Study
 ofCollins Atsummetries at BaBar

Isabella Garzia

On behalf of the BaBar Collaboration
Università degli studi di Ferrara, INFN - Sezione di Ferrara

Third International Workshop on
Transverse Polarization Phenomena In Hard Scattering
29 August - 2 September 2011
Veli Lošinj - Croatia

OUTLINE

- Introduction
- Fragmentation Functions (FFs)
- Collins FF
- Global analysis: first extraction of Transversity
- Reference Frame
- BaBar Detector
- Analysis:
- Analysis Strategy
- Event and Tracks selection
- Asymmetry dilution
- Systematic study
- Preliminary Results
- Plans and Conclusions

Fragmentation Functions (FFs)

Fragmentation: hadron production from quark, antiquark or gluon.
FFs: probability that a parton fragments into an hadron carrying away a fraction of parton's momentum.

Unpolarized FF

- Most of data are obtained at LEP energies
- At lower CMS energies and higher x, very little data are avalaible
- BaBar and Belle \rightarrow results on FF for heavy quarks
- BaBar \rightarrow light-quark analysis ongoing
- Many attempts to extract FF from $\mathrm{e}^{+} \mathrm{e}^{-}$data: KKP, AKK, Kretzer...
\rightarrow Large difference between different fits
(Nucl.Phys. B725,181(2006), Nucl.Phys. B803,42(2008),
Phys.Rev. D75,094009 (2007) , Phys.Rev. D62,054001(2000),
Nucl.Phys. B582,514(2000));

Spin-dependent FFs

- Fundamental test for any approach to solve QCD at soft scales
- Test schemes of universality and factorization between $\mathrm{e}^{+} \mathrm{e}^{-}$, DIS, and p-p collision
- Test evolution as fundamental QCD prediction
- Connection between microscopic (quark spin) and macroscopic observables (azimuthal distribution of the hadrons produced)
- Final spin analyzer for the study of the
transversity parton distribution functions

Collins FF

\Rightarrow Spin dependent FF
\Rightarrow Chiral-odd function
\Rightarrow The Collins FF (CFF) is related to the probability that a transversely polarized quark will fragment into a spinless hadron:

$$
\begin{gathered}
\text { Unpolarized FF } \\
D_{h q \uparrow}=D_{1}^{q}\left(z, P_{h \perp}^{2}\right)+H_{1}^{\perp q}\left(z, P_{h \perp}^{2}\right) \frac{\hat{k} \times \vec{P}_{h \perp} \cdot \vec{S}_{q}}{z M_{h}}
\end{gathered}
$$

First experimental evidence of non zero Collins FF for pions came from SIDIS experiments:
HERMES (PRL94,012002(2005)), COMPASS (PRL94,202002(2005))
\Rightarrow B-Factories $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ direct evidence of non-zero Collins FF: DELPHI (Nucl.Phys.B79,554-556 (1999)), BELLE (PRL96,232002(2006), PRD78,032011(2008))

SIDIS: Semi Inclusive Deep Inelastic Scattering

Global analysis (HERMES \& COMPASS \& BELLE): simultaneous determination of Transversity $\left(\mathrm{h}_{1}\right)$ and Collins functions (CFF).

Anselmino et al., PRD75,05032(2007)
Nucl.Phys. Proc. Suppl. 191,(2009)

Collins effect in di-hadron correlation

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow h_{1} h_{2} X$

- quark spin direction unknown: measurements of Collins FFs in one jet is not possible;
- Correlation between two hemispheres: cosine modulation of the observed di-hadron yield.

Detect pion pairs with same or opposite charge \leftrightarrows sensitivity to favored and disfavored FFs

- favored fragmentation processes describe the fragmentation of a quark of flavor q into an hadron with a valence quark of the same flavor: i.e.: $\left(u \rightarrow \pi^{+}\right)$and ($d \rightarrow \pi^{-}$)
- disfavored for ($\mathrm{d} \rightarrow \pi^{+}$) and ($u \rightarrow \pi^{-}$).

UnLike sign pion pairs:
Like sign pion pairs:

$$
\pi^{\mp} \pi^{ \pm}(\mathrm{UL}):(\text { fav } \mathbf{x} \text { fav })+(\text { dis } \mathbf{x} \text { dis })
$$

```
\mp@subsup{\pi}{}{\pm}\mp@subsup{\pi}{}{\pm}(L): (fav }\mathbf{x dis)+(dis x fav)
```

Different combination of $N^{U L}=\frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi^{ \pm} \pi^{\mp} X\right)}{d \Omega d z_{1} d z_{2}} \approx\left(1+\cos ^{2} \theta\right) \sum_{q} e_{q}^{2}\left(D_{1}^{f a v} \bar{D}_{2}^{f a v}+D_{1}^{d i s} \bar{D}_{2}^{d i s}\right)$
fav and dis FFs in the cross section:

$$
N^{L}=\frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi^{ \pm} \pi^{ \pm} X\right)}{d \Omega d z_{1} d z_{2}} \approx\left(1+\cos ^{2} \theta\right) \sum_{q} e_{q}^{2}\left(D_{1}^{f a v} \bar{D}_{2}^{d i s}+D_{1}^{d i s} \bar{D}_{2}^{f a v}\right)
$$

Reference Frames (RF)

$\phi_{1}+\phi_{2}$ or Thrust RF

θ : angle between the $\mathrm{e}^{+} \mathrm{e}^{-}$axis and the thrust axis; $\phi_{1,2}$: azimuthal angles between $P_{h 1(h 2)}$ and the scattering plane.

All quantities in e+e- center of mass

$$
\begin{aligned}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d \Omega d z_{1} d z_{2} d \phi_{1} d \phi_{2}} & =\sum_{q, \bar{q}} \frac{3 \alpha^{2}}{Q^{2}} \frac{e_{q}^{2}}{4} z_{1}^{2} z_{2}^{2}\left[\left(1+\cos ^{2} \theta\right) D_{1}^{q,(0)}\left(z_{1}\right) \bar{D}_{1}^{q,(0)}\left(z_{2}\right)+\right. \\
& \left.+\sin ^{2}(\theta) \cos \left(\phi_{1}+\phi_{2}\right) H_{1}^{\perp,(1), q}\left(z_{1}\right) \bar{H}_{1}^{\perp,(1), q}\left(z_{2}\right)\right]
\end{aligned}
$$

Thrust Axis

Daniel Boer
Nucl. Phys. B 806,23-67(2009)
[arXiv:0804.2408v2]

$$
2 \phi_{0} \text { or } P_{h 2} R F
$$

θ_{2} : angle between the $\mathrm{e}^{+} \mathrm{e}^{-}$axis and $\mathrm{P}_{\mathrm{h} 2}$;
ϕ_{0} : angle between the plane spanned by $P_{h 2}$ and the $\mathrm{e}^{+} \mathrm{e}^{-}$axis, and the direction of $P_{h 1}$ perpendicular to $P_{h 2}$.
All quantities in $\mathrm{e}+\mathrm{e}-$ center of mass

$$
\begin{aligned}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d \Omega d z_{1} d z_{2} d^{2} \vec{q}_{T}} & =\frac{3 \alpha^{2}}{Q^{2}} z_{1}^{2} z_{2}^{2}\left\{A(y) \mathcal{F}\left[D_{1} \bar{D}_{2}\right]+\right. \\
& \left.+B(y) \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\left(2 \hat{h} \cdot \vec{k}_{T} \hat{h} \cdot \vec{p}_{T}-\vec{k}_{T} \cdot \vec{p}_{T}\right) \frac{H_{1}^{\perp} \bar{H}_{2}^{\perp}}{M_{1} M_{2}}\right]\right\}
\end{aligned}
$$

PEP-II and BaBar Detector @ SLAC

-SVT: 5 Layers \rightarrow Precise measurement of the decay vertex; $\sigma_{\mathrm{z}}=65 \mu \mathrm{~m}, \sigma_{\mathrm{d}}=55 \mu \mathrm{~m}$;

- DCH resolution: $\sigma_{\mathrm{pT}} / \mathbf{p}_{\mathrm{T}}=(\mathbf{0 . 1 3} \pm \mathbf{0 . 0 1}) \%{ }^{2} \mathbf{p}_{\mathrm{T}}+(\mathbf{0 . 4 5} \pm \mathbf{0 . 0 3}) \%$ - PID:
- Low momenta: dE/dx in the DCH and SVT;
- DIRC: above $700 \mathrm{MeV} / \mathrm{c}$; $>3 \sigma \mathrm{~K} / \pi$ separation up to $4 \mathrm{GeV} / \mathrm{c}$.
- Asymmetric-energy collider
- High Energy Ring (HER): 9.0 GeV e-
- Low Energy Ring (LER): 3.1 GeV e ${ }^{+}$
- $\beta \gamma \approx 0.56$

Electromagnetic Calorimeter 6580 CsI(Tl) crystals

$$
\frac{\sigma_{E}}{E}=\frac{(2.32 \pm 0.30) \%}{\sqrt[4]{E(\mathrm{GeV})}} \oplus(1.85 \pm 0.12) \% \quad \mathbf{9} \mathbf{G e V}
$$

DIRC
144 bars of fused silica

Silicon Vertex
Tracker

PEP-II Luminosity

- $\sqrt{ } \mathrm{s}=10.58 \mathrm{GeV}: \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}}$
- Off-resonance: $\sqrt{ } \mathrm{s}=10.54 \mathrm{GeV}$

$e^{+} e^{-} \rightarrow$	Cross section (nb)
$u \bar{u}$	1.39
$d \bar{d}$	0.35
$s \bar{s}$	0.35
$c \bar{c}$	1.30
$b \bar{b}$	1.05
$\tau^{+} \tau^{-}$	0.94

Measurement of Collins Asymmetries at BaBar

Collins FFs @ BaBar

Analysis Strategy

The analysis for the preliminary results is based on the full off-peak sample ($45 \mathbf{f b}^{-1}$) .

$$
e^{+} e^{-} \rightarrow \pi \pi X
$$

1. Event and tracks selection
2. Assumption: thrust axis in $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{CM}$ as the $\overline{\mathrm{q}} \overline{\mathrm{q}}$ direction
3. Selection of pions in opposite jets according to the thrust axis
4. Measurement of the azimuthal angles $\left(\phi_{\mathrm{i}}\right)$ in the two reference frames (see slide 7)
5. Fit to the azimuthal distributions
6. Estimate and subtraction of tau and charm contributions
7. Study of systematic effects

Events and Tracks Selection

1) Preselection:
\rightarrow Selection of multi-hadron events
\rightarrow Visible energy: $\mathbf{E}_{\text {vis }}>\mathbf{7} \mathbf{G e V}$
2) Tracks in the DIRC acceptance for the PID
3) Selection of two-jet topology events requiring thrust $>\mathbf{0 . 8}$

4) $\mu^{ \pm}$and $e^{ \pm}$veto, and Tight pion ID required
5) Events in the $\tau^{+} \tau^{-}$region removed
6) Analysis restricted to pion fractional energies $\mathbf{z}=\mathbf{2} \mathbf{E}_{\mathbf{h}} / \sqrt{ } \mathbf{s}>\mathbf{0 . 2}$

- for small z values the mass correction terms become important

7) $\mathbf{Q}_{\mathbf{t}}<3.5 \mathrm{GeV}$, where Q_{t} is the transverse momentum of the virtual photon in the pions CMS

Raw Asymmetries

Accessing the Collins Asymmetries: measurement of cosine modulation of hadron pairs $(\mathrm{N}(\phi))$ on top of a flat distribution due to unpolarized part of the fragmentation function (normalized raw distribution):

$$
R_{\alpha}=\frac{N\left(\phi_{\alpha}\right)}{<N_{\alpha}>}=a+b \cdot \cos \left(\phi_{\alpha}\right)
$$

Information about the Collins asymmetry

In the MC sample, the polarized FF (Collins FF) are not implemented \rightarrow flat distribution at generator level

Reconstructed distribution affected by

 large detector acceptances effects
Double Ratio

Double Ratio (DR) of Un-Like sign over Like sign pion pairs:
Deliminate the acceptance effects and the first order radiative effects

- acceptances and radiative contributions do not depend on the charge combination of the pion pair;
- approximation holds for small asymmetries.

$$
\frac{R_{U L}}{R_{L}}=\frac{N^{U L}(\phi) /<N^{U L}(\phi)>}{N^{L}(\phi) /<N^{L}(\phi)>} \rightarrow P_{0}+\left(P_{1}\right) \cdot \overrightarrow{\cos (\phi)}
$$

Contain only the Collins effects and higher order radiative effects

MC: we measure a small deviation from zero ($\sim 0.2 \%$), and assign a systematic error for that

$$
\begin{array}{ll}
\text { Asymmetry values } & \text { RF12: }(2.39 \pm 0.07) \% \\
\text { before any correction } & \text { RF0: }(1.71 \pm 0.07) \%
\end{array}
$$

Measured Asymmetry vs z

The large amount of data ($\sim 10^{8}$ light quark events), allows the extraction of the asymmetries in bins of fractional energies (z) of selected pions. We choose the following 10 symmetric bin subdivision:

Asymmetry dilution due to Tau and Charm events

Measured asymmetries are diluted by the presence of background sources:

$$
A_{\text {measured }}=\left(1-\sum_{i} D_{i}\right) \cdot A_{u d s}+\sum_{i} D_{i} \cdot A_{i, b k g} \quad \begin{aligned}
& \mathrm{D}_{\mathrm{i}}=\text { fraction of pion pairs due to } \\
& \text { the } i \text {-th background process. }
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow \tau^{+} \tau^{-} \quad \text { CONTRIBUTION }
$$

- Using τ-MC, and the τ-enhanced data sample in the region removed, we find $\mathbf{A}_{\tau}=\mathbf{0}$;
- The cut reduces tau contamination to $\mathbf{D}_{\boldsymbol{\tau}} \approx \mathbf{3 \%}$ (it ranges from about 1 to 18% in the individual z-bins);
- we correct the data as follows:

$$
A_{u d s}=\frac{A_{\text {measured }}}{1-D_{\tau}}
$$

$e^{+} e^{-} \rightarrow c \bar{c}$ CONTRIBUTION

In this case, both fragmentation processes and weak decays can introduce azimuthal asymmetries.
Use a D^{*}-enhanced data sample for estimating the charm-induced asymmetry.

$$
\begin{gathered}
A_{\text {measured }}=(1-D) \cdot A_{\text {uds }}+D+A_{\text {charm }} \\
A_{D^{*}}=d \cdot A_{\text {charm }}+(1-d) \cdot A_{\text {uds }}
\end{gathered}
$$

D ~ 25\%
d ~ charm fraction in the D^{*}-enhanced data sample
Solving the system equations, we extract Auds and Acharm

Measured asymmetry vs thrust

We studied also the behaviour of the asymmetry as a function of the thrust value.

This behavior is essentially due to two effects:

1) More spherical events, higher multiplicity
2) Gluon emission

Study of systematic effects

The measurements are affected by a number of systematic effects

- If needed, we correct the asymmetries and assign a systematic error
- In other cases, we only check that no unexpected features are present
- When possible we evaluate the correction independently for each z-bin

Dilution due to the thrust reconstruction

The experimental method assume the thrust axis as $\mathbf{q} \overline{\mathbf{q}}$ direction:

- This is only a rough approximation

- RF12: the azimuthal angles are calculated with respect to the thrust axis \rightarrow large smearing
- RF0: the azimuthal angle is calculated with respect to the momentum of the second hadron \rightarrow small smearing due to PID and tracking resolution

The MC generator does not include the Collins $\mathrm{FF} \rightarrow$ we introduce a modulation to the generated angular distribution by applying a different weight to every selected pion pair: $w^{\mathrm{UL}, \mathrm{L}}=1 \pm \mathrm{a}^{*} \cos \left(\phi_{\text {gen12,0 }}\right)$

	DR12		DR0	
We found:	Average A_{12}	Correction factor	Average A_{0}	Correction factor
$(59.2 \pm 2.2) \%$	1.68 ± 0.06	$(99.8 \pm 3.2) \%$	1.002 ± 0.03	

Preliminary Resultis

Results: Asymmetry vs $\left(\mathbf{z}_{\mathbf{1}}, \mathbf{z}_{\mathbf{2}}\right)$ bins

8

- In the later Belle publication (Phys.Rev.D78,032011(2008)), they estimated a new correction factor of 1.66 ± 0.04 due to the thrust approximation as the real $\mathbf{q} \overline{\mathbf{q}}$ axis. Therefore, the Belle off-peak results for the RF12 frame, are corrected by a factor 1.66/1.21
- Results of the full Belle statistic analysis have been average in symmetric ($\mathrm{z}_{1}, \mathrm{z}_{2}$) bins
- Agreement with Belle data in both reference frame

Results: Asymmetry vs "theta ${ }_{\text {th }}$ " and "theta ${ }_{2}$ "

$$
\frac{R_{12}^{U L}}{R_{12}^{L}} \propto 1+\frac{\sin ^{2} \theta_{t h}}{1+\cos ^{2} \theta_{t h}} \cos \left(\phi_{1}+\phi_{2}\right)\left\{G^{U L}-G^{L}\right\} \quad \frac{R_{0}^{U L}}{R_{0}^{L}} \propto 1+\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \cos \left(2 \phi_{0}\right)\left\{G^{U L}-G^{L}\right\}
$$

- Two different polar angles appear in the DR expressions for the two reference frames:

- Intersect consistent with zero, as expected
 constant parameter
- Similar result found by Belle

Conclusions and Plans

-We present a preliminary measurement of the Collins Asymmetry in the sample of $45 \mathrm{fb}^{-1}$ of data collected at 10.54 GeV by the BaBar Detector

- Measurement performed in two different reference frames
- Clear evidence of non-zero asymmetries in light-quark fragmentation
- Measured asymmetries increase with fractional energies of the pions, in agreement with expectations
- A roughly linear dependence of the asymmetries on thrust value is seen
- The expected behaviour of the asymmetries as a function of $\sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)$ seems not to hold for A_{0}, when the polar angle of the second hadron is considered
- There is an overall good agreement with Belle data
-These preliminary results are the starting point for a more complete study on the full BaBar data sample

Thanks for your attention

Backup slides

EVENTS AND TRACKS SELECTION

$$
W_{\text {hemi }}=\left(P_{1}{ }^{*} \hat{n}\right)\left(P_{2}{ }^{*} \hat{n}\right)<0
$$

Whemi near to zero: higher probalility that one of the two tracks has been assigned to the wrong hemisphere ${ }^{\circledR}$ we can suppress this effect selecting pairs with $\mathrm{Qt}<3.5 \mathrm{GeV}$, where Qt is the transverse momentum of the virtual photon in the pions CMS

Study of systematic effects

The measurements are affected by a number of systematics effects

- If needed, we correct the asymmetries and assign a systematic error
- In other cases, we only check that no unexpected features are present
- When possible we evaluate the correction indipendently for each z-bin
- Dilution because of thrust reconstruction
- Test of the DR methods on Montecarlo
- Particle identification
- Fit bin size
- Higher harmonic contributions
- $\pi^{+} \pi^{+} / \pi^{-} \pi^{-}$Double Ratio test
- Single Spin Asymmetries (SSA)
- Subtraction and Double Ratio (DR) methods
- Beam polarization studies
- Toy MC studies

Double Ratio

Double Ratio (DR) of Un-Like sign over Like sign pion pairs:
Oeliminate the acceptance effects and the first order radiative effects

- acceptances and radiative contributions do not depend on the charge combination of the pion pair
- approximation hold for small asymmetries

$$
\begin{gathered}
\frac{R_{12}^{U L}}{R_{12}^{L}}=\frac{1+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\phi_{1}+\phi_{2}\right) G^{U L}}{1+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\phi_{1}+\phi_{2}\right) G^{L}} \simeq 1+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\phi_{1}+\phi_{2}\right)\left\{G^{U L}-G^{L}\right\} \\
G^{U L}=\frac{\sum_{q} e_{q}^{2} \mathcal{F}\left(H_{1}^{f a v} H_{2}^{f a v}+H_{1}^{d i s} H_{2}^{d i s}\right)}{\sum_{q} e_{q}^{2}\left(D_{1}^{f a v} D_{2}^{f a v}+D_{1}^{d i s} D_{2}^{d i s}\right)} \quad G^{L}=\frac{\sum_{q} e_{q}^{2} \mathcal{F}\left(H_{1}^{f a v} H_{2}^{d i s}+H_{1}^{d i s} H_{2}^{f a v}\right)}{\sum_{q} e_{q}^{2}\left(D_{1}^{f a v} D_{2}^{d i s}+D_{1}^{d i s} D_{2}^{f a v}\right)} \\
\frac{R_{U L}}{R_{L}}=\frac{N^{U L}(\phi) /<N^{U L}(\phi)>}{N^{L}(\phi) /<N^{L}(\phi)>} \rightarrow P_{0}+P_{1} \cos (\phi)
\end{gathered}
$$

Contain only the Collins effects and higher order radiative effects

Asymmetry dilution due to Tau and Charm events (i)

Measured asymmetries are diluted by the presence of background sources:

$$
A_{\text {measured }}=\left(1-\sum_{i} D_{i}\right) \cdot A_{u d s}+\sum_{i} D_{i} \cdot A_{i, b k g} \quad \begin{aligned}
& \mathrm{D}_{\mathrm{i}}=\text { fraction of pion pairs due to } \\
& \text { the } i \text {-th background process. }
\end{aligned}
$$

$e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$CONTRIBUTION

- We correct the data as follow:

$$
A_{u d s}=\frac{A_{\text {measured }}}{1-D_{\tau}}
$$

75% of $\tau \tau$ events

Asymmetry dilution due to Tau and Charm events (II)

$$
e^{+} e^{-} \rightarrow c \bar{c} \text { CONTRIBUTION }
$$

In this case, both fragmentation processes and weak decays can introduce azimuthal asymmetries.
Use a D^{*}-enhanced data sample for estimating the the charm-induced asymmetry. ($D_{\text {charm }} \sim 25 \%$)

- generic c̄ MC
- data sample
- D*-enhanced MC sample
- D*-enhanced data sample
relative contribution
$\mathrm{D}=\mathbf{N}_{\mathrm{cc}} / \mathbf{N}_{\mathrm{all}}$
relative contribution
$\mathbf{d}=\mathbf{N}_{\text {ccD }}{ }^{*} / \mathbf{N}_{\mathbf{D}^{*}}$

$$
\left\{\begin{array}{c}
A_{\text {measured }}=(1-D) \cdot A_{\text {uds }}+D \cdot A_{\text {charm }} \\
A_{D^{*}}=d \cdot A_{\text {charm }}+(1-d) A_{\text {uds }}
\end{array}\right.
$$

Solving the system equations, we extract $A_{\text {uds }}$ and $\mathbf{A}_{\text {charm }}$

Summary of main Systematic Errors

	RF12						RF0			
z-bins	Bins	PID	Weight	MC	total	Bins	PID	Weight	MC	total
1	0.0002	0.0015	0.0013	0.0022	0.30%	0.0004	0.0041	0.0007	0.0029	0.51%
2	0.0005	0.0007	0.0014	0.0020	0.26%	0.0007	0.0035	0.0009	0.0029	0.47%
3	0.0009	0.0013	0.0020	0.0041	0.48%	0.0019	0.0024	0.0012	0.0029	0.44%
4	0.0008	0.0014	0.0018	0.0023	0.34%	0.0009	0.0010	0.0017	0.0029	0.36%
5	0.0021	0.0021	0.0022	0.0030	0.48%	0.0000	0.0016	0.0006	0.0050	0.53%
6	0.0011	0.0029	0.0028	0.0060	0.73%	0.0015	0.0024	0.0014	0.0050	0.59%
7	0.0027	0.0011	0.0031	0.0020	0.47%	0.0005	0.0005	0.0019	0.0029	0.35%
8	0.0008	0.0011	0.0042	0.0054	0.70%	0.0032	0.0027	0.0022	0.0102	1.12%
9	0.0069	0.0035	0.0040	0.0020	0.89%	0.0021	0.0032	0.0020	0.0078	0.89%
10	0.0223	0.0041	0.0060	0.0028	2.36%	0.0186	0.0096	0.0041	0.0029	2.15%
all	0.0007	0.0022	0.0019	0.0020	0.36%	0.0006	0.0023	0.0010	0.0029	0.39%

All systematic errors are added in quadrature;

