TRANSVERSE ANGULAR MOMENTUM: NEW RESULTS

Elliot Leader

Imperial College London

1

Two topics:

1) Brief comment on comparison of longitudinal and transverse sum rules

2) New relation between transverse angular momentum and GPDs.

Derivation of a sum rule

Two steps:

Derivation of a sum rule

Two steps:

1) Derive expression for

 $\langle \text{Nucleon}; P, S \mid \boldsymbol{J} \mid \text{Nucleon}; P, S \rangle$

Derivation of a sum rule

Two steps:

1) Derive expression for

 $\langle \text{Nucleon}; P, S | \boldsymbol{J} | \text{Nucleon}; P, S \rangle$

2) Express |Nucleon; $P, S \rangle$ as a Fock expansion in terms of the constituents of the nucleon.

The super-quick approach to (1)

We know what a ROTATION does to a state, so we know matrix elements of R.

But, e.g.

$$R_z(\beta) = e^{-i\beta J_z}$$

The super-quick approach to (1)

We know what a ROTATION does to a state, so we know matrix elements of R.

But, e.g.

$$R_z(\beta) = e^{-i\beta J_z}$$

so that we get the matrix element of J_z using

$$J_z = i \frac{d}{d\beta} R_z(\beta) \Big|_{\beta=0}$$

The traditional approach to (1)

Typically the angular momentum density involves the energy-momentum tensor density $t^{\mu\nu}(x)$ in the form e.g.

$$J_z = J^3 = \int dV [xt^{02}(x) - yt^{01}(x)]$$

The traditional approach to (1)

Typically the angular momentum density involves the energy-momentum tensor density $t^{\mu\nu}(x)$ in the form e.g.

$$J_z = J^3 = \int dV [xt^{02}(x) - yt^{01}(x)]$$

The factors x, y cause trouble. End up with things like

$$\int dV x \langle P, S | t^{02}(0) | P, S \rangle$$

The matrix element is independent of x so we are faced with $\int dVx = \infty$? or = 0? Totally ambiguous!

The problem is an old one: In ordinary QM plane wave states give infinities.

The problem is an old one: In ordinary QM plane wave states give infinities.

The solution is an old one: Build a wave packet, a superposition of physical plane wave states..... but.... it is a loooooooong, complicated calculation.

Both approaches give same result

 $\langle \text{Nucleon}; P, S | J | \text{Nucleon}; P, S \rangle = \frac{1}{2}s + \text{delta function}$ where s is the REST FRAME SPIN VECTOR. Both approaches give same result

 $\langle \text{Nucleon}; P, S | J | \text{Nucleon}; P, S \rangle = \frac{1}{2}s + \text{delta function}$ where *s* is the REST FRAME SPIN VECTOR.

KEY POINT: This result is INDEPENDENT OF WHETHER *s* IS LONGITUDINAL OR TRANSVERSE.

Comparison of longitudinal and transverse sum rules

First ever use of the transverse sum rule

First moment of *u* and *d* transversity from Anselmino et al arXiv:0812.4366assumes sea quark transversity zero

$$J_{Tr} = \frac{1}{2} = 0.16^{+0.07}_{-0.14} + L_{Tr}$$

Compare with

$$J_z = \frac{1}{2} = 0.42 \pm 0.19 + L_z$$
 for $\Delta G > 0$

or

 $J_z = -0.21 \pm 0.46 + L_z$ for changing sign ΔG

New relation between transverse angular momentum and GPDs

Although painful, the traditional approach is fruitful, because it connects matrix elements of J with matrix elements of the energy momentum tensor $t^{\mu\nu}$.

The most general form of the matrix elements of $t^{\mu\nu}$, say for quarks, is (similar for gluons)

$$\langle P', S' | t_q^{\mu\nu}(\mathbf{0}) | P, S \rangle = [\bar{u}'\gamma^{\mu}u\,\bar{P}^{\nu} + (\mu\leftrightarrow\nu)]\mathbb{D}_q(\Delta^2)/2 - \left[\frac{i\Delta\rho}{2M}\bar{u}'\sigma^{\mu\rho}u\,\bar{P}^{\nu} + (\mu\leftrightarrow\nu)\right][\mathbb{D}_q(\Delta^2)/2 - \mathbb{S}_q(\Delta^2)] + \frac{\bar{u}'u}{2M}\left[\frac{1}{2}[\mathbb{G}_q(\Delta^2) - \mathbb{H}_q(\Delta^2)](\Delta^{\mu}\Delta^{\nu} - \Delta^2 g^{\mu\nu}) + M^2\mathbb{R}_q(\Delta^2)g^{\mu\nu}\right] \text{ where }$$

$$u \equiv u(P,S)$$
 $u' \equiv u(P',S')$ $\Delta = P' - P.$

13

Comparing with the definition of GPDs one finds

$$\int_{-1}^{1} dx x H_q(x,0,0) = \mathbb{D}_q = \text{momentum fraction carried by quarks}$$

Comparing with the definition of GPDs one finds

$$\int_{-1}^{1} dx x H_q(x,0,0) = \mathbb{D}_q = \text{momentum fraction carried by quarks}$$

Therefore

$$\int_{-1}^{1} dx x [H_q(x,0,0) + H_G(x,0,0)] = \mathbb{D}_q + \mathbb{D}_G = 1$$

Also, comparing with GPDs,

$$\int_{-1}^{1} dx x E_q(x,0,0) = (2 \mathbb{S}_q - \mathbb{D}_q)$$

From these

$$\int_{-1}^{1} dx x H_q(x,0,0) + \int_{-1}^{1} dx x E_q(x,0,0) = 2 \mathbb{S}_q.$$

From these

$$\int_{-1}^{1} dx x H_q(x,0,0) + \int_{-1}^{1} dx x E_q(x,0,0) = 2 \mathbb{S}_q.$$

Longitudinal polarized nucleon

BLT showed that the expectation value

 $\langle \langle J_z(quark) \rangle \rangle = \mathbb{S}_q$

From these

$$\int_{-1}^{1} dx x H_q(x,0,0) + \int_{-1}^{1} dx x E_q(x,0,0) = 2 \mathbb{S}_q.$$

Longitudinal polarized nucleon

BLT showed that the expectation value

 $\langle \langle J_z(quark) \rangle \rangle = \mathbb{S}_q$

so that

$$\int_{-1}^{1} dx x [H_q(x,0,0) + E_q(x,0,0)] = 2 \langle \langle J_z(quark) \rangle \rangle$$

which is the relation first derived by Ji.

Ji likes to define

$$L_z(\text{quark}) = \frac{1}{2} \int_{-1}^{1} dx x [H_q(x, 0, 0) + E_q(x, 0, 0)] - \frac{1}{2} \Delta \Sigma_{\bar{MS}}$$

Ji likes to define

$$L_z(\text{quark}) = \frac{1}{2} \int_{-1}^{1} dx x [H_q(x, 0, 0) + E_q(x, 0, 0)] - \frac{1}{2} \Delta \Sigma_{\bar{MS}}$$

Compare with model calculation? Or with Lattice calculation?

Ji likes to define

$$L_z(\text{quark}) = \frac{1}{2} \int_{-1}^{1} dx x [H_q(x, 0, 0) + E_q(x, 0, 0)] - \frac{1}{2} \Delta \Sigma_{\bar{MS}}$$

Compare with model calculation? Or with Lattice calculation?

Or compare

$$\frac{1}{2} \int_{-1}^{1} dx x [H_q(x,0,0) + E_q(x,0,0)]$$

directly with calculation of $\langle \langle J_z(quark) \rangle \rangle$.

Ji likes to define

$$L_z(\text{quark}) = \frac{1}{2} \int_{-1}^{1} dx x [H_q(x, 0, 0) + E_q(x, 0, 0)] - \frac{1}{2} \Delta \Sigma_{\bar{MS}}$$

Compare with model calculation? Or with Lattice calculation?

Or compare

$$\frac{1}{2} \int_{-1}^{1} dx x [H_q(x,0,0) + E_q(x,0,0)]$$

directly with calculation of $\langle \langle J_z(quark) \rangle \rangle$.

Or test

$$\int_{-1}^{1} dx x [E_q(x,0,0) + E_G(x,0,0)] = 0$$

Transversely polarized nucleon

From BLT

$$\langle \langle J_x(\operatorname{quark} \rangle \rangle = \frac{1}{2M} [(M - P_0) \mathbb{D}_q + 2P_0 \mathbb{S}_q]$$

= $\frac{1}{2M} [(P_0 (2 \mathbb{S}_q - \mathbb{D}_q) + M \mathbb{D}_q]$

Transversely polarized nucleon

From BLT

$$\langle \langle J_x(\operatorname{quark} \rangle \rangle = \frac{1}{2M} [(M - P_0) \mathbb{D}_q + 2P_0 \mathbb{S}_q]$$

= $\frac{1}{2M} [(P_0 (2 \mathbb{S}_q - \mathbb{D}_q) + M \mathbb{D}_q]$

Thus, new result:

$$\langle\langle J_x(\operatorname{quark}\rangle\rangle = \frac{1}{2M} \left[P_0 \int_{-1}^1 dx x E_q(x,0,0) + M \int_{-1}^1 dx x H_q(x,0,0) \right]$$

25

$$\langle\langle J_x(\operatorname{quark}\rangle\rangle = \frac{1}{2M} \left[P_0 \int_{-1}^1 dx x E_q(x,0,0) + M \int_{-1}^1 dx x H_q(x,0,0) \right]$$

Dependence on P_0 ? Expected or unexpected?

$$\langle\langle J_x(\operatorname{quark}\rangle\rangle = \frac{1}{2M} \left[P_0 \int_{-1}^1 dx x E_q(x,0,0) + M \int_{-1}^1 dx x H_q(x,0,0) \right]$$

Dependence on P_0 ? Expected or unexpected?

Expected: supported by a purely classical picture where the orbital angular momentum is generated by the quark rotating about the CM of the nucleon.

$$\langle\langle J_x(\operatorname{quark}\rangle\rangle = \frac{1}{2M} \left[P_0 \int_{-1}^1 dx x E_q(x,0,0) + M \int_{-1}^1 dx x H_q(x,0,0) \right]$$

Dependence on P_0 ? Expected or unexpected?

Expected: supported by a purely classical picture where the orbital angular momentum is generated by the quark rotating about the CM of the nucleon.

Of course

$$\langle\langle J_x(\mathsf{quark}\,
angle
angle+\langle\langle J_x(\mathsf{gluon}\,
angle
angle$$

is independent of P_0 since

$$\int_{-1}^{1} dx x [E_q(x,0,0) + E_G(x,0,0)] = 0$$

Calculate $\langle \langle J_x(quark) \rangle$ on the Lattice ?

Calculate $\langle \langle J_x(quark) \rangle$ on the Lattice ?

Define

$$\langle \langle L_x(quark) \rangle \rangle = \langle \langle J_x(quark) \rangle \rangle - \frac{1}{2} \int dx \, \Delta_T q(x)$$

and calculate $\langle \langle L_x(quark) \rangle \rangle$ in model or on Lattice?

Summary

1) Have given new relations between GPD structure functions and Transverse angular momentum of quarks and gluons.

2) Would be very interesting to try to test these.