TRANSVERSE ANGULAR MOMENTUM:

 NEW RESULTSElliot Leader

Imperial College London

Two topics:

1) Brief comment on comparison of longitudinal and transverse sum rules
2) New relation between transverse angular momentum and GPDs.

Derivation of a sum rule

Two steps:

Derivation of a sum rule

Two steps:

1) Derive expression for
\langle Nucleon; $P, S| \boldsymbol{J} \mid$ Nucleon; $P, S\rangle$

Derivation of a sum rule

Two steps:

1) Derive expression for
\langle Nucleon; $P, S| \boldsymbol{J} \mid$ Nucleon; $P, S\rangle$
2) Express |Nucleon; $P, S\rangle$ as a Fock expansion in terms of the constituents of the nucleon.

The super-quick approach to (1)

We know what a ROTATION does to a state, so we know matrix elements of R.

But, e.g.

$$
R_{z}(\beta)=e^{-i \beta \boldsymbol{J}_{z}}
$$

The super-quick approach to (1)

We know what a ROTATION does to a state, so we know matrix elements of R.

But, e.g.

$$
R_{z}(\beta)=e^{-i \beta J_{z}}
$$

so that we get the matrix element of J_{z} using

$$
\boldsymbol{J}_{z}=\left.i \frac{d}{d \beta} R_{z}(\beta)\right|_{\beta=0}
$$

The traditional approach to (1)

Typically the angular momentum density involves the energy-momentum tensor density $t^{\mu \nu}(x)$ in the form e.g.

$$
J_{z}=J^{3}=\int d V\left[x t^{02}(x)-y t^{01}(x)\right]
$$

The traditional approach to (1)

Typically the angular momentum density involves the energy-momentum tensor density $t^{\mu \nu}(x)$ in the form e.g.

$$
\boldsymbol{J}_{z}=J^{3}=\int d V\left[x t^{02}(x)-y t^{01}(x)\right]
$$

The factors x, y cause trouble. End up with things like

$$
\int d V x\langle P, S| t^{02}(0)|P, S\rangle
$$

The matrix element is independent of x so we are faced with $\int d V x=\infty$? or $=0$? Totally ambiguous!

The problem is an old one: In ordinary QM plane wave states give infinities.

The problem is an old one: In ordinary QM plane wave states give infinities.

The solution is an old one: Build a wave packet, a superposition of physical plane wave states...... but.... it is a looooooooong, complicated calculation.

Both approaches give same result

\langle Nucleon; $P, S| \boldsymbol{J} \mid$ Nucleon $; P, S\rangle=\frac{1}{2} s+$ delta function where s is the REST FRAME SPIN VECTOR.

Both approaches give same result
\langle Nucleon; $P, S| \boldsymbol{J} \mid$ Nucleon; $P, S\rangle=\frac{1}{2} s+$ delta function where s is the REST FRAME SPIN VECTOR.

KEY POINT: This result is INDEPENDENT OF WHETHER s IS LONGITUDINAL OR TRANSVERSE.

Comparison of longitudinal and transverse sum rules

First ever use of the transverse sum rule

First moment of u and d transversity from Anselmino et al arXiv:0812.4366assumes sea quark transversity zero

$$
J_{T r}=\frac{1}{2}=0.16_{-0.14}^{+0.07}+L_{T r}
$$

Compare with

$$
J_{z}=\frac{1}{2}=0.42 \pm 0.19+L_{z} \quad \text { for } \Delta G>0
$$

or

$$
J_{z}=-0.21 \pm 0.46+L_{z} \quad \text { for changing } \operatorname{sign} \Delta G
$$

New relation between transverse angular momentum and GPDs

Although painful, the traditional approach is fruitful, because it connects matrix elements of J with matrix elements of the energy momentum tensor $t^{\mu \nu}$.

The most general form of the matrix elements of $t^{\mu \nu}$, say for quarks, is (similar for gluons)
$\left\langle P^{\prime}, S^{\prime}\right| t_{q}^{\mu \nu}(0)|P, S\rangle=\left[\bar{u}^{\prime} \gamma^{\mu} u \bar{P}^{\nu}+(\mu \leftrightarrow \nu)\right] \mathbb{D}_{q}\left(\Delta^{2}\right) / 2$
$-\left[\frac{i \Delta \rho}{2 M} \bar{u}^{\prime} \sigma^{\mu \rho} u \bar{P}^{\nu}+(\mu \leftrightarrow \nu)\right]\left[\mathbb{D}_{q}\left(\Delta^{2}\right) / 2-\mathbb{S}_{q}\left(\Delta^{2}\right)\right]$
$+\frac{\bar{u}^{\prime} u}{2 M}\left[\frac{1}{2}\left[\mathbb{G}_{q}\left(\Delta^{2}\right)-\mathbb{H}_{q}\left(\Delta^{2}\right)\right]\left(\Delta^{\mu} \Delta^{\nu}-\Delta^{2} g^{\mu \nu}\right)+M^{2} \mathbb{R}_{q}\left(\Delta^{2}\right) g^{\mu \nu}\right]$ where

$$
u \equiv u(P, S) \quad u^{\prime} \equiv u\left(P^{\prime}, S^{\prime}\right) \quad \Delta=P^{\prime}-P
$$

Comparing with the definition of GPDs one finds
$\int_{-1}^{1} d x x H_{q}(x, 0,0)=\mathbb{D}_{q}=$ momentum fraction carried by quarks

Comparing with the definition of GPDs one finds
$\int_{-1}^{1} d x x H_{q}(x, 0,0)=\mathbb{D}_{q}=$ momentum fraction carried by quarks

Therefore

$$
\int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+H_{G}(x, 0,0)\right]=\mathbb{D}_{q}+\mathbb{D}_{G}=1
$$

Also, comparing with GPDs,

$$
\int_{-1}^{1} d x x E_{q}(x, 0,0)=\left(2 \mathbb{S}_{q}-\mathbb{D}_{q}\right)
$$

From these

$$
\int_{-1}^{1} d x x H_{q}(x, 0,0)+\int_{-1}^{1} d x x E_{q}(x, 0,0)=2 \mathbb{S}_{q}
$$

From these

$$
\int_{-1}^{1} d x x H_{q}(x, 0,0)+\int_{-1}^{1} d x x E_{q}(x, 0,0)=2 \mathbb{S}_{q}
$$

Longitudinal polarized nucleon

BLT showed that the expectation value

$$
\left\langle\left\langle J_{z}(\text { quark })\right\rangle\right\rangle=\mathbb{S}_{q}
$$

From these

$$
\int_{-1}^{1} d x x H_{q}(x, 0,0)+\int_{-1}^{1} d x x E_{q}(x, 0,0)=2 \mathbb{S}_{q}
$$

Longitudinal polarized nucleon

BLT showed that the expectation value

$$
\left\langle\left\langle J_{z}(\text { quark })\right\rangle\right\rangle=\mathbb{S}_{q}
$$

so that

$$
\int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]=2\left\langle\left\langle J_{z}(\text { quark })\right\rangle\right\rangle
$$

which is the relation first derived by Ji .

How to test these results?

Ji likes to define
$L_{z}($ quark $)=\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]-\frac{1}{2} \Delta \Sigma_{M S}$

How to test these results?

Ji likes to define
$L_{z}($ quark $)=\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]-\frac{1}{2} \Delta \Sigma_{M S}$
Compare with model calculation? Or with Lattice calculation?

How to test these results?
Ji likes to define
$L_{z}($ quark $)=\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]-\frac{1}{2} \Delta \Sigma_{\overline{M S}}$
Compare with model calculation? Or with Lattice calculation?

Or compare

$$
\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]
$$

directly with calculation of $\left\langle\left\langle J_{z}\right.\right.$ (quark) $\left.\rangle\right\rangle$.

How to test these results?
Ji likes to define
$L_{z}($ quark $)=\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]-\frac{1}{2} \Delta \Sigma_{M S}$
Compare with model calculation? Or with Lattice calculation?

Or compare

$$
\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]
$$

directly with calculation of $\left\langle\left\langle J_{z}\right.\right.$ (quark) $\left.\rangle\right\rangle$.
Or test

$$
\int_{-1}^{1} d x x\left[E_{q}(x, 0,0)+E_{G}(x, 0,0)\right]=0
$$

Transversely polarized nucleon

From BLT

$$
\begin{aligned}
\left\langle\left\langle J_{x}(\text { quark }\rangle\right\rangle\right. & =\frac{1}{2 M}\left[\left(M-P_{0}\right) \mathbb{D}_{q}+2 P_{0} \mathbb{S}_{q}\right] \\
& =\frac{1}{2 M}\left[\left(P_{0}\left(2 \mathbb{S}_{q}-\mathbb{D}_{q}\right)+M \mathbb{D}_{q}\right]\right.
\end{aligned}
$$

Transversely polarized nucleon

From BLT

$$
\begin{aligned}
\left\langle\left\langle J_{x}(\text { quark }\rangle\right\rangle\right. & =\frac{1}{2 M}\left[\left(M-P_{0}\right) \mathbb{D}_{q}+2 P_{0} \mathbb{S}_{q}\right] \\
& =\frac{1}{2 M}\left[\left(P_{0}\left(2 \mathbb{S}_{q}-\mathbb{D}_{q}\right)+M \mathbb{D}_{q}\right]\right.
\end{aligned}
$$

Thus, new result:

$$
\left\langle\left\langle J_{x}(\text { quark }\rangle\right\rangle=\frac{1}{2 M}\left[P_{0} \int_{-1}^{1} d x x E_{q}(x, 0,0)+M \int_{-1}^{1} d x x H_{q}(x, 0,0)\right]\right.
$$

$$
\left\langle\left\langle J_{x}(\text { quark }\rangle\right\rangle=\frac{1}{2 M}\left[P_{0} \int_{-1}^{1} d x x E_{q}(x, 0,0)+M \int_{-1}^{1} d x x H_{q}(x, 0,0)\right]\right.
$$

Dependence on P_{0} ? Expected or unexpected?
$\left\langle\left\langle J_{x}(\right.\right.$ quark $\left.\rangle\right\rangle=\frac{1}{2 M}\left[P_{0} \int_{-1}^{1} d x x E_{q}(x, 0,0)+M \int_{-1}^{1} d x x H_{q}(x, 0,0)\right]$
Dependence on P_{0} ? Expected or unexpected?
Expected: supported by a purely classical picture where the orbital angular momentum is generated by the quark rotating about the CM of the nucleon.
$\left\langle\left\langle J_{x}(\right.\right.$ quark $\left.\rangle\right\rangle=\frac{1}{2 M}\left[P_{0} \int_{-1}^{1} d x x E_{q}(x, 0,0)+M \int_{-1}^{1} d x x H_{q}(x, 0,0)\right]$
Dependence on P_{0} ? Expected or unexpected?
Expected: supported by a purely classical picture where the orbital angular momentum is generated by the quark rotating about the CM of the nucleon.

Of course

$$
\left\langle\left\langle J_{x} \text { (quark }\right\rangle\right\rangle+\left\langle\left\langle J_{x} \text { (gluon }\right\rangle\right\rangle
$$

is independent of P_{0} since

$$
\int_{-1}^{1} d x x\left[E_{q}(x, 0,0)+E_{G}(x, 0,0)\right]=0
$$

How to test these results?

Calculate $\left\langle\left\langle J_{x}\right.\right.$ (quark $\left.\rangle\right\rangle$ on the Lattice ?

How to test these results?

Calculate $\left\langle\left\langle J_{x}\right.\right.$ (quark $\left.\rangle\right\rangle$ on the Lattice ?

Define

$$
\left\langle\left\langle L_{x}(\text { quark })\right\rangle\right\rangle=\left\langle\left\langle J_{x}(\text { quark })\right\rangle\right\rangle-\frac{1}{2} \int d x \Delta_{T} q(x)
$$

and calculate $\left\langle\left\langle L_{x}\right.\right.$ (quark) $\left.\rangle\right\rangle$ in model or on Lattice?

Summary

1) Have given new relations between GPD structure functions and Transverse angular momentum of quarks and gluons.
2) Would be very interesting to try to test these.
