

<u>Isabella Garzia</u>

On behalf of the BaBar Collaboration Università degli studi di Ferrara, INFN - Sezione di Ferrara

Third International Workshop on Transverse Polarization Phenomena In Hard Scattering 29 August - 2 September 2011 Veli Lošinj - Croatia

OUTLINE

Introduction

- Fragmentation Functions (FFs)
- Collins FF
- Global analysis: first extraction of Transversity
- Reference Frame

BaBar Detector

- Analysis:
 - Analysis Strategy
 - Event and Tracks selection
 - Asymmetry dilution
- Systematic study
- Preliminary Results
- Plans and Conclusions

2

Fragmentation Functions (FFs)

Fragmentation: hadron production from quark, antiquark or gluon. FFs: probability that a parton fragments into an hadron carrying away a fraction of parton's momentum.

Unpolarized FF

- Most of data are obtained at LEP energies
- At lower CMS energies and higher x, very little data are avalaible
- BaBar and Belle \rightarrow results on FF for heavy quarks
- BaBar \rightarrow light-quark analysis ongoing
- Many attempts to extract FF from e⁺e⁻ data: KKP, AKK, Kretzer...
 - → Large difference between different fits

(Nucl.Phys. **B725**,181(2006), Nucl.Phys. **B803**,42(2008), Phys.Rev. **D75**,094009 (2007), Phys.Rev. **D62**,054001(2000), Nucl.Phys. **B582**,514(2000));

<u>Spin-dependent FFs</u>

- Fundamental test for any approach to solve QCD at soft scales
- Test schemes of universality and factorization between e⁺e⁻, DIS, and p-p collision
- Test evolution as fundamental QCD prediction
- Connection between microscopic (quark spin) and macroscopic observables (azimuthal distribution of the hadrons produced)

• Final spin analyzer for the study of the transversity parton distribution functions

Collins FF

- ➡ Spin dependent FF
- → Chiral-odd function
- → The Collins FF (CFF) is related to the probability that a transversely polarized quark will fragment into a spinless hadron:

First experimental evidence of non zero Collins FF for pions came from SIDIS experiments: HERMES (PRL94,012002(2005)), COMPASS (PRL94,202002(2005))

▶ B-Factories e⁺e⁻ → <u>direct evidence of non-zero Collins FF</u>: DELPHI (Nucl.Phys.B79,554-556 (1999)), BELLE (PRL96,232002(2006), PRD78,032011(2008))

Collins effect in di-hadron correlation $e^+e^- \rightarrow b_1b_2X$ $e^+e^- \rightarrow b_1b_2X$ e^+ $e^$ e^-

Detect pion pairs with same or opposite charge ⇒ sensitivity to **favored** and **disfavored** FFs

- favored fragmentation processes describe the fragmentation of a quark of flavor q into an hadron with a valence quark of the same flavor: i.e.: $(u \rightarrow \pi^+)$ and $(d \rightarrow \pi^-)$
- disfavored for $(d \rightarrow \pi^+)$ and $(u \rightarrow \pi^-)$.

UnLike sign pion pairs: $\pi^{\mp}\pi^{\pm}$ (UL): (fav	x fav)+	(<mark>dis x dis</mark>)	Like sign pion pairs: $\pi^{\pm}\pi^{\pm}$ (L): (fav x dis)+(dis x fav)				
Different combination o fav and dis FFs in the	N^{UL} :	$= \frac{d\sigma(e^+e^- \to z)}{d\Omega dz_1 dz_2}$	$\frac{\pi^{\pm}\pi^{\mp}X)}{lz_2} \approx (1 + \cos^2)$	$(\theta)\sum_{q}e_{q}^{2}(D_{1}^{fav}\bar{D}_{2}^{fav}+D_{1}^{dis}\bar{D}_{2}^{dis})$			
cross section:	N^L :	$= \frac{d\sigma(e^+e^- \to \tau)}{d\Omega dz_1 dz_2}$	$\frac{\pi^{\pm}\pi^{\pm}X)}{lz_2} \approx (1 + \cos^2)$	$(\theta) \sum_{q} e_{q}^{2} (D_{1}^{fav} \bar{D}_{2}^{dis} + D_{1}^{dis} \bar{D}_{2}^{fav})$			
0				0			

Transversity 2011 - Croatia

PEP-II and BaBar Detector @ SLAC

- Asymmetric-energy collider
- High Energy Ring (HER): 9.0 GeV e⁻
- Low Energy Ring (LER): 3.1 GeV e⁺
- βγ≈0.56

- DCH resolution: $\sigma_{pT}/p_T = (0.13 \pm 0.01)\% * p_T + (0.45 \pm 0.03)\%$
- PID:
 - Low momenta: dE/dx in the DCH and SVT;
 - DIRC: above 700 MeV/c; $>3\sigma$ K/ π separation up to 4 GeV/c.

Analysis

Measurement of Collins Asymmetries at BaBar

Transversity 2011 - Croatia

Analysis Strategy

The analysis for the preliminary results is based on the full off-peak sample (45 fb⁻¹).

- 1. Event and tracks selection
- 2. Assumption: thrust axis in e^+e^- CM as the $q\overline{q}$ direction
- 3. Selection of pions in opposite jets according to the thrust axis
- 4. Measurement of the azimuthal angles (ϕ_i) in the two reference frames (see slide 7)
- 5. Fit to the azimuthal distributions
- 6. Estimate and subtraction of tau and charm contributions
- 7. Study of systematic effects

- 4) μ^{\pm} and e^{\pm} veto, and Tight pion ID required
- 5) Events in the $\tau^+\tau^-$ region removed
- 6) Analysis restricted to pion fractional energies $z=2E_h/\sqrt{s} > 0.2$
 - for small z values the mass correction terms become important
- 7) $Q_t < 3.5 \text{ GeV}$, where Q_t is the transverse momentum of the virtual photon in the pions CMS

Raw Asymmetries

Accessing the Collins Asymmetries: measurement of cosine modulation of hadron pairs $(N(\phi))$ on top of a flat distribution due to unpolarized part of the fragmentation function (normalized raw distribution):

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + \underbrace{b}_{\bullet} \cos(\phi_{\alpha})$$

Information about the Collins asymmetry

In the MC sample, the polarized FF (Collins FF) are not implemented \rightarrow flat distribution at generator level

Reconstructed distribution affected by <u>large detector acceptances effects</u>

Transversity 2011 - Croatia

Double Ratio

Double Ratio (DR) of Un-Like sign over Like sign pion pairs:

Compare the acceptance effects and the first order radiative effects

- acceptances and radiative contributions do not depend on the charge combination of the pion pair;

- approximation holds for small asymmetries.

MC: we measure a small deviation from zero $(\sim 0.2\%)$, and assign a systematic error for that

Measured Asymmetry vs z

The large amount of data ($\sim 10^8$ light quark events), allows the extraction of the asymmetries in bins of fractional energies (z) of selected pions. We choose the following 10 symmetric bin subdivision:

This choice allows a direct comparison with Belle results obtained on off-peak data.

Transversity 2011 - Croatia

Asymmetry dilution due to Tau and Charm events

Measured asymmetries are diluted by the presence of background sources:

$$A_{measured} = (1 - \sum_{i} D_{i}) \cdot A_{uds} + \sum_{i} D_{i} \cdot A_{i,bkg}$$

CONTRIBUTION

- Using τ -MC, and the τ -enhanced data sample in the region removed, we find $A_{\tau}=0$;
- The cut reduces tau contamination to $D_{\tau} \approx 3\%$ (it ranges from about 1 to 18% in the individual z-bins);

• we correct the data as follows:

 $e^+e^- \rightarrow \tau^+\tau^-$

$$A_{uds} = \frac{A_{measured}}{1 - D_{\tau}}$$

 D_i = fraction of pion pairs due to the i-th background process.

$e^+e^- \rightarrow c\overline{c}$ CONTRIBUTION

In this case, both fragmentation processes and weak decays can introduce azimuthal asymmetries. Use a D*-enhanced data sample for estimating the charm-induced asymmetry.

$$A_{measured} = (1 - D) \cdot A_{uds} + D \cdot A_{charm}$$
$$A_{D^*} = d \cdot A_{charm} + (1 - d) \cdot A_{uds}$$

D ~ 25%

d ~ charm fraction in the D*-enhanced data sample

Solving the system equations, we extract Auds and Acharm

Transversity 2011 - Croatia

We studied also the behaviour of the asymmetry as a function of the thrust value.

This behavior is essentially due to two effects:

- 1) More spherical events, higher multiplicity
- $\square \frown \bigcirc \mathsf{q} \overline{\mathsf{q}} \text{ correlation lost.}$

2) Gluon emission

Study of systematic effects

The measurements are affected by a number of systematic effects

- If needed, we correct the asymmetries and assign a systematic error
- In other cases, we only check that no unexpected features are present
- When possible we evaluate the correction independently for each z-bin

Dilution due to the thrust reconstruction

Phi12

The experimental method assume the thrust axis as \overline{qq} direction:

• This is only a rough approximation

- RF12: the azimuthal angles are calculated with respect to the thrust axis \rightarrow large smearing

000

7000

5000

4000 3000

2000

1000

800

700

600

500

400

300

200

Phi12Gen

Phi0Gen

- RF0: the azimuthal angle is calculated with respect to the momentum of the second hadron \rightarrow small smearing due to PID and tracking resolution

The MC generator does not include the Collins FF \rightarrow we introduce a modulation to the generated angular distribution by applying a different weight to every selected pion pair: $w^{UL,L} = 1 \pm a^* \cos(\phi_{gen12,0})$

Transversity 2011 - Croatia

• Two different polar angles appear in the DR expressions for the two reference frames:

Conclusions and Plans

-We present a preliminary measurement of the Collins Asymmetry in the sample of 45 fb⁻¹ of data collected at 10.54 GeV by the BaBar Detector

- Measurement performed in two different reference frames
- Clear evidence of non-zero asymmetries in light-quark fragmentation

- Measured asymmetries increase with fractional energies of the pions, in agreement with expectations

- A roughly linear dependence of the asymmetries on thrust value is seen

- The expected behaviour of the asymmetries as a function of $\sin^2\theta/(1 + \cos^2\theta)$ seems not to hold for A₀, when the polar angle of the second hadron is considered

- There is an overall good agreement with Belle data

-These preliminary results are the starting point for a more complete study on the full BaBar data sample

Thanks for your attention

Backup slides

 \bigcirc

Transversity 2011 - Croatia

EVENTS AND TRACKS SELECTION

ö

$W_{hemi} = (P_1 \hat{n}) (P_2 \hat{n}) < 0$

Whemi near to zero: higher probalility that one of the two tracks has been assigned to the wrong hemisphere® we can suppress this effect selecting pairs with Qt<3.5 GeV, where Qt is the transverse momentum of the virtual photon in the pions CMS

Transversity 2011 - Croatia

Study of systematic effects

The measurements are affected by a number of systematics effects

- If needed, we correct the asymmetries and assign a systematic error
- In other cases, we only check that no unexpected features are present
- When possible we evaluate the correction indipendently for each z-bin
 - Dilution because of thrust reconstruction
 - Test of the DR methods on Montecarlo
 - Particle identification
 - Fit bin size
 - Higher harmonic contributions
 - $\pi^+\pi^+/\pi^-\pi^-$ Double Ratio test
 - Single Spin Asymmetries (SSA)
 - Subtraction and Double Ratio (DR) methods
 - Beam polarization studies
 - Toy MC studies

Double Ratio

Double Ratio (DR) of Un-Like sign over Like sign pion pairs: Coupling the acceptance effects and the first order radiative effects

- acceptances and radiative contributions do not depend on the charge combination of the pion pair

- approximation hold for small asymmetries

$$\frac{R_{12}^{UL}}{R_{12}^L} = \frac{1 + \frac{\sin^2\theta}{1 + \cos^2\theta}\cos(\phi_1 + \phi_2)G^{UL}}{1 + \frac{\sin^2\theta}{1 + \cos^2\theta}\cos(\phi_1 + \phi_2)G^L} \simeq 1 + \frac{\sin^2\theta}{1 + \cos^2\theta}\cos(\phi_1 + \phi_2)\left\{G^{UL} - G^L\right\}$$

$$G^{UL} = \frac{\sum_{q} e_{q}^{2} \mathcal{F}(H_{1}^{fav} H_{2}^{fav} + H_{1}^{dis} H_{2}^{dis})}{\sum_{q} e_{q}^{2} (D_{1}^{fav} D_{2}^{fav} + D_{1}^{dis} D_{2}^{dis})} \qquad G^{L} = \frac{\sum_{q} e_{q}^{2} \mathcal{F}(H_{1}^{fav} H_{2}^{dis} + H_{1}^{dis} H_{2}^{fav})}{\sum_{q} e_{q}^{2} (D_{1}^{fav} D_{2}^{fav} + D_{1}^{dis} D_{2}^{dis})}$$

$$\frac{R_{UL}}{R_L} = \frac{N^{UL}(\phi)/\langle N^{UL}(\phi)\rangle}{N^L(\phi)/\langle N^L(\phi)\rangle} \to P_0 + \underbrace{P_1}_{V_1}\cos(\phi)$$

Contain only the Collins effects and higher order radiative effects

Transversity 2011 - Croatia

Asymmetry dilution due to Tau and Charm events (I)

Measured asymmetries are diluted by the presence of background sources:

$$A_{measured} = (1 - \sum_{i} D_{i}) \cdot A_{uds} + \sum_{i} D_{i} \cdot A_{i,bkg}$$

 D_i = fraction of pion pairs due to the i-th background process.

$e^+e^- \rightarrow \tau^+\tau^-$ CONTRIBUTION

$e^+e^- \rightarrow c\overline{c}$ CONTRIBUTION

In this case, both fragmentation processes and weak decays can introduce azimuthal asymmetries. Use a D*-enhanced data sample for estimating the the charm-induced asymmetry. $(D_{charm} \sim 25\%)$

Solving the system equations, we extract A_{uds} and A_{charm}

Transversity 2011 - Croatia

Summary of main Systematic Errors

			RF12					RF0		
z-bins	Bins	PID	Weight	MC	total	Bins	PID	Weight	MC	total
1	0.0002	0.0015	0.0013	0.0022	0.30%	0.0004	0.0041	0.0007	0.0029	0.51%
2	0.0005	0.0007	0.0014	0.0020	0.26%	0.0007	0.0035	0.0009	0.0029	0.47%
3	0.0009	0.0013	0.0020	0.0041	0.48%	0.0019	0.0024	0.0012	0.0029	0.44%
4	0.0008	0.0014	0.0018	0.0023	0.34%	0.0009	0.0010	0.0017	0.0029	0.36%
5	0.0021	0.0021	0.0022	0.0030	0.48%	0.0000	0.0016	0.0006	0.0050	0.53%
6	0.0011	0.0029	0.0028	0.0060	0.73%	0.0015	0.0024	0.0014	0.0050	0.59%
7	0.0027	0.0011	0.0031	0.0020	0.47%	0.0005	0.0005	0.0019	0.0029	0.35%
8	0.0008	0.0011	0.0042	0.0054	0.70%	0.0032	0.0027	0.0022	0.0102	1.12%
9	0.0069	0.0035	0.0040	0.0020	0.89%	0.0021	0.0032	0.0020	0.0078	0.89%
10	0.0223	0.0041	0.0060	0.0028	2.36%	0.0186	0.0096	0.0041	0.0029	2.15%
all	0.0007	0.0022	0.0019	0.0020	0.36%	0.0006	0.0023	0.0010	0.0029	0.39%

All systematic errors are added in quadrature;

Transversity 2011 - Croatia