (z,Q

2
) at LO

=

�

i=q,q̄,g

Ci(z,Q
2
)⊗Dh

i (z,Q
2
) beyond

- direct connection (at LO) to parton-to-hadron FF
- Ci known up to NNLO in MS (Mitov & Moch (2006))
- flavor analysis ~ {u,d,s} + c + b 
                             except OPAL (full separation)

but
* Dgh less constrained 
* access only to Dqh+Dqh=Dqh/h (at LO)
* virtuality fixed by c.m. energy Q=√s/2
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e±p→e±hX
h=π±,K±, h±, Λ, Λ 

Energy range
• 1 ≤ Q ≤ 200 GeV    at HERA (H1, ZEUS, HERMES) 
• 1 ≤ Q ≤ 5               at CERN (COMPASS) 
• 1 ≤ Q ≤ 10      also at NOMAD with νμ probes
 
• 0.1 ≤ z < 1

- larger phase space in {z,Q2} than in e+e-

- separate Dqh from Dqh  (at least for xB ≥ 0.1)
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Figure 5: The measured normalised distributions of the scaled momentum 1
N

dn/dxp: a) as a
function of xp for the different Q intervals compared with the PS Monte Carlo prediction. Each
Q interval, apart from the lowest, has been scaled by an additional factor of ten; and b) as a
function of Q for the different xp intervals compared with the e+e− annihilation data and the
PS Monte Carlo prediction.

20

- SIDIS in Breit frame 
      xp=Ph/Q/2
   h± scaled mom. distr. 
     1/N dn/dxp

- compare with e+e- 
     at E*≡Q=√s/2

➤ universality test
H1 Coll., P.L. B654 (2007) 148

e±p→e±hX
h=π±,K±, h±, Λ, Λ 
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pp→hX
h=π±,0,K±, Ks0, p, p, Λ, Λ 

Energy range
• mid η, 1≤ P⊥(π0)≤ 20 GeV               at RHIC (PHENIX) 
• large η>0, 1≤P⊥(π0 — π±,K±)≤ 10   at RHIC (STAR — BRAHMS) 
• mid η, 1≤ P⊥(Ks0,p,p,Λ,Λ)≤ 10         at RHIC (STAR)
• 80≤ Mjj ≤ 600, 1≤ P⊥(h±)≤ 20         at CDF                            pp

H1 H2

(-)

pp 
√s=200 }

- constrain Dgh, especially at xB«1

- probe FF at large z (complementary to e+e-)

- 1/N dn/dxp  test universality with e+e- and SIDIS
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status of parametrizations

before 2007
- AKK    Albino, Kniehl, Kramer, 2005

- BKK    Binnewies, Kniehl, Kramer, 1995

- BFG    Bourhis, Fontannaz, Guillet, 1998

- BFGW  Bourhis, Fontannaz, Guillet, 
                       Werlen, 2001

- CGRW Chiappetta, Greco, Guillet, Rolli, 
                       Werlen, 1994

- GRV    Glück, Reya, Vogt, 1993

- KKP    Kniehl, Kramer, Potter, 2000

- Kr       Kretzer, 2000
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status of parametrizations

before 2007
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Figure 4: The measured normalised distributions of the scaled momentum, 1
N

dn/dxp, as a
function of Q for six different xp regions where there exist infra red safe NLO QCD predic-
tions. The statistical error is shown by the inner error bar and the outer error bar represents
the statistical and systematic error added in quadrature. In addition there is a further correlated
error of∼ 0.5−7% (increasing with xp) coming from the electron energy scale uncertainty (not
shown). The data are displayed at the average value of Q, the horizontal error bars represent
the statistical errors given in table 1. The data are compared to NLO QCD CYCLOPS predic-
tions for Q < 60 GeV using three different fragmentation functions: KKP (dot-dashed line),
AKK (solid), and KRETZER (dashed). The typical scale uncertainties for the AKK predictions
are shown as a shaded band. As standard the CTEQ6.1 PDF is used, the effect of using the
MRST2001 PDF for the AKK predictions are also shown (dotted).
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H1 Coll., P.L. B654 (2007) 148

- AKK    Albino, Kniehl, Kramer, 2005

- BKK    Binnewies, Kniehl, Kramer, 1995

- BFG    Bourhis, Fontannaz, Guillet, 1998

- BFGW  Bourhis, Fontannaz, Guillet, 
                       Werlen, 2001

- CGRW Chiappetta, Greco, Guillet, Rolli, 
                       Werlen, 1994

- GRV    Glück, Reya, Vogt, 1993

- KKP    Kniehl, Kramer, Potter, 2000

- Kr       Kretzer, 2000

fail to reproduce 
scaling violations 
of recent H1 data
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status of parametrizations

after 2007
- AKK08  Albino, Kniehl, Kramer, 2008

- DSS      De Florian, Sassot, Stratmann, 2007

- HKNS    Hirai, Kumano, Nagai, Sudoh, 2007

main ingredients
DSS AKK08 HKNS

e+e-  SIDIS  pp e+e-   pp    pp e+e-

π±, K±, p, p, h± (, Λ) π±, K±, Ks0, p, p, Λ, Λ π±, π0, K±, K0+K0, n, p+p

0.05-0.1≤ z   1≤Q2≤105 GeV2 0.05≤ z   2≤Q2≤ 4×104 GeV2 0.01≤ z   1≤Q2≤108  GeV2

NLO DGLAP in Mellin space
D(z,Q0)=Nza(1-z)b[1-c(1-z)d]
N fixed by ∑h∫dz zDih(z,Q2)=1

NLO DGLAP in Mellin space +
  resum  logn(1-z)/1-z  at NLL 
D(z,Q0) and N fixed as DSS

NLO DGLAP direct integration
D(z,Q0)=Nza(1-z)b
N fixed as DSS

SU(2) symmetric unfavoured

d+d ∝ u+u

SU(2) symmetric favoured     (π)
                   and unfavoured
build Dih++h- , Dih+-h-

SU(2) symmetric favoured 
                   and unfavoured
s = unfavoured

Lagrange multipliers no error analysis Hessian errors

mh≠0 effect → z≠xp
resum log’s at NLL also in Ci 
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main differences
- HKNS: no constrain on Dgh  from 
             pp data, reliable at LHC ?

Eur. Phys. J. C (2009) 61: 603–627 609

Fig. 2.3 HKNS parametrization for charged pions, Dπ±
i /2, at NLO

for all flavors, compared to the AKK05, KKP, and Kr sets previously
available. The bands indicate the theoretical uncertainty of the HKNS
fragmentation functions. Taken from [10]

however, is the treatment of hadron-mass effects, mh != 0,
in the extraction of fragmentation functions. They are taken
into account by making explicit the kinematical differences
between the light-cone scaling variable x entering the frag-
mentation functions and the energy (xE) or momentum (xp)
fraction used experimentally e.g. in e+e− collisions (cor-
rections can be taken care of in a similar manner in hadronic
collisions):

xE,p = x

(
1 ± m2

h

x2s

)
.

The AKK08 fits have been performed for all hadron species
letting mh be a free parameter. Remarkably, the fitted mass
turned out to be amazingly close to the true masses (1% dif-
ference is quoted) for baryons (p/p̄, Λ/Λ̄), yet 10% larger
for pions, an observation attributed in [14] to the decay of
the ρ-meson, whose mass is much larger than that of the
pion; note, however, that the fitted kaon mass proves to be
30% smaller than its actual value. On the phenomenolog-
ical side, hadron-mass effects are visible at low x and/or
small

√
s.

The other novelty of the AKK08 analysis is the large-N
(large x) resummation of leading logarithms, αn

s lnn+1 N ,
and next-to-leading logarithms, αn

s lnn N , of the Mellin
transform of the NLO e+e− coefficient functions, Ci , ap-
pearing in (2.2) [120]. Large-x logarithms appearing in the
DGLAP evolution are also resummed to LL and NLL ac-
curacy, using [121]. Even though the inclusion of large-x
resummation improves the fit for K±, p/p̄, and especially
Λ/Λ̄ production (χ2/ndf = 1.45 instead of χ2/ndf = 1.73
without resummation), differences with the purely fixed-
order analysis are however pretty small, and only visible ei-
ther at low energy or above it, x ! 0.7. Given that fragmen-
tation functions are extracted within a resummed analysis,
one may also wonder whether AKK08 should in principle
be used in a fixed-order calculation.

2.2.6 Comparing FF sets

A detailed comparison of the various sets would not be ap-
propriate here; the reader is rather referred to the original
publications of each analysis [10–14] for a complete dis-
cussion. The general features are thus only briefly sketched
in this section. First of all, given the amount of e+e− data
available, the fragmentation of light quarks into π± is rather
similar in each set. However, the gluon fragmentation func-
tions, Dπ±

g , reported by AKK05/AKK08 and especially that
of DSS (both using hadronic data) are much harder than the
one given by HKNS, which is only extracted from e+e−

measurements. This can be seen in the upper left panel of
Fig. 2.3, where AKK05 and HKNS are compared. There-
fore, potentially large differences in the QCD predictions
of the hadron p⊥ spectra e.g. at the LHC could be ex-
pected, AKK08 and DSS being a priori more trustful than
HKNS, because of the additional constraints brought by
RHIC and Tevatron data. Nevertheless, the slight disagree-
ment between AKK08 and DSS found at high x is a hint that
systematic theoretical uncertainties on the g → π± process
may still be large. Indeed, even though the hadronic mea-
surements help to constrain gluon fragmentation processes,
the data in p–p and p–p̄ reactions are not as precise as the
e+e− data samples, and uncertainties remain substantial at
high values of x. Even though the agreement between data
and theory may vary from one set or one hadron species
to another, all NLO predictions of the π± and K± spectra
reproduce fairly well the available data. Remarkably, those
sets also prove to be rather successful in predicting baryon
production such as p/p̄ (despite that the agreement is not as
good as for π±), yet the FF into p/p̄ are rather dissimilar
in each set. In the case of Λ/Λ̄ production, however, a large
discrepancy between theory and STAR data in p–p colli-
sions [93] is apparent either when using the AKK08 [14]
or DSV [11–13] sets, which both undershoot the data by
roughly a factor of 5. Finally, the largest differences between
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tions show a much stronger rise at small z when the scale is
increased [50], one also finds a much better agreement
between the different sets at Q2 ! M2

Z, where most of
the very precise SIA data are obtained. In other words,
the evolution downwards from MZ, where the distributions
agree best, to scales relevant for RHIC and SIDIS data,
exacerbate the differences between them.

Figures 19 and 20 provide the same information and
comparisons as in the previous ones but for positively
charged kaons. As expected, the dominant fragmentation
in the light quark sector corresponds to the strange distri-
bution. While heavy quark densities are as large as those
for pions, the gluon fragmentation turns out to be much less
sizable, even though it is still larger than those from KRE
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and AKK at large z in order to fit the proton-proton data
from STAR and, in particular, at forward rapidities from
BRAHMS. The comparison in the light quark sector shows
many similarities with the pion case, but here the discrep-
ancies are more noticeable with the KRE set instead. The
global fit requires a smaller contribution from u quark
fragmentation, mostly from SIDIS data (distributions like
KRE overestimate SIDIS data, see Fig. 13) resulting in an
increase in the strange sector as the singlet DK!

! is again
constrained by SIA data.

F. Uncertainties

In order to give a clear and comprehensive picture of the
typical uncertainties characteristic of the fragmentation
functions obtained in the global fits, in the present section
we apply the Lagrange multiplier technique introduced in
Sec. III D.

Rather than focusing on the uncertainties of the parame-
ters in Eq. (15) determining the fragmentation functions at
the initial scale and choosing a particular increment "!2 to
judge the quality of the fit, we find it much more enlighten-
ing to analyze the range of variation of other relevant
features of the fragmentation functions, with a more ap-
parent physical meaning, and take these as the character-
istic uncertainties of the fit. Notice that the range of
variation of the fitted parameters is strongly correlated;
the impact of any of them on the behavior of the distribu-
tions, or on a given observable, is determined also by the
values taken by the whole set of parameters through the
evolution equations. Of course, in order to get a precise
estimate of the uncertainty in a given observable computed
with the set, the range of variation of that particular ob-
servable as a function of "!2 has to be evaluated. As
explained in Sec. III D, the result takes into account the
complex correlations between the parameters, implies no
assumptions on the profile of !2, and allows one to con-
sider different "!2.

In Figs. 21 and 22 we show, as an example, the range of
variation of the truncated second moments of the fragmen-
tation functions
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Fig. 31. The quark FFs for ∆cπ
± at Mf = 91.2 GeV.

Fig. 32. The u quark FF for ∆cK
± at Mf = 91.2 GeV.

- the puzzle of 
   STAR Λ,Λ data

68 S. Albino et al. / Nuclear Physics B 803 (2008) 42–104

Fig. 5. As in Fig. 4, but for the STAR data. Also shown, for Λ/Λ̄, is the calculation using the DSV [58] FF set.

AKK FF set, because the gluon FF for Λ/Λ̄ at the initial scale in Ref. [4] was fixed to 1/3 that
for the AKK proton for this purpose. Ultimately, a determination of the error on this prediction
from the experimental errors, including correlation effects, on the FFs would better determine
whether an inconsistency really exists.

The BRAHMS data for which 3.25 < y < 3.35 (Fig. 6) provide most of the constraint on
the charge-sign asymmetry FFs, while the constraints from the STAR data are rather poor. The
description of the ∆cp/p̄ data from BRAHMS for which 3.25 < y < 3.35 is particularly poor.
The ∆cπ

± data are much less precise than the π± data, which is due to the similar yields of
π+ and π− relative to the experimental error. The ∆cK

± and ∆cp/p̄ data do not suffer this
problem as much, particularly the ∆cp/p̄ data, since the yields for each charge-sign, particularly
in the case of p/p̄, are significantly different. For the higher rapidity data at BRAHMS, the
theoretical error is slightly lower for ∆cπ

± (Fig. 7) than for π± (Fig. 2), and lower to a greater
degree for ∆cK

± than for K±, and for ∆cp/p̄ than for p/p̄, which may result from some
cancellation of the theoretical error between the cross sections for each charge-sign, whose
calculations are similar. However, the theoretical errors for ∆cπ

± (Fig. 8) and π± (Fig. 3) data
at STAR are similar, while the theoretical errors for ∆cp/p̄ are larger than for p/p̄, which
may be due partly to (hidden) theoretical errors at low rapidity. Note that, perhaps for the same
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Fig. 2.3 HKNS parametrization for charged pions, Dπ±
i /2, at NLO

for all flavors, compared to the AKK05, KKP, and Kr sets previously
available. The bands indicate the theoretical uncertainty of the HKNS
fragmentation functions. Taken from [10]

however, is the treatment of hadron-mass effects, mh != 0,
in the extraction of fragmentation functions. They are taken
into account by making explicit the kinematical differences
between the light-cone scaling variable x entering the frag-
mentation functions and the energy (xE) or momentum (xp)
fraction used experimentally e.g. in e+e− collisions (cor-
rections can be taken care of in a similar manner in hadronic
collisions):

xE,p = x

(
1 ± m2

h

x2s

)
.

The AKK08 fits have been performed for all hadron species
letting mh be a free parameter. Remarkably, the fitted mass
turned out to be amazingly close to the true masses (1% dif-
ference is quoted) for baryons (p/p̄, Λ/Λ̄), yet 10% larger
for pions, an observation attributed in [14] to the decay of
the ρ-meson, whose mass is much larger than that of the
pion; note, however, that the fitted kaon mass proves to be
30% smaller than its actual value. On the phenomenolog-
ical side, hadron-mass effects are visible at low x and/or
small

√
s.

The other novelty of the AKK08 analysis is the large-N
(large x) resummation of leading logarithms, αn

s lnn+1 N ,
and next-to-leading logarithms, αn

s lnn N , of the Mellin
transform of the NLO e+e− coefficient functions, Ci , ap-
pearing in (2.2) [120]. Large-x logarithms appearing in the
DGLAP evolution are also resummed to LL and NLL ac-
curacy, using [121]. Even though the inclusion of large-x
resummation improves the fit for K±, p/p̄, and especially
Λ/Λ̄ production (χ2/ndf = 1.45 instead of χ2/ndf = 1.73
without resummation), differences with the purely fixed-
order analysis are however pretty small, and only visible ei-
ther at low energy or above it, x ! 0.7. Given that fragmen-
tation functions are extracted within a resummed analysis,
one may also wonder whether AKK08 should in principle
be used in a fixed-order calculation.

2.2.6 Comparing FF sets

A detailed comparison of the various sets would not be ap-
propriate here; the reader is rather referred to the original
publications of each analysis [10–14] for a complete dis-
cussion. The general features are thus only briefly sketched
in this section. First of all, given the amount of e+e− data
available, the fragmentation of light quarks into π± is rather
similar in each set. However, the gluon fragmentation func-
tions, Dπ±

g , reported by AKK05/AKK08 and especially that
of DSS (both using hadronic data) are much harder than the
one given by HKNS, which is only extracted from e+e−

measurements. This can be seen in the upper left panel of
Fig. 2.3, where AKK05 and HKNS are compared. There-
fore, potentially large differences in the QCD predictions
of the hadron p⊥ spectra e.g. at the LHC could be ex-
pected, AKK08 and DSS being a priori more trustful than
HKNS, because of the additional constraints brought by
RHIC and Tevatron data. Nevertheless, the slight disagree-
ment between AKK08 and DSS found at high x is a hint that
systematic theoretical uncertainties on the g → π± process
may still be large. Indeed, even though the hadronic mea-
surements help to constrain gluon fragmentation processes,
the data in p–p and p–p̄ reactions are not as precise as the
e+e− data samples, and uncertainties remain substantial at
high values of x. Even though the agreement between data
and theory may vary from one set or one hadron species
to another, all NLO predictions of the π± and K± spectra
reproduce fairly well the available data. Remarkably, those
sets also prove to be rather successful in predicting baryon
production such as p/p̄ (despite that the agreement is not as
good as for π±), yet the FF into p/p̄ are rather dissimilar
in each set. In the case of Λ/Λ̄ production, however, a large
discrepancy between theory and STAR data in p–p colli-
sions [93] is apparent either when using the AKK08 [14]
or DSV [11–13] sets, which both undershoot the data by
roughly a factor of 5. Finally, the largest differences between
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tions show a much stronger rise at small z when the scale is
increased [50], one also finds a much better agreement
between the different sets at Q2 ! M2

Z, where most of
the very precise SIA data are obtained. In other words,
the evolution downwards from MZ, where the distributions
agree best, to scales relevant for RHIC and SIDIS data,
exacerbate the differences between them.

Figures 19 and 20 provide the same information and
comparisons as in the previous ones but for positively
charged kaons. As expected, the dominant fragmentation
in the light quark sector corresponds to the strange distri-
bution. While heavy quark densities are as large as those
for pions, the gluon fragmentation turns out to be much less
sizable, even though it is still larger than those from KRE
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and AKK at large z in order to fit the proton-proton data
from STAR and, in particular, at forward rapidities from
BRAHMS. The comparison in the light quark sector shows
many similarities with the pion case, but here the discrep-
ancies are more noticeable with the KRE set instead. The
global fit requires a smaller contribution from u quark
fragmentation, mostly from SIDIS data (distributions like
KRE overestimate SIDIS data, see Fig. 13) resulting in an
increase in the strange sector as the singlet DK!

! is again
constrained by SIA data.

F. Uncertainties

In order to give a clear and comprehensive picture of the
typical uncertainties characteristic of the fragmentation
functions obtained in the global fits, in the present section
we apply the Lagrange multiplier technique introduced in
Sec. III D.

Rather than focusing on the uncertainties of the parame-
ters in Eq. (15) determining the fragmentation functions at
the initial scale and choosing a particular increment "!2 to
judge the quality of the fit, we find it much more enlighten-
ing to analyze the range of variation of other relevant
features of the fragmentation functions, with a more ap-
parent physical meaning, and take these as the character-
istic uncertainties of the fit. Notice that the range of
variation of the fitted parameters is strongly correlated;
the impact of any of them on the behavior of the distribu-
tions, or on a given observable, is determined also by the
values taken by the whole set of parameters through the
evolution equations. Of course, in order to get a precise
estimate of the uncertainty in a given observable computed
with the set, the range of variation of that particular ob-
servable as a function of "!2 has to be evaluated. As
explained in Sec. III D, the result takes into account the
complex correlations between the parameters, implies no
assumptions on the profile of !2, and allows one to con-
sider different "!2.

In Figs. 21 and 22 we show, as an example, the range of
variation of the truncated second moments of the fragmen-
tation functions

 "H
i "xp;Q2# $

Z 1

xp
zDH

i "z;Q2#dz; (29)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

2

3

1

10

0

1

2

3

10
-1

1

u + u
u
s + s

zDK(z)zDi
Q2 = M2Q2 = MZ

+ gluon
c + c
b + b

zDK(z)zDi
Q2 = M2Q2 = MZ

+

THIS FIT / KRE THIS FIT / KRE

THIS FIT / AKK

DΣ

z

THIS FIT / AKK

z

1

10

10
-1

1

FIG. 20. Same as in Fig. 18 but now for positively charged
kaons K!.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

2

3

1

10

0

1

2

3

10
-1

1

u + u
u
s + s

zDK(z)zDi
Q2 = 10 GeV2

+

gluon
c + c

zDK(z)zDi
Q2 = 10 GeV2

+

THIS FIT / KRE

DΣ

THIS FIT / KRE

THIS FIT / AKK

z

THIS FIT / AKK

z

1

10

10
-1

1

FIG. 19. Same as in Fig. 17 but now for positively charged kaons K!.

DE FLORIAN, SASSOT, AND STRATMANN PHYSICAL REVIEW D 75, 114010 (2007)

114010-22

S. Albino et al. / Nuclear Physics B 803 (2008) 42–104 97

Fig. 31. The quark FFs for ∆cπ
± at Mf = 91.2 GeV.

Fig. 32. The u quark FF for ∆cK
± at Mf = 91.2 GeV.
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Fig. 5. As in Fig. 4, but for the STAR data. Also shown, for Λ/Λ̄, is the calculation using the DSV [58] FF set.

AKK FF set, because the gluon FF for Λ/Λ̄ at the initial scale in Ref. [4] was fixed to 1/3 that
for the AKK proton for this purpose. Ultimately, a determination of the error on this prediction
from the experimental errors, including correlation effects, on the FFs would better determine
whether an inconsistency really exists.

The BRAHMS data for which 3.25 < y < 3.35 (Fig. 6) provide most of the constraint on
the charge-sign asymmetry FFs, while the constraints from the STAR data are rather poor. The
description of the ∆cp/p̄ data from BRAHMS for which 3.25 < y < 3.35 is particularly poor.
The ∆cπ

± data are much less precise than the π± data, which is due to the similar yields of
π+ and π− relative to the experimental error. The ∆cK

± and ∆cp/p̄ data do not suffer this
problem as much, particularly the ∆cp/p̄ data, since the yields for each charge-sign, particularly
in the case of p/p̄, are significantly different. For the higher rapidity data at BRAHMS, the
theoretical error is slightly lower for ∆cπ

± (Fig. 7) than for π± (Fig. 2), and lower to a greater
degree for ∆cK

± than for K±, and for ∆cp/p̄ than for p/p̄, which may result from some
cancellation of the theoretical error between the cross sections for each charge-sign, whose
calculations are similar. However, the theoretical errors for ∆cπ

± (Fig. 8) and π± (Fig. 3) data
at STAR are similar, while the theoretical errors for ∆cp/p̄ are larger than for p/p̄, which
may be due partly to (hidden) theoretical errors at low rapidity. Note that, perhaps for the same
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non-singlet o(αs3)

- determine “non-perturbative” error from FF
➤ need a common interface like LHAPDF
   at present only  http://www.pv.infn.it/~radici/FFdatabase
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what about 1h TMD FF ?
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Gaussian ansatz for SIDIS dσUU
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T � KT = −zkT

�p2
T � = 0.25 , �K2

T � = 0.20 GeV2 by fitting Cahn effect in EMC data (’83)
                           (Anselmino et al., P.R.D71 (05) 074006)

�p2
T � = 0.33 , �K2

T � = 0.16 GeV2

by reproducing HERMES <Ph⊥> data (’98-’00)
                           (Collins et al., P.R.D73 (06) 014021)

used in many phenomenological studies, but...
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Figure 8: Fitted 〈p2T 〉 vs z2 for two (Q2, xBj) intervals. The fit function is
given by equation (3). The dotted green line is the result of a fit, performed
by [3], to data from many experiments. In the present figure, the 〈p2T 〉 results
from a fit over pT < 0.85 GeV/c.
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Figure 9: Extracted 〈k2
⊥〉 vs Q2 for various xBj intervals. The dotted green

line is the result of a fit, performed by [3], to data from many experiments.
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➤ HERMES multiplicity  (Joosten, DIS 2011)

Results: Projections vs zpT

Disentanglement of z and pT

Access to the transverse intrinsic quark pT and fragmentation kT .
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1h TMD FF evolution     (Rogers & Aybat, P.R.D83 (11) 114042) 
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1h TMD FF evolution     (Rogers & Aybat, P.R.D83 (11) 114042) 
in config. space

Dih(z,bT;Q,ζ) =    A       ×       B         ×     C
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j

Cij ⊗Dh
j (z)

at bT « 1/ΛQCD

~ exp[anom. 
          dim.]

e−g(Q)b2
T

nonperturb.
g universal 
scale dep.
at low KT

o(αs0)       ≈  Dih(z)    exp[-g(Q) bT2]   

coefficient functions calculated in Appendices A and B, to
estimate the evolution to different scales. For the starting
scale, we again appeal to the fit of Ref. [32] which uses a
Gaussian form,

DH=fðz;KTÞ ¼ dH=fðzÞ
exp½%K2

T=hK2
Ti&

!hK2
Ti

; (40)

where KT is the hadron transverse momentum in the pho-
ton rest frame. Again fitting the HERMES data, for SIDIS
in the kinematical range, hxi ¼ 0:09, hQ2i ' 2:4 GeV2,
and z > 0:2, they find that hK2

Ti ¼ ð0:16( 0:01Þ GeV2.
One can write the transverse components of the photon-
frame hadron momentum KT in terms of the transverse
components of the hadron-frame parton momentum kT as
KT ¼ %zkT . The analogue of Eq. (34) for the FF has an
extra 1=z2 so that when all order "s corrections are
dropped the FF reads

~DH=fðz; bT ; #F;$Þ ! 1

z2
dH=fðzÞ

) exp
!
%½g01 þ g2z

2 ln
Q

2Q0

"
b2T
2z2

#
:

(41)

Equating this to the inverse Fourier transform of Eq. (40),
we identify the factor in brackets as

g01 þ g2z
2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4 GeV

p

2Q0
' hK2

Ti
2

' 0:08 GeV:

From this relation we can extract a value for g01. The factor
multiplying%b2T in Eq. (41) can then be identified with the
nonperturbative exponential factor in Eq. (31). Using
Refs. [77–80] for the integrated FFs, we can then calculate
the TMD FF using Eq. (31). We have repeated the analysis
of the TMD PDF for a TMD FF of a charged pion frag-
menting from an up quark. Figure 4 shows the TMD FF for
different energy scales, Q ¼

ffiffiffiffiffiffiffi
2:4

p
, 5, and 91.19 GeV. By

comparing different energy scales, one can immediately
see the effect of including perturbative evolution in the
definitions of the TMD FFs from the high kT tails the TMD
FFs acquire. We have also repeated the analysis of evalu-
ating the TMD FF for different values of bmax ¼ 0:5 and
1:5 GeV%1 and we find a similar error estimate as in the
case of the TMD PDF. The comparison is shown again in
Fig. 4. Note that in Fig. 4 we have plotted the TMD FF as a
function of the hadron transverse momentum KT rather
than parton transverse momentum kT .

We also investigated how well a Gaussian function fits
the perturbatively evolved TMD FF. As with the TMD
PDF, the Gaussian fit does not adequately capture the
effects of perturbative evolution for the TMD FF.
The contribution of the kT tail is smaller in the case of
the TMD FF. This can be understood by comparing the kT
dependence of a TMD PDF with a TMD FF. The TMD FF
is less broad in kT than a TMD PDF and therefore drops

faster with a smaller kT tail. To quantify this we have
once more calculated a typical kT using Eq. (39) both
for the Gaussian fit and the actual TMD FF. For bmax ¼
0:5 GeV%1 we find that for the Gaussian fit

ffiffiffiffiffi
!k2T

q
¼

1:74 GeV while for the actual TMD FF
ffiffiffiffiffi
!k2T

q
¼ 2:15 GeV

which gives a relative difference of 23.5%. For the case of

bmax ¼ 1:5 GeV%1 the values are
ffiffiffiffiffi
!k2T

q
¼ 1:06 GeV for the

Gaussian fit and
ffiffiffiffiffi
!k2T

q
¼ 1:85 GeV for the actual TMD FF

with a larger relative difference of 73.5%.

VII. DISCUSSION AND CONCLUSIONS

Factorization theorems provide the bridge between ab-
stract field theoretical concepts and phenomenology, and
are responsible for giving pQCD its great predictive power.
The parton distribution and fragmentation functions, which
arise naturally from the factorization derivations, play a
central role in relating formal pQCD to parton-model con-
cepts. A precise understanding of the definitions, evolu-
tion, and universality properties of these correlation
functions is what enables calculations in pQCD to make
accurate first principles predictions.
While the standard formalism of collinear factorization

has proven extremely useful for sufficiently inclusive pro-
cesses, the more sophisticated formalism of TMD factori-
zation is needed for processes in which the intrinsic
transverse momentum of the partons becomes important.
As has already been widely discussed, there are a number
of technical and conceptual subtleties involved in arriving
at good definitions for the TMDs that are consistent with
factorization. These issues include the need to regulate and
deal with rapidity divergences and achieve a cancellation
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extraction of Collins function
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FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h |

, (3)

where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content 〈N12〉.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

〈N12〉
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:

dσ(e+e− → h1h2X)

dΩdz1dz2dφ1dφ2
=

∑

q,q̄
3α2

Q2

e2
q

4 z2
1z

2
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{

(1 + cos2 θ)Dq,[0]
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1 (z2)

+ sin2 θ cos(φ1 + φ2)H
⊥,[1],q
1 (z1)H

⊥,[1],q
1 (z2)

}

, (5)

where the summation runs over all quark flavors acces-
sible at the center-of-mass energy. Antiquark fragmen-
tation is denoted by a bar over the corresponding quark

FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum P ′

h1⊥

relative to the first hadron.

fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫

d|kT |2
[

|kT |
M

]n

F (z,k2
T ) . (6)

In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as

φ0 = sgn [Ph2 · {(ẑ × Ph2) × (Ph2 × Ph1)}]

× arccos

(

ẑ × Ph2
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·

Ph2 × Ph1
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)

. (7)

The corresponding normalized distribution R0, which is
defined as

R0 :=
N(2φ0)

〈N0〉
, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
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extraction of Collins function

old data   
Anselmino et al., P.R.D75 (07) 054032

new data 
Anselmino et al., N.P.B191(Pr.Sup.) (09) 98

positivity bound 
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the Sof-
fer bound [46] (highest or lowest lines) and the
(wider) uncertainty bands of our previous extrac-
tion [20].

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0
dx (∆T q − ∆T q̄) =

∫ 1

0
dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47–50] for tensor charges which span the
ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤ δd ≤ 0.5 (see
Fig. 8). In this context it is worth mentioning a
subtle point concerning the strong scale depen-
dence of the tensor charge, recently addressed in
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mentation functions as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the positiv-
ity bound and the (wider) uncertainty bands as
obtained in Ref. [20].
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Figure 7. Comparison of the extracted transver-
sity (solid line) with the helicity distribution
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bound [46] (blue solid line) is also shown.

Ref. [51]. For the effective models of baryons, as
those referred to above, the choice of their start-
ing energy scale and their Q2 evolution could play

M. Anselmino et al. / Nuclear Physics B (Proc. Suppl.) 191 (2009) 98–107104

2 H1⊥(1/2) / D1

see also Vogelsang & Yuan, P.R.D72 (05) 054028
                  Efremov, Goeke, Schweitzer, P.R.D73 (06) 094025

error band
Δχ2 ≈ 17 
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As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
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∫ 1
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∫ 1
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where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47–50] for tensor charges which span the
ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤ δd ≤ 0.5 (see
Fig. 8). In this context it is worth mentioning a
subtle point concerning the strong scale depen-
dence of the tensor charge, recently addressed in
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(dashed line) at Q2 = 2.4 GeV2. The Soffer
bound [46] (blue solid line) is also shown.

Ref. [51]. For the effective models of baryons, as
those referred to above, the choice of their start-
ing energy scale and their Q2 evolution could play

M. Anselmino et al. / Nuclear Physics B (Proc. Suppl.) 191 (2009) 98–107104

2 H1⊥(1/2) / D1

see also Vogelsang & Yuan, P.R.D72 (05) 054028
                  Efremov, Goeke, Schweitzer, P.R.D73 (06) 094025

➤ unfav. ≈ - fav.

error band
Δχ2 ≈ 17 
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But...
➤ access only to H1⊥(n)(z) ⇒ KT dep. unconstrained
    <KT2>C ≠ <KT2> but flavor-/ z-/ Q2-independent

➤ SIDIS kin.: x≤0.3, 0.2≤ z ≤0.7, Q2=2.5 (need EIC)

➤ only fav./unfav. flavors (u & d)

➤ LO DGLAP evolution of H1⊥(n)(z) ~ D1(z) 
   but the chiral-odd kernel of H1⊥(1)~ h1 (Kang, P.R.D83 (11) 036006)

➤ full TMD evolution missing  [QBelle2~100 ↔ QSIDIS2~2.5]

    H1⊥(1) kernel: diag. piece (~ h1) + off-diag. piece (small ?)
     D1T⊥(1) kernel: diag. piece (~ D1) + off-diag. piece
(Kang, P.R.D83 (11) 036006; see also Meissner, Metz, P.R.L.102 (09) 172003; Yuan, Zhou, P.R.L.103 (09) 052001)
                                                           Boer et al., P.R.L.105 (10) 202001; Gamberg et al., P.R.D83 (11) 071503(R)
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1st category: the spectator approximation
A. Bacchetta et al. / Physics Letters B 659 (2008) 234–243 235

Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ 〈0|Un+
(+∞,ξ)ψ(ξ)|h,X〉〈h,X|ψ̄(0)Un+

(0,+∞)|0〉
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X〉 is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4

(/k + m)

k2 − m2 γ5(/k − /P h + ms)γ5
(/k + m)

k2 − m2 2πδ
(
(k − Ph)

2 − m2
s

)

and, using the δ-function to perform the k+ integration,

(4)!(0)(z, kT ) =
2g2

qπ

32π3

(/k + m)(/k − /P h − ms)(/k + m)

(1 − z)P −
h (k2 − m2)2

,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,

on-shell spectator

➤ δ funct. ⇒ q-q correlator analytic
➤ off-shell k2(z) analytic
✖  only favoured channel

qπ vertex: PS gπqγ5τi  ( Jakob et al., N.P.A626 (97); Bacchetta et al., P.L.B506 (01), B659 (08); 
                                                          Gamberg et al., P.R.D68 (03); Amrath et al., P.R.D71 (05) )

PV gπqγ5Ph  ( Bacchetta et al., P.R.D65 (02), P.L.B574 (03); Amrath et al., P.R.D71 (05) )

gπq(z,k2)~ exp[-k2/Λ2(z)] ( Gamberg et al., P.R.D68 (03); Bacchetta et al., P.L.B659 (08) )
A. Bacchetta et al. / Physics Letters B 659 (2008) 234–243 237

(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].

fit D1q to Kretzer
@ Q2=0.4 GeV2
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the spectator approximation: the Collins funct.
interference from:

on the average transverse momentum of hadrons in frag-
mentation processes.

B. Collins function from pion loops

After the introduction of single pion-loop corrections,
all the diagrams contributing to the Collins function are
depicted in Fig. 8. As mentioned before, apart from the
self-energy and vertex corrections, chiral invariance re-
quires the contact-interaction term, diagram (c), which
turns out to be dominant on the others.

The resulting Collins function can be written in a com-
pact form as

H?
1 !z; z2 ~k2T" #

g2A
32!3F2

!

m!

1$ z
m

k2 $m2 !Im"!
PV

% Im#!
1;PV % Im#!

2;PV"
!
!
!
!
!
!
!
!k2# ~k2T

z
1$z%m2

1$z%
m2
!
z

:

(27)

The three terms correspond, respectively, to the contribu-
tions of diagrams (a), (b), (c) in Fig. 8, and read

Im"!
PV # 3g2A

32!2F2
!

"

2m2
! $ 1

2
!k2 $m2"

& !1$m2 $m2
!

k2
"
#

I1;!; (28)

Im#!
1;PV # g2A

32!2F2
!
!k2 $m2"

"
1

2k2
!3k2 %m2 $m2

!"I1;!

% 4m2 k
2 $m2 %m2

!

$!
!I1;! % !k2 $m2

$ 2m2
!"I2;!"

#

; (29)

Im#!
2;PV # $ 2

32!2F2
!
!k2 $m2"

"

1$m2 $m2
!

k2

#

I1;!:

(30)

We point out that in the original publication [20] a sign
error was made. The sign of all results for the Collins
function should be reversed.

In Fig. 9 we present numerical estimates of the ratio
H?!1=2"

1 =D1, separately for each diagram in Fig. 8. As in the
previous cases, also in the present one the contribution
from diagrams (a) and (b) (i.e. self-energy and vertex
corrections) roughly cancel each other. The dominant con-
tribution to the Collins function comes therefore from
diagram (c), i.e. the contact-interaction diagram. As al-
ready mentioned before, the result of the sum of diagrams
correspond to that obtained in Ref. [20] (Fig. 8) except for
the overall sign.

C. Collins function from gluon loops

As discussed in Sec. II C, we can use gluon-loop cor-
rections to generate imaginary parts in the diagrams. The
Collins function becomes

H?
1 !z; z2 ~k2T" #

g2A
32!3F2

!

m!

1$ z
m

k2 $m2

& !Im"g
PV % Im#g

1;PV

% Im%PV % Im&PV"
!
!
!
!
!
!
!
!k2# ~k2T

z
1$z%m2

1$z%
m2
!
z

; (31)
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FIG. 8 (color online). Single pion-loop corrections to the frag-
mentation of a quark into a pion.
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FIG. 7. Unpolarized fragmentation function Du!!%
1 in a fragmentation model with pseudovector pion-quark coupling. Left panel:

dependence on the parameter ' (for m # 0:3 GeV). Right panel: dependence on the parameter m (for ' # 1 GeV).
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π loops ( )
needed in PV coupl.and / or

g loops
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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the spectator approximation: the Collins funct.
interference from:

on the average transverse momentum of hadrons in frag-
mentation processes.

B. Collins function from pion loops

After the introduction of single pion-loop corrections,
all the diagrams contributing to the Collins function are
depicted in Fig. 8. As mentioned before, apart from the
self-energy and vertex corrections, chiral invariance re-
quires the contact-interaction term, diagram (c), which
turns out to be dominant on the others.

The resulting Collins function can be written in a com-
pact form as
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The three terms correspond, respectively, to the contribu-
tions of diagrams (a), (b), (c) in Fig. 8, and read
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We point out that in the original publication [20] a sign
error was made. The sign of all results for the Collins
function should be reversed.

In Fig. 9 we present numerical estimates of the ratio
H?!1=2"

1 =D1, separately for each diagram in Fig. 8. As in the
previous cases, also in the present one the contribution
from diagrams (a) and (b) (i.e. self-energy and vertex
corrections) roughly cancel each other. The dominant con-
tribution to the Collins function comes therefore from
diagram (c), i.e. the contact-interaction diagram. As al-
ready mentioned before, the result of the sum of diagrams
correspond to that obtained in Ref. [20] (Fig. 8) except for
the overall sign.

C. Collins function from gluon loops

As discussed in Sec. II C, we can use gluon-loop cor-
rections to generate imaginary parts in the diagrams. The
Collins function becomes
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FIG. 8 (color online). Single pion-loop corrections to the frag-
mentation of a quark into a pion.
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FIG. 7. Unpolarized fragmentation function Du!!%
1 in a fragmentation model with pseudovector pion-quark coupling. Left panel:

dependence on the parameter ' (for m # 0:3 GeV). Right panel: dependence on the parameter m (for ' # 1 GeV).
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114018-7

π loops ( )
needed in PV coupl.

large cancellations      ⇒  c)  dominantand / or

g loops
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].

large cancellations                = 0                  dominant
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We point out that in the original publication [20] a sign
error was made. The sign of all results for the Collins
function should be reversed.

In Fig. 9 we present numerical estimates of the ratio
H?!1=2"

1 =D1, separately for each diagram in Fig. 8. As in the
previous cases, also in the present one the contribution
from diagrams (a) and (b) (i.e. self-energy and vertex
corrections) roughly cancel each other. The dominant con-
tribution to the Collins function comes therefore from
diagram (c), i.e. the contact-interaction diagram. As al-
ready mentioned before, the result of the sum of diagrams
correspond to that obtained in Ref. [20] (Fig. 8) except for
the overall sign.

C. Collins function from gluon loops

As discussed in Sec. II C, we can use gluon-loop cor-
rections to generate imaginary parts in the diagrams. The
Collins function becomes
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!
!
!
!
!
!
!
!k2# ~k2T

z
1$z%m2

1$z%
m2
!
z

; (31)

l

p

k

p

k
l

l+ +

p

k

+ H. c.

(a) (b) (c)

FIG. 8 (color online). Single pion-loop corrections to the frag-
mentation of a quark into a pion.
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π loops ( )
needed in PV coupl.

large cancellations      ⇒  c)  dominantand / or

g loops
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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(a) (b)

Fig. 4. Half moment of the Collins function for u → π+ in our model. (a) H
⊥(1/2)
1 at the model scale (solid line) and at a different scale under the assumption in

Eq. (37) (dot-dashed line), compared with the error band from the extraction of Ref. [6], (b) H
⊥(1/2)
1 /D1 at the model scale (solid line) and at two other scales

(dashed and dot-dashed lines) under the assumption in Eq. (38). The error band from the extraction of Ref. [7] is shown for comparison.

In Fig. 4(a), we have plotted the half moment of the Collins functions vs. z for the case u → π+. In the same panel, we plotted the
1−σ error band of the Collins function extracted in Ref. [6] from BELLE data, collected at a scale Q2 = (10.52)2 GeV2. In order to
achieve a reasonable agreement with the phenomenology, we choose a value of the strong coupling constant αs = 0.2. Such a value
is particularly small, especially when considering that our model has been tuned to fit the function D1 at a scale Q2

0 = 0.4 GeV2,
where standard NLO calculations give αs ≈ 0.57 [29,32]. In any case, the problem of the choice of αs is intimately related with the
problem of the evolution of the Collins function (see below).

In Fig. 4(b), we have plotted the ratio H
⊥(1/2)
1 /D1 and compared it to the error bands of the extraction in Ref. [7]. Also in this

case the agreement is good, with the above mentioned choice of αs = 0.2.
At this point, some comments are in order concerning the evolution of the Collins function (or of its half-moment) with the

energy scale. Such evolution is presently unknown, except for some work done in Ref. [33], which is however based on questionable
assumptions. Some authors (e.g., Refs. [6,7]) assume

(37)
H

⊥(1/2)
1
D1

∣∣∣∣
Q2

0

= H
⊥(1/2)
1
D1

∣∣∣∣
Q2

,

i.e., that the evolution of H
⊥(1/2)
1 is equal to that of D1. This seems unlikely, in view of the fact that the Collins function is chiral-odd

and thus evolves as a non-singlet. An alternative choice could be to assume

(38)H
⊥(1/2)
1

∣∣
Q2

0
= H

⊥(1/2)
1

∣∣
Q2,

i.e., that H
⊥(1/2)
1 does not evolve with the energy scale. This is an extreme hypothesis, which cannot be true because at some point

the positivity bound (35) would be violated at large z. We demonstrate this in Fig. 4(b) where we show how the ratio H
⊥(1/2)
1 /D1

behaves at three different energy scales if only D1 is evolved (we use the unpolarized fragmentation function of Ref. [29] for this
purpose). Clearly, in this case the ratio grows more steeply with z at higher energies, due to the decreasing of D1 in the large-z
region. While the evolution of the T-odd parton distribution and fragmentation functions remain an outstanding issue, these results
show that different assumptions on the Collins function scale dependence have a significant impact and should be considered with
care.

For the fragmentation u → K+ and s̄ → K+, the same analytic formulas are used but with the other sets of parameter values.
The results are shown in Figs. 5 and 6 for the u and s̄ quarks, respectively.

4. Asymmetries in e+e− annihilation

The BELLE Collaboration has reported measurements of various asymmetries in e+ + e− → π± + π± + X that can isolate the
Collins functions [4]. In particular, the number of pions in this case has an azimuthal dependence [34]

(39)Nh1h2(z1, z2) ∝
∑

q

eq
2
(

D1(q→h1)(z1)D1(q̄→h2)(z2) + sin2 θ

1 + cos2 θ
cos(φ1 + φ2)H

⊥(1/2)
1(q→h1)

(z1)H̄
⊥(1/2)
1(q̄→h2)

(z2)

)
,

PS coupling 
g loops 
params fitted to D1
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2nd category: the NJL-jet model
( Ito et al., P.R.D80 (09) 074008 )

Ref. [24]. Here the model scale is set by reproducing the
behavior, after NLO evolution, of the u quark valence
distribution function in the pion given in Refs. [25,26].

It is easy to check using Eqs. (3) and (11) that both
isospin and momentum sum rules for the distribution
functions are satisfied:

Z 1

0
dxfmq ðxÞ ¼

1

2
Cm
q ; (12)

Z 1

0
dxxðfmq ðxÞ þ fm!QðxÞÞ ¼

1

2
Cm
q ; m ¼ q !Q; (13)

where in the last line we used the relation fmq ðxÞ ¼ fm!Qð1%
xÞ [which is easy to verify from Eq. (11)] and Cm

q ¼ Cm
!Q

(see Table I).
The elementary fragmentation function depicted in

Fig. 3 in the frame where the fragmenting quark has
k? ¼ 0 (but nonzero transverse momentum component
kT ¼ %p?=z with respect to the direction of the produced
hadron) can be written as:

dmq ðzÞ ¼ %Cm
q

2
g2mqQ

z

2

Z d4k

ð2!Þ4 Tr½S1ðkÞ"þS1ðkÞ"5

' ðk% pþM2Þ"5(
' #ðk% % p%=zÞ2!#ððp% kÞ2 %M2

2Þ

¼ % z

2Nc
fmq ðx ¼ 1=zÞ (14)

¼ sgnð1% zÞC
m
q

2
g2mqQz

Z d2p?
ð2!Þ3

' p2
? þ ððz% 1ÞM1 þM2Þ2

ðp2
? þ zðz% 1ÞM2

1 þ zM2
2 þ ð1% zÞm2

mÞ2
:

(15)

The integration can be trivially done analytically if
one assumes a sharp cutoff in the transverse momentum,
denoted by P2

? (in the LB regularization scheme P2
? is

z-dependent):

dmq ðzÞ ¼
Cm
q

2

g2mqQ

8!2 z
!
A=B% 1

B=P2
? þ 1

þ logð1þ P2
?=BÞ

"
;

(16)

where

A ) ððz% 1ÞM1 þM2Þ2; (17)

B ) zðz% 1ÞM2
1 þ zM2

2 þ ð1% zÞm2
m: (18)

In LB regularization the P2
? is given by:

P2
? ¼ zð1% zÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2

3 þM2
2

q
Þ2

% ð1% zÞm2
m % zM2

2: (19)

The corresponding sum rule for the elementary fragmen-
tation function is as follows:

Z 1

0
dzdmq ðzÞ ¼ 1% Zm

q : (20)

Here, Zm
q is the residue of the quark propagator of flavor

q in the presence of the cloud of the meson type m. It is
expressed in terms of the renormalized quark self-energy
induced by the meson type m loop #m

q ðkÞ of Fig. 4 as
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FIG. 2 (color online). The model solutions for distribution functions of quarks in mesons at a) model scale Q2
0 ¼ 0:2 GeV2 and

b) evolved at next to leading order to scale Q2 ¼ 4 GeV2.

FIG. 3 (color online). Quark fragmentation functions.
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- elementary fragm. dqh(z) from

- multiplicative ansatz 

   Dqh(z) = dqh(z) + ∑Q [dqQ ⊗ DQh](z)

Tr
γ+

!ðp; xÞ ¼ 2Ncip$
Z dkþd

2k?
ð2!Þ4 Tr½"5S1ðkÞ"5S2ðk$ pÞ';

(4)

k$ ¼ xp$: (5)

The !ðp; xÞ is evaluated using the complex residue
theorem and we obtain for p? ¼ 0:

!ðp; xÞ ¼ $2Nc
"ðxÞ"ð1$ xÞ

xð1$ xÞ
Z d2k?

ð2!Þ3

( k2? þ ðð1$ xÞM1 þ xM2Þ2
k2? þ ð1$ xÞM2

1 þ xM2
2 $ xð1$ xÞp2 $ i#

:

(6)

Thus, for the quark-meson coupling we obtain:

g$2
mqQ ¼ 2Nc

Z 1

0
dx

Z d2k?
ð2!Þ3

( k2? þ ðð1$ xÞM1 þ xM2Þ2
ðk2? þ ð1$ xÞM2

1 þ xM2
2 $ xð1$ xÞm2

m $ i#Þ2 :

(7)

The integrals in the above expressions are divergent
and require regularization. Here we use the Lepage-
Brodsky (LB) ‘‘invariant mass’’ cutoff regularization (see
Refs. [19,23] for a detailed description as applied to the
NJL-jet model), where #12 is the maximum invariant mass
of the two particles in the loop:

M12 ) #12 *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2

3 þM2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2

3 þM2
2

q
; (8)

M2
12 ¼

M2
1 þ k2?
x

þM2
2 þ k2?
1$ x

; (9)

k2? ) xð1$ xÞ#2
12 $ ð1$ xÞM2

1 $ xM2
2; (10)

where #3 denotes the 3-momentum cutoff, which is fixed
in the usual way by reproducing the experimental pion
decay constant. We use the value obtained in Ref. [23] of
#3 ¼ 0:67 GeV.

Thus, from the requirement of k2? + 0 we obtain the
region of x where the integrand is nonzero.

Using the light constituent quark mass M ¼ 0:3 GeV
from Ref. [23] and the experimental value of kaon mass

mK ¼ 0:495 GeV yields a strange constituent quark mass
Ms ¼ 0:537 GeV and the corresponding quark-kaon cou-
pling constant of gKqQ ¼ 3:39.

B. Quark distribution and fragmentation functions

The quark distribution function fhqðxÞ has an interpreta-
tion as the probability of finding a quark of type q with
momentum fraction x in the hadron (in our case, meson) h.
The corresponding cut diagram is shown in Fig. 1(a),
which can be equivalently represented by the Feynman
diagram depicted in Fig. 1(b):

fmq ðxÞ ¼ iNc

Cm
q

2
g2mqQ

Z dkþd
2k?

ð2!Þ4
(Tr½"5S1ðkÞ"þS1ðkÞ"5S2ðk$pÞ'

¼$g2mqQ

@!ðp;xÞ
@p2

""""""""p2¼m2
m

¼ sgnð1$ xÞNcC
m
q g

2
mqQ

Z d2k?
ð2!Þ3

( k2?þðð1$ xÞM1þ xM2Þ2
ðk2?þð1$ xÞM2

1 þ xM2
2 $ xð1$ xÞm2

mÞ2
; (11)

where k$ ¼ xp$ and Cm
q is the corresponding flavor

factor given in Table I. Here we used the identity
SðkÞ"þSðkÞ ¼ $@SðkÞ@kþ to relate the distribution func-
tion to the function!ðp; xÞ and the expression in Eq. (6) to
evaluate the result.
In our calculations we use the same LB regularization

scheme (8) yielding the nonzero region for fmq ðxÞ as de-
scribed in the previous section. The corresponding plots
for f!

þ
u , fK

þ
u , and fK

þ
$s are depicted in Fig. 2 at model scale

Q2
0 ¼ 0:2 GeV2 and evolved at next to leading order

(NLO) to scale Q2 ¼ 4 GeV2 using the software from

FIG. 1 (color online). Quark distribution functions.

TABLE I. Flavor factors Cm
q .

Cm
q !0 !þ !$ K0 $K0 Kþ K$

u 1 2 0 0 0 2 0
d 1 0 2 2 0 0 0
s 0 0 0 0 2 0 2
$u 1 0 2 0 0 0 2
$d 1 2 0 0 2 0 0
$s 0 0 0 2 0 2 0
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���
k2=M2

h

1

g2qh
= − ∂

∂k2

1! Zm
q ¼ !

!
@!m

q ðkÞ
@k

"

k¼Mq

; (21)

!m
q ðkÞ ¼ !{Cm

q g
2
mqQ

Z d4p

ð2!Þ4 "5SQðk! pÞ"5"mðpÞ;

(22)

where Mq is the mass of the constituent quark of flavor q
and"mðpÞ is the Feynman propagator of the meson typem.

III. GENERALIZED NJL-JET

The NJL-jet model of Ref. [19] uses a multiplicative
ansatz for the total fragmentation function to derive an
integral equation for the quark cascade for the process
depicted in Fig. 5. The derived integral equation for the
total fragmentation function is

Dm
q ðzÞ ¼ d̂mq ðzÞ þ

X

Q

Z 1

z

dy

y
d̂Qq

!
z

y

"
Dm

QðyÞ;

d̂Qq ðzÞ ¼ d̂mq ð1! zÞjm¼q #Q:

(23)

Here, d̂mq ðzÞ ¼ dmq ðzÞ=
P

m0ð1! Zm0
q Þ (here the sum is

over all possible meson types m0 that the quark of flavor
q can emit in the elementary splitting process). ThenP

m

R
d̂mq ðzÞdz ¼ 1, thus allowing an interpretation as the

probability of an elementary process. In Eq. (23) the sum is
over the flavor of the emitted quark Q and the splitting
function of quark q into Q with a light-cone momentum
fraction z is naturally the same as the splitting function of q
into a meson m of a flavor composition q #Q with a light-
cone momentum fraction 1! z.

The result in Eq. (23) resembles the integral equation
ansatz of Field and Feynman’s quark-jet model [1,27].
Rewriting the above expression helps to elucidate the
probabilistic interpretation of the model:

Dm
q ðzÞdz ¼ d̂mq ðzÞdzþ

X

Q

Z 1

z
d̂Qq ðyÞdyDm

Q

!
z

y

"
dz

y
: (24)

Here, the left-hand side term has the meaning of the
probability to create a meson m carrying the light-cone
momentum fraction z to zþ dz of initial quark q. The first
term on the right-hand side corresponds to the probability
of creating the meson with light-cone momentum fraction
z to zþ dz in the first step of the cascade, plus the second
term corresponding to the creation of the meson further
down the quark cascade after a splitting to a quark Q with
light-cone momentum fraction y. Here, the probability of
creating the meson m with the light-cone momentum frac-
tion z of the initial quark is the probability of creating the
same meson with the light-cone momentum fraction z=y in
the cascade of the quarkQ, which is clearly only the case in
the Bjorken limit. Thus, the model can be generalized in a
straightforward way by including the strange quark di-
rectly in Eq. (23).
We solve the coupled set of integral equations using the

elementary fragmentation functions of Eq. (23) for u, d,
and s quark fragmentation to a given meson. The corre-
sponding fragmentation functions for the antiquarks are
obtained using charge symmetry starting from the frag-
mentation functions of quarks to the corresponding
antimeson. The comparisons with the phenomenological
parametrizations of Ref. [10] are performed by DGLAP
evolution of the calculated fragmentation functions from
the low-energy model scale of Q2

0 ¼ 0:2 GeV2 to 4 GeV2,
at NLO, using the software from Ref. [24].
It is easy to see, using the properties of dmq along with the

normalization condition of d̂mq , that the solutions of the
integral Eqs. (23) should satisfy both momentum and iso-
spin sum rules. We use a notation,

hfðzÞi &
Z 1

0
fðzÞdz; (25)

and define:

N&
X

m

hzDm
q ðzÞi; n&

X

m

hzd̂mq ðzÞi; n0 &
X

Q

hzd̂Qq ðzÞi:

(26)

Using the equations in Eq. (23) it follows:

N ¼ nþ n0N: (27)

To prove the momentum sum rule N ¼ 1, that is, the
fragmenting quark transfers all of its momentum to the
emitted mesons, it is sufficient to show that nþ n0 ¼ 1:

nþ n0 ¼
X

m

ðhzd̂mq ðzÞiþ hzd̂mq ð1! zÞiÞ ¼
X

m

hd̂mq ðzÞi ¼ 1:

(28)

The total fractions of momenta carried by mesons of
type m from the jet of u and s quarks, hzDm

q ðzÞi; q ¼ u, s
calculated using the numerical solutions for fragmentation
functions are shown in Fig. 6, which show that the mo-
mentum sum rule is satisfied within the numerical preci-
sion of the calculation of less than a percent.

FIG. 4 (color online). Quark self-energy (color online) .

FIG. 5 (color online). Quark cascade.
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- mom. sum rule satisfied in Bjorken limit (#h’s →∞)

- probabilistic interpretation → Monte Carlo (sample based on dqh)

    Dqh(z) Δz = 1/N  ∑N  Nqh(z,z+∆z)         MC for N→∞  →  ansatz

- h = π, K, ρ, K*, ϕ, p, n   → spect. diquark model
                                                         only scalar 

directly emitted by the quark cascade (so called ‘‘primary’’
hadrons). The vector mesons considered have an extremely
short lifetime and decay quickly, thus in an experimental
setup one usually detects only their decay products
(‘‘secondary’’ hadrons), most often pions and kaons.
Schematically, the process is depicted in Fig. 6.
Consequently, to best describe the experimentally measured
fragmentation functions of a hadron h from the Eq. (18), we
should not only consider the number of primary hadrons
with a given range of light-cone momentum fraction of the
original quark, Nh

qðz; zþ!zÞ, but also add the number of
hadrons h satisfying the above criteria that originate from
the decays of primary vector mesons (or in general other
hadronic resonances). This is accomplished using the de-
pendence of the decay probability of a hadronic resonance h
on the fractions of its light-cone momentum, z1 to z1 þ
dz1; . . . ; zn to zn þ dzn;

P
izi ¼ 1, carried by the decay

products h1; . . . hn, denoted as dPh!h1...hnðz1; . . . ; znÞ. First
we perform the MC simulations described in the previous
section and record all the produced (primary) hadrons along
with the fractions of the initial quark’s light-cone momen-
tum. We calculate the fragmentation functions without the
decays using the formula in Eq. (18). Second, we consider
each encountered resonance particle h with a momentum
fraction of the initial quark z and its possible strong decay
channels, randomly selecting one according to the corre-
sponding relative branching ratio. Then we randomly gen-
erate the light-cone momentum fractions z1; . . . ; zn carried
by the decay products h1; . . . hn according to the probability
dPh!h1...hnðz1; . . . ; znÞ. The decaying hadron h is removed
from the list of the produced hadrons and the decay products
h1; . . . ; hn are added with their respective fractions of the
initial quark’s light-cone momenta zz1; . . . ; zzn. The frag-
mentation functions are once again calculated using the new
list of produced hadrons using the formula in Eq. (18). (In
general, the decay of a primary resonance can produce
another resonance of a lower mass that decays itself, so we
start the simulation of the decay process from the heaviest
resonances present and move on to the lighter ones.)

In the current article, we consider only the strong decays
of the vector mesons to two-body pseudoscalar meson final
states for simplicity. A generalization to include the three or
more-body final states is straightforward, although it re-
quires sampling the nontrivial phase space factors using
Monte Carlo techniques. We consider all of the two-body

strong decays of!, K%, and " mesons with the correspond-
ing relative branching ratios as given in the ‘‘Review of
Particle Physics’’ [47]. For calculation of the two-body
decay probability function, let us consider the initial hadron
h with massmh, momentum q decaying to hadron h1 with a
mass mh1, and a momentum p1 and hadron h2 with mass
mh2 , and momentum p2. We also denote the light-cone

momentum fraction of the h carried by h1 as z1 & p'
1 =q

'

and the fraction carried by h2 as z2 & p'
2 =q

', where
trivially z1 þ z2 ¼ 1. Thus, the decay probability is a func-
tion of only one momentum fraction chosen to be the z1.
The dPh!h1;h2ðz1Þ is determined as a product of the decay
amplitude squared times a two-body phase space factor.
A detailed description of the decay amplitudes and the

branching ratios into different channels can be calculated
using specific models (for example model Lagrangians for
the interaction from Ref. [48]). Here, we are only con-
cerned with the dependence of the decay probability on z1,
where we average over the polarization of the vector
meson. Thus, the Lorentz invariance requires that ampli-
tude squares depend only on scalar products of the
4-momenta of the particles involved in the decay, which
in turn are trivially expressed through on-mass-shell con-
ditions in terms of their masses. Thus, the only dependence
on z1 comes from the two-body phase space factor. Our
goal is to express the elementary probability for the decay

as a function of z1, assuming a constant Ch1h2
h for the

amplitude squared of the decay. For that we integrate
over all components of momenta p1 and p2 with exception
of p'

1 , assuming q? ¼ 0 and using the light-cone form for
the two-body phase space factor:

dPh!h1;h2ðz1Þ ¼ Ch1h2
h dp'

1

Z d2p1?
ð2#Þ32p'

1

dp'
2 d

2p2?
ð2#Þ32p'

2

ð2#Þ4$4ðq' p1 ' p2Þ (19)

¼ Ch1h2
h

8#
dz1

Z 1

0
dl$ðl' ½z1z2m2

h ' z2m
2
h1 ' z1m

2
h2)Þjz2¼1'z1 (20)

¼
8
<
:

C
h1h2
h
8# dz1 if z1z2m

2
h ' z2m

2
h1 ' z1m

2
h2 * 0; z1 þ z2 ¼ 1;

0 otherwise:
(21)

FIG. 6 (color online). Quark-jet model with the decay of the
resonances.
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results for the MC ~ NJL-jet model
( Matevosyan et al., P.R.D83 (11) 114010 )

(HKNS) and [10] (DSS). Similarly, the results for zDK
u

prior to and after the vector meson decays are shown in
Fig. 11 and the results for zDP

u and zDN
u are shown in

Fig. 12. For zDP
u , the agreement with the empirical

parametrizations from Refs. [12] (HKNS) and [11] (DSS)
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u are well below the
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2DN
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The solutions for the zDK#

s and zDKþ
s are shown in

Fig. 13. Here we see the strong discrepancies in the global
fits [10,12] of the experimental data that illustrates the need
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the quark fragmentation process.

V. CONCLUSIONS AND OUTLOOK

In the current article, we added the vector meson, nu-
cleon, and antinucleon emission channels to NJL-jet
framework for calculating quark fragmentation functions.
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tation functions calculated as solutions of the previously
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and pions were included. Moreover, we showed that the
MC approach allows for the flexibility to surpass the
model limitations necessary in formulating the integral
equations. That is, in the future MC studies we can assume
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FIG. 10 (color online). The solutions for fragmentation function zD!
u ðzÞ evolved at NLO to Q2 ¼ 4 GeV2. The results are compared

to the empirical parametrizations of the experimental data from Refs. [12] (HKNS) and [10] (DSS). Here ‘‘NJL-jet’’ and ‘‘with
decays’’ denote the fragmentation functions calculated without and with inclusion of pions originating from decays of vector meson
resonances. The shadows show the uncertainties of the empirical functions of Ref. [12].
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FIG. 9 (color online). The total fractions of momenta carried
by mesons of type m from the jet of (a) u and (b) s quarks
calculated using the numerical solutions for fragmentation func-
tions at the model scale Q2

0 ¼ 0:2 GeV2. Here ‘‘splittings’’
denote the momentum fractions calculated using the elementary
splitting functions hzd̂mq ðzÞi, ‘‘NJL-jet’’ and ‘‘with decays’’ de-
note the momentum fractions calculated from solutions for the
fragmentation functions without and with inclusion of pions and
kaons originating from decays of vector meson resonances (the
corresponding columns arranged from left to right for each
hadron).
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an initial quark carrying only a finite momentum and thus
emitting a finite number of hadrons. We demonstrated that
the medium and low z regions of the fragmentation func-
tions are greatly affected by the number of the emitted
hadrons, thus the finiteness of the quark momentum might
have a noticeable effect. The future development of the
NJL-jet model would also allow an access to the transverse
momentum distribution of the produced hadrons, thus
becoming relevant for the analysis of a large variety of
semi-inclusive data. The MC approach provides a robust
and efficient platform for implementing these and other
possible extensions of the NJL-jet model that would allow

for a much more detailed description of the physical
picture.
A further advantage of the MC approach is in reducing

the numerical task in solving for the fragmentation func-
tions when including many more channels for emitted
hadrons. Here, solving the integral equations requires in-
verting larger and larger matrices, while the MC procedure
can be drastically sped up by trivially parallelizing the task
and solving simultaneously on computer clusters.
The results for the fragmentation functions exhibit only

slight changes with addition of the new hadronic channels.
In particular, vector meson-quark couplings are relatively
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fav. u→π+                               unfav. u→π-

Q02=0.2 GeV2

NLO-evolved to 
Q2  =4 

fav.      u→K+                              u→p                           s→K-

✖ zD(z,Q02)→const for z→0 (mult.→∞), larger effect at Q2=4
✖ LB regular. scheme ⇒  zmin(h) ≤ z ≤ zmax(h)
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3rd category: recursive model with spin
( Artru, arXiv:1001.1061 )

Figure 1. Electroweak boson → qq̄ → mesons.

qN ≡ q−1 is a ”quark propagating backward in time” and kN ≡ −k(q̄−1).

Kinematical notations :
k0 = k(q0) and k(q̄−1) are in the +ẑ and−ẑ directions respectively. For a quark, tn ≡ knT .
For a 4-vector, a± = a0 ± az and aT = (ax, ay). We denote by a tilde the dual transverse
vector ãT ≡ ẑ× aT = (−ay, ax).

In Monte-Carlo simulations, the kn are generated according to the splitting distribution

dW ( qn−1 → hn + qn) = fn(ζn, t
2
n−1, t

2
n,p

2
nT , ) dζn d

2tn , ζn ≡ p+n /k
+
n−1 .

In particular the symmetric Lund splitting function [3],

fn ∝ ζan−1−an−1
n (1− ζan) exp

[

−b (m2
n + p2

nT )/ζn
]

, (3)

inspired by the string model, fulfills the requirement of forward-backward equivalence.
On can also consider [6] the upper part of Fig.1 as a multiperipheral [7] diagram

with the Feynman amplitude

Mq0+q̄
−1→h1...+hN

= v̄(k−1,S−1) ΓqN ,hN ,qN−1
(kN , kN−1) ∆qN−1

(kN−1) · · ·
· · · ∆q2(k2) Γq2,h2,q1(k2, k1) ∆q1(k1) Γq1,h1,q0(k1, k0) u(k0,S0) . (4)

S0 and S−1 are the polarisation vectors of the intial quark and antiquark. S2 = 1, Sz =
helicity, ST = transversity. Γ and ∆ are vertex functions and propagators which depend
on the quark momenta and flavors. Note that Fig.1 is a loop diagram : k0 is an integration
variable, therefore the ”jet axis” is not really defined. Furthermore, in Z0 or γ∗ decay,
the spins q0 and q̄−1 are entangled so that one cannot define S0 and S−1 separately.

Collins and jet-handedness effects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins effect [1], in #q → h+X , is an asymmetry in sin[ϕ(S)−ϕ(h)] for a transversely
polarized quark. The fragmentation function reads

F (z,pT ;ST ) = F0(z,p
2
T ) (1 + AT ST .p̃T/|pT |) (p̃T ≡ ẑ× pT) . (5)

2

e+e-→q0q-1→h1+h2+...hN
pq0=ph1+pq1
pq1=ph2+pq2
......

Δ
Γ

M=v(-1) Γ(N) Δ(N-1)... Δ(1) Γ(1) u(0)
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pq1=ph2+pq2
......

Δ
Γ

M=v(-1) Γ(N) Δ(N-1)... Δ(1) Γ(1) u(0)
Simplifications :
1- Γ=const. 
2- Δ(pq) ≈ exp[-bpqT2/2] [ μ(pqT2)+i σ·ž×pqT ]  with b some parameter
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Mi=[μ(phiT2)+i σ·ž×phiT] σz
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recursive model with spin: Collins and jet handedness
( Artru, arXiv:1001.1061 )
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the spins q0 and q̄−1 are entangled so that one cannot define S0 and S−1 separately.

Collins and jet-handedness effects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins effect [1], in #q → h+X , is an asymmetry in sin[ϕ(S)−ϕ(h)] for a transversely
polarized quark. The fragmentation function reads

F (z,pT ;ST ) = F0(z,p
2
T ) (1 + AT ST .p̃T/|pT |) (p̃T ≡ ẑ× pT) . (5)

2

MM† ≈ exp[-bph1T2] Tr {M1 (1+S0·σ) M1†}
         = exp[-bph1T2] [σ0(ph1T2)+Im(μ) S0·ž×ph1T]

N=1: the Collins effect

Δ
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Figure 1. Electroweak boson → qq̄ → mesons.

qN ≡ q−1 is a ”quark propagating backward in time” and kN ≡ −k(q̄−1).

Kinematical notations :
k0 = k(q0) and k(q̄−1) are in the +ẑ and−ẑ directions respectively. For a quark, tn ≡ knT .
For a 4-vector, a± = a0 ± az and aT = (ax, ay). We denote by a tilde the dual transverse
vector ãT ≡ ẑ× aT = (−ay, ax).

In Monte-Carlo simulations, the kn are generated according to the splitting distribution

dW ( qn−1 → hn + qn) = fn(ζn, t
2
n−1, t

2
n,p

2
nT , ) dζn d

2tn , ζn ≡ p+n /k
+
n−1 .

In particular the symmetric Lund splitting function [3],

fn ∝ ζan−1−an−1
n (1− ζan) exp

[

−b (m2
n + p2

nT )/ζn
]

, (3)

inspired by the string model, fulfills the requirement of forward-backward equivalence.
On can also consider [6] the upper part of Fig.1 as a multiperipheral [7] diagram

with the Feynman amplitude

Mq0+q̄
−1→h1...+hN

= v̄(k−1,S−1) ΓqN ,hN ,qN−1
(kN , kN−1) ∆qN−1

(kN−1) · · ·
· · · ∆q2(k2) Γq2,h2,q1(k2, k1) ∆q1(k1) Γq1,h1,q0(k1, k0) u(k0,S0) . (4)

S0 and S−1 are the polarisation vectors of the intial quark and antiquark. S2 = 1, Sz =
helicity, ST = transversity. Γ and ∆ are vertex functions and propagators which depend
on the quark momenta and flavors. Note that Fig.1 is a loop diagram : k0 is an integration
variable, therefore the ”jet axis” is not really defined. Furthermore, in Z0 or γ∗ decay,
the spins q0 and q̄−1 are entangled so that one cannot define S0 and S−1 separately.

Collins and jet-handedness effects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins effect [1], in #q → h+X , is an asymmetry in sin[ϕ(S)−ϕ(h)] for a transversely
polarized quark. The fragmentation function reads

F (z,pT ;ST ) = F0(z,p
2
T ) (1 + AT ST .p̃T/|pT |) (p̃T ≡ ẑ× pT) . (5)

2

MM† ≈ exp[-bph1T2] Tr {M1 (1+S0·σ) M1†}
         = exp[-bph1T2] [σ0(ph1T2)+Im(μ) S0·ž×ph1T]

N=1: the Collins effect

Δ

N=2: iterated Collins effect + jet handedness

MM† ≈ exp[-bph1T2-bph2T2] Tr {M1M2 (1+S0·σ) M2†M1†}

         = ...+ A(ph2T2) Im(μ) S·ž×ph1T +A’(ph1T2) Im(μ) S·ž×ph2T 

                - 2 Im(μ2) Sz ž·ph1T×ph2T
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Figure 1. Electroweak boson → qq̄ → mesons.

qN ≡ q−1 is a ”quark propagating backward in time” and kN ≡ −k(q̄−1).

Kinematical notations :
k0 = k(q0) and k(q̄−1) are in the +ẑ and−ẑ directions respectively. For a quark, tn ≡ knT .
For a 4-vector, a± = a0 ± az and aT = (ax, ay). We denote by a tilde the dual transverse
vector ãT ≡ ẑ× aT = (−ay, ax).

In Monte-Carlo simulations, the kn are generated according to the splitting distribution

dW ( qn−1 → hn + qn) = fn(ζn, t
2
n−1, t

2
n,p

2
nT , ) dζn d

2tn , ζn ≡ p+n /k
+
n−1 .

In particular the symmetric Lund splitting function [3],

fn ∝ ζan−1−an−1
n (1− ζan) exp

[

−b (m2
n + p2

nT )/ζn
]

, (3)

inspired by the string model, fulfills the requirement of forward-backward equivalence.
On can also consider [6] the upper part of Fig.1 as a multiperipheral [7] diagram

with the Feynman amplitude

Mq0+q̄
−1→h1...+hN

= v̄(k−1,S−1) ΓqN ,hN ,qN−1
(kN , kN−1) ∆qN−1

(kN−1) · · ·
· · · ∆q2(k2) Γq2,h2,q1(k2, k1) ∆q1(k1) Γq1,h1,q0(k1, k0) u(k0,S0) . (4)

S0 and S−1 are the polarisation vectors of the intial quark and antiquark. S2 = 1, Sz =
helicity, ST = transversity. Γ and ∆ are vertex functions and propagators which depend
on the quark momenta and flavors. Note that Fig.1 is a loop diagram : k0 is an integration
variable, therefore the ”jet axis” is not really defined. Furthermore, in Z0 or γ∗ decay,
the spins q0 and q̄−1 are entangled so that one cannot define S0 and S−1 separately.

Collins and jet-handedness effects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins effect [1], in #q → h+X , is an asymmetry in sin[ϕ(S)−ϕ(h)] for a transversely
polarized quark. The fragmentation function reads

F (z,pT ;ST ) = F0(z,p
2
T ) (1 + AT ST .p̃T/|pT |) (p̃T ≡ ẑ× pT) . (5)

2

MM† ≈ exp[-bph1T2] Tr {M1 (1+S0·σ) M1†}
         = exp[-bph1T2] [σ0(ph1T2)+Im(μ) S0·ž×ph1T]

N=1: the Collins effect

Δ

N=2: iterated Collins effect + jet handedness

MM† ≈ exp[-bph1T2-bph2T2] Tr {M1M2 (1+S0·σ) M2†M1†}

         = ...+ A(ph2T2) Im(μ) S·ž×ph1T +A’(ph1T2) Im(μ) S·ž×ph2T 

                - 2 Im(μ2) Sz ž·ph1T×ph2T

why ?
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recursive model with spin: Collins and jet handedness
( Artru, arXiv:1001.1061 )

- define                      RN  = M1..MN (1+S0·σ) MN†..M1†  
   recursive property    RN = MN RN-1 MN†
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recursive model with spin: Collins and jet handedness
( Artru, arXiv:1001.1061 )

- implies  SN = 1/Tr{RN} [ Im(μ)  ž×pqNT + R(ž;μ,pqT2)  SN-1 ]
    ➤  Im(μ)≠0  ⇒   SNT≠0  even if  SN-1=0 
         helicity SN-1z ↔ transversity SNT  

- define                      RN  = M1..MN (1+S0·σ) MN†..M1†  
   recursive property    RN = MN RN-1 MN†
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recursive model with spin: Collins and jet handedness
( Artru, arXiv:1001.1061 )

- implies  SN = 1/Tr{RN} [ Im(μ)  ž×pqNT + R(ž;μ,pqT2)  SN-1 ]
    ➤  Im(μ)≠0  ⇒   SNT≠0  even if  SN-1=0 
         helicity SN-1z ↔ transversity SNT  

- define                      RN  = M1..MN (1+S0·σ) MN†..M1†  
   recursive property    RN = MN RN-1 MN†

➤  jet handedness =  1) S0z → S1T || ph1T ≠0 
                                  2) Collins effect  ž·ph2T×S1T  ⇒ ž·ph2T×ph1T
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recursive model with spin: Collins and jet handedness
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Figure 2. String decaying into pseudoscalar mesons.

AT = AT (z,p2
T ) ∈ [−1,+1] is the Collins analysing power.

- jet handedness [2], in !q → h+h′ +X , is an asymmetry in sin[ϕ(h)−ϕ(h′)] proportional
to the quark helicity. The 2-particle longitudinaly polarised fragmentation function is

F (z,pT , z
′,p′

T ;Sz) = F0(z,p
2
T , z

′,p′
T
2,pT · p′

T )

(

1 + AL Sz

p̃T .p
′
T

|p̃T · p′
T |

)

. (6)

AL = AL(z,p2
T , z

′,p′
T
2,pT .p

′
T ) ∈ [−1,+1] is the handedness analysing power. p̃1T · p′

T is
the same as ẑ · (pT × p′

T).

If the jet axis is not well determined, an additional fast hadron, h′ or h′′ is needed.
The z axis is taken along P = (p+p′) (Collins) or P = (p+p′+p′′) (handedness). In this
way, we define the 2-particle relative Collins effect (also called interference fragmentation)
and the three-particle jet handedness, which corresponds to the original definition of [2].

The Lund 3P0 mechanism [3]. Figure 2 depicts the decay of the initial massive string
accompagnied with the creation of a qq̄ pairs. Forgetting transverse oscillations of the
initial string, the transverse hadron momenta come from the internal orbital motions of
the pairs. After a tunnel effect the q and q̄ of a pair become on-shell and their relative
position r ≡ r(q)− r(q̄) is along −ẑ. The pair is assumed to be in the 3P0 state, which
has the vacuum quantum number. The relative momentum k ≡ k(q) = −k(q̄) and the
orbital angular momentum L = r × k are such that ẑ · [kT × L] < 0. In the 3P0 state
〈sq〉 = 〈sq̄〉 = −〈L/2〉. As a result, the transverse spins of q and q̄ are correlated to their
transverse momenta :

〈 ẑ · [kT(q)× sq] 〉 > 0 , 〈 ẑ · [kT(q̄)× sq̄] 〉 < 0 . (7)

The correlation can be transmitted to a baryon. Then 〈 ẑ · [pT × sB] 〉 has the sign of
〈sq.sB〉. This can explain transverse spin asymmetries in hyperon production [3].

Application to the Collins effect [4]. In Fig. 2, q0 is polarised along the direction +ŷ
toward the reader and h1 is a pseudoscalar meson, for which 〈s(q0)〉 = −〈s(q̄1)〉. Then
q1 and q̄1 are polarised along −ŷ and, according to (7), kT (q̄1) = pT (h1) is in the +x̂
direction. This provides a model for the Collins effect. Fig. 2 also indicates that, for a

3

- implies  SN = 1/Tr{RN} [ Im(μ)  ž×pqNT + R(ž;μ,pqT2)  SN-1 ]
    ➤  Im(μ)≠0  ⇒   SNT≠0  even if  SN-1=0 
         helicity SN-1z ↔ transversity SNT  

- define                      RN  = M1..MN (1+S0·σ) MN†..M1†  
   recursive property    RN = MN RN-1 MN†

➤  jet handedness =  1) S0z → S1T || ph1T ≠0 
                                  2) Collins effect  ž·ph2T×S1T  ⇒ ž·ph2T×ph1T

- implies  SNz=DLL(|μ2|) SN-1z ;  SNT = DTT(|μ2|) SN-1T   2|DTT| ≤ 1+DLL                    
- DTT<0  ⇒ alternate Collins effects on h1, h2.. as in Lund 3P0 model
                   unfav. ~ - fav.
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Figure 2. String decaying into pseudoscalar mesons.

AT = AT (z,p2
T ) ∈ [−1,+1] is the Collins analysing power.

- jet handedness [2], in !q → h+h′ +X , is an asymmetry in sin[ϕ(h)−ϕ(h′)] proportional
to the quark helicity. The 2-particle longitudinaly polarised fragmentation function is

F (z,pT , z
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T ;Sz) = F0(z,p
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T , z
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T , z

′,p′
T
2,pT .p

′
T ) ∈ [−1,+1] is the handedness analysing power. p̃1T · p′

T is
the same as ẑ · (pT × p′

T).

If the jet axis is not well determined, an additional fast hadron, h′ or h′′ is needed.
The z axis is taken along P = (p+p′) (Collins) or P = (p+p′+p′′) (handedness). In this
way, we define the 2-particle relative Collins effect (also called interference fragmentation)
and the three-particle jet handedness, which corresponds to the original definition of [2].

The Lund 3P0 mechanism [3]. Figure 2 depicts the decay of the initial massive string
accompagnied with the creation of a qq̄ pairs. Forgetting transverse oscillations of the
initial string, the transverse hadron momenta come from the internal orbital motions of
the pairs. After a tunnel effect the q and q̄ of a pair become on-shell and their relative
position r ≡ r(q)− r(q̄) is along −ẑ. The pair is assumed to be in the 3P0 state, which
has the vacuum quantum number. The relative momentum k ≡ k(q) = −k(q̄) and the
orbital angular momentum L = r × k are such that ẑ · [kT × L] < 0. In the 3P0 state
〈sq〉 = 〈sq̄〉 = −〈L/2〉. As a result, the transverse spins of q and q̄ are correlated to their
transverse momenta :

〈 ẑ · [kT(q)× sq] 〉 > 0 , 〈 ẑ · [kT(q̄)× sq̄] 〉 < 0 . (7)

The correlation can be transmitted to a baryon. Then 〈 ẑ · [pT × sB] 〉 has the sign of
〈sq.sB〉. This can explain transverse spin asymmetries in hyperon production [3].

Application to the Collins effect [4]. In Fig. 2, q0 is polarised along the direction +ŷ
toward the reader and h1 is a pseudoscalar meson, for which 〈s(q0)〉 = −〈s(q̄1)〉. Then
q1 and q̄1 are polarised along −ŷ and, according to (7), kT (q̄1) = pT (h1) is in the +x̂
direction. This provides a model for the Collins effect. Fig. 2 also indicates that, for a

3

- implies  SN = 1/Tr{RN} [ Im(μ)  ž×pqNT + R(ž;μ,pqT2)  SN-1 ]
    ➤  Im(μ)≠0  ⇒   SNT≠0  even if  SN-1=0 
         helicity SN-1z ↔ transversity SNT  

BUT  AUTColl(K-) ~0  at HERMES 
               different trend at COMPASS
large AUUcos2ϕ(K-)   at HERMES

- define                      RN  = M1..MN (1+S0·σ) MN†..M1†  
   recursive property    RN = MN RN-1 MN†

➤  jet handedness =  1) S0z → S1T || ph1T ≠0 
                                  2) Collins effect  ž·ph2T×S1T  ⇒ ž·ph2T×ph1T

- implies  SNz=DLL(|μ2|) SN-1z ;  SNT = DTT(|μ2|) SN-1T   2|DTT| ≤ 1+DLL                    
- DTT<0  ⇒ alternate Collins effects on h1, h2.. as in Lund 3P0 model
                   unfav. ~ - fav.
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Di-hadron Fragm. Functions (DiFF)
from q-q correlator Δ(z1,z2,KT,RT) 
project out (at leading twist):

Tr
�
∆ γ

−� → D
q→h1h2
1 (z1, z2,K

2
T , R

2
T ,KT ·RT )

Tr
�
∆ γ

−
γ5

�
→ (RT ×KT )G

⊥ q→h1h2
1

Tr
�
∆ iσ

i−
γ5

�
−→ (Sq

T ×KT )H
⊥ q→h1h2
1 + (Sq

T ×RT )H
<) q→h1h2
1

quark h2

h1

2RTKT
ST

First suggested in  Konishi et al., P.L.B78 (78)
Polarized DiFF in  Collins et al., N.P.B420 (94);  Jaffe et al., P.R.L.80 (98);   Artru & Collins, Z.Ph.C69 (96)
Jet handedness in Efremov et al.,P.L.B284 (92); Stratmann & Vogelsang, P.L.B295 (92); Boer et al.,P.R.D67 (03)
full analysis at twist 2 Bianconi et al., P.R.D62 (00);  at twist 3  Bacchetta & Radici, P.R.D69 (04) 
LO evolution eqs. Ceccopieri et al., P.L.B650 (07)
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quark
h2

h1

2RT

quark

h2

h1

2RT

chiral-odd              survives ∫dKT    (          doesn’t )
                         (memo: h1,h2 must be distinguishable!)

H
<) q→h1h2
1

H
⊥ q→h
1
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SIDIS asymmetry
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relative to the lepton-scattering plane, of the target “↑” state. Twist-3 contributions to the

polarized and unpolarized cross sections appear with different azimuthal dependences [20].

Both dihadron fragmentation functions D1,q and H!

1,q can be expanded in terms of

Legendre functions of cos θ. Hence [43],

D1,q(z,Mππ, cos θ) " D1,q(z,Mππ) + Dsp
1,q(z,Mππ) cos θ + Dpp

1,q(z,Mππ)
1

4
(3 cos2 θ − 1) (3)

and

H!

1,q(z,Mππ , cos θ) " H!,sp
1,q (z,Mππ) + H!,pp

1,q (z,Mππ) cos θ, (4)

where the Legendre expansions are truncated to include only the s- and p-wave components,

which is assumed to be a valid approximation in the range of the invariant mass Mππ <

1.5 GeV [43], which is typical of the present experiment.

In refs. [15, 37, 43], it was proposed to measure σUU and σUT integrated over the angle

θ, which has the advantage that in the resulting expression for these cross sections the only

fragmentation functions that appear are D1,q(z,Mππ) and H!,sp
1,q (z,Mππ) (see eqs. (1)–(4)).

However, this requires an experimental acceptance that is complete in θ, which is difficult

to achieve, not only because of the geometrical acceptance of the detector, but also because

of the acceptance in the momentum of the detected pions. As the momentum selection

|Pπ| > 1 GeV strongly influences the θ distribution, the measured asymmetry must be

kept differential in θ.

The single-spin asymmetry AUT ≡ 1
|ST |σUT/σUU contains components of a simultane-

ous Fourier and Legendre expansion. The amplitude Asin(φR⊥+φS) sin θ
UT of the modulation of

interest here, which is related to the product of transversity and the fragmentation function

H!,sp
1 , is defined as

Asin(φR⊥+φS) sin θ
UT ≡

2

|ST |

∫

dcos θ dφR⊥ dφS sin(φR⊥ + φS) dσ7
UT / sin θ

∫

dcos θ dφR⊥ dφS dσ7
UU

. (5)

Using eqs. (1)–(4), it can be written as [43]

Asin(φR⊥+φS) sin θ
UT = −

(1 − y)

(1 − y + y2

2 )

1

2

√

1 − 4
M2

π

M2
ππ

∑

q e2
q hq

1(x)H!,sp
1,q (z,Mππ)

∑

q e2
q f q

1 (x)D1,q(z,Mππ)
. (6)

Due to the factor e2
q , the amplitude is expected to be up-quark dominated.

The results reported here are extracted from the single-spin asymmetry

AU⊥(x, z,Mππ,φR⊥,φS , θ) ≡
1

|S⊥|

N↑ − N↓

N↑ + N↓
, (7)

where N↑(↓) is the luminosity-normalized number of semi-inclusive π+π− pairs detected

while the target is in the ↑(↓) spin state with polarization perpendicular to the incoming

lepton beam (rather than to the virtual-photon direction). The asymmetry is evaluated as

a function of x, z, Mππ, and the angles φR⊥, φS , and θ, which are defined in figure 1.3

3The definitions of the asymmetry and the angles are consistent with the “Trento Conventions” [44].

– 5 –

quark
h2

h1

2RT

quark

h2

h1

2RT

chiral-odd              survives ∫dKT    (          doesn’t )
                         (memo: h1,h2 must be distinguishable!)

H
<) q→h1h2
1

H
⊥ q→h
1

partner of transversity

Radici et al., PR D65 (02)
Bacchetta & Radici, PR D67 (03)- coll. fact. → simple product (no ⊗)

- DGLAP (LO) evolution
- universality
- cleaner e+e-→(π+π-)(π+π-)X (expect less background)

A
sin(φR+φS) sin θ
UT (x, z,M2

h ;Q
2) =

− Cy
|R|
Mh

�
q e

2
q h

q
1(x,Q

2) H� q→π+π−

1 (z,M2
h ;Q

2)
�

q e
2
q f

q
1 (x,Q

2) D� q→π+π−

1 (z,M2
h ;Q

2)
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2008: first SIDIS data on p↑ from HERMES
Airapetian et al. (HERMES), JHEP 06 (08)

2009: preliminary data on p↑ from COMPASS
Wollny (COMPASS), DIS 2009, arXiv:0907.0961

INT 10-3, Seattle - November 2010gunar.schnell @ desy.de
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COMPASS 2007 transverse proton data
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2008: first SIDIS data on p↑ from HERMES

model prediction   Bacchetta & Radici, P.R.D74 (06)
model analysis        Bacchetta et al., P.R.D79 (09); She et al., P.R.D77 (08)
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P
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Figure 1: Depiction of the azimuthal angles φR⊥ of the dihadron and φS of the component ST of
the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame.
Explicitly, φR⊥ ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | . Here,

RT = R − (R · P̂h)P̂h, with R ≡ (Pπ+ − Pπ−)/2, Ph ≡ Pπ+ + Pπ− , and P̂h ≡ Ph/ | Ph |,
thus RT is the component of Pπ+ orthogonal to Ph, and φR⊥ is the azimuthal angle of RT about
the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The
short dotted line is parallel to the direction of the virtual photon. Also included is a description of
the polar angle θ, which is evaluated in the center-of-momentum frame of the pion pair.

two chiral-odd naive-T-odd dihadron fragmentation function H!

1,q [20, 37].2 There are no

contributions to this amplitude at subleading twist (i.e., twist-3). Among the various con-

tributions to the fragmentation function H!

1,q are the interference H!,sp
1,q between the s- and

p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

2The superscript ! indicates that the fragmentation function does not survive integration over the

relative momentum of the hadron pair.

– 3 –
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2011: the BELLE data for a12R
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FIG. 2: Relative contributions of various processes for pion pairs as a function of the 8 × 8 m1,m2 bin number. The closed
circles denote light quark-antiquark pair events, inverted triangles – charm events, triangles – charged B meson pairs, open
circles – neutral B meson pairs and squares – τ pairs.

TABLE II: Integrated asymmetries for the two reconstruction methods and their average kinematics.

〈z1〉, 〈z2〉 0.4313
〈m1〉, 〈m2〉 0.6186 GeV/c2

〈sin2 θt/(1 + cos2 θt)〉 0.7636
〈sin θ1d〉, 〈sin θ2d〉 0.9246
〈cos θ1d〉, 〈cos θ2d〉 0.0013

a12 −0.0196 ± 0.0002(stat.) ± 0.0022(syst.)
a12R −0.0179 ± 0.0002(stat.) ± 0.0021(syst.)

preprint version.

   
   

  
12

   
a

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

 < 0.28 
2

0.20 < z  < 0.35 
2

0.28 < z  < 0.42 
2

0.35 < z
   

   
  

12
   

a

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

 < 0.50 
2

0.42 < z  < 0.57 
2

0.50 < z  < 0.65 
2

0.57 < z

1z0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

   
   

  
12

   
a

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

 < 0.72 
2

0.65 < z

1z0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 < 0.82 
2

0.72 < z

1z0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 < 1.00 
2

0.82 < z

FIG. 3: a12 modulations for the 9 × 9 z1, z2 binning as a function of z1 for the z2 bins. The shaded (green) areas correspond
to the systematic uncertainties.

Summary: Large azimuthal asymmetries for two π+π− pairs in opposite hemispheres were extracted from a 672
fb−1 data sample. The asymmetries monotonically decrease as a function of z1,2 and m1,2 and no sign change is
observed in contrast to [18]. The interference fragmentation function can be extracted from those asymmetries and
used in a global fit to the SIDIS data [9, 10] to obtain the transversity distribution function.
We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid

operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We
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parametrizing DiFF: fitting BELLE data

1. fit the denominator using the unpolarized cross section 
generated by PYTHIA MC adapted to BELLE

2. fit the asymmetry a12R multiplied by 
        denominator (≈ [statistical error]-1)
    → get the numerator, bin by bin

|R| =
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2
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1. fitting the BELLE (MC) dσ0 → D1q→π+π-

1. flavor decomposition:  {uds}  -  charm
2. resonant (ρ,ω; only {uds}) and nonresonant contributions 
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χ2/d.o.f. ~ 1.3

Courtoy et al., arXiv:1012.0054 [hep-ph]
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2. resonant (ρ,ω; only {uds}) and nonresonant contributions 
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- big effect from charm
- no factorization of (z,Mh) depend.

work in progress for dσ0 × a12R ...

              ... but ...
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HERMES (+ COMPASS)
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1st extraction of transversity 
in coll. framework

1. start from D1q=u,s,c(z,Mh; Q02=1),  H1<)u(z,Mh; Q02=1)    Bacchetta & Radici, P.R.D74 (06)
    resonant + nonresonant channel inspired by spect. model
2. evolve at LO with HOPPET  (updating with chiral-odd kernel)
3. fit dσ0 from PYTHIA (adatped to BELLE) and dσ0 × a12R   bin by bin
4. integrate D1q and H1<)u in HERMES range 0.5≤Mh≤1 , 0.2≤z≤0.7
5. get nu↑(Q2)/nu(Q2):  Q2=2.5 GeV2   nu↑/nu= -0.251±0.006ex±0.023th
                                  [nu↑/nu (2.5)]  / [nu↑/nu (100)] ~ 92%(±8%) 
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several “BUT..”
work in progress

stay tuned..
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