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Two topics:

1) Brief comment on comparison of longitudinal

and transverse sum rules

2) New relation between transverse angular mo-

mentum and GPDs.
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Derivation of a sum rule

Two steps:

1) Derive expression for

⟨Nucleon;P, S |J |Nucleon;P, S ⟩

2) Express |Nucleon;P, S ⟩ as a Fock expansion in terms

of the constituents of the nucleon.
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The super-quick approach to (1)

We know what a ROTATION does to a state, so we

know matrix elements of R.

But, e.g.

Rz(β) = e−iβJz

so that we get the matrix element of Jz using

Ji = i
d

dβ
R̂i(β)

∣∣∣
β=0
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The traditional approach to (1)

Typically the angular momentum density involves the

energy-momentum tensor density tµν(x) in the form e.g.

Jz = J3 =
∫

dV [xt02(x)− yt01(x)]

The factors x, y cause trouble. End up with things like

∫
dV x⟨P, S|t02(0)|P, S⟩

The matrix element is independent of x so we are faced

with
∫
dV x = ∞ ? or = 0 ? Totally ambiguous!
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The problem is an old one: In ordinary QM plane wave

states give infinities.

The solution is an old one: Build a wave packet, a

superposition of physical plane wave states...... but....

it is a long, complicated calculation.

9



The problem is an old one: In ordinary QM plane wave

states give infinities.

The solution is an old one: Build a wave packet, a

superposition of physical plane wave states...... but....

it is a looooooooong, complicated calculation.

10



Both approaches give same result

⟨Nucleon;P, S |J |Nucleon;P, S ⟩ =
1

2
s+delta function

where s is the REST FRAME SPIN VECTOR.

KEY POINT: This result is INDEPENDENT of whether

s is longitudinal or transverse.
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Comparison of longitudinal and transverse sum

rules

First ever use of the transverse sum rule

First moment of u and d transversity from Anselmino

et al arXiv:0812.4366 ....assumes sea quark transversity

zero

JTr =
1

2
= 0.16+0.07

−0.14 + LTr

Compare with

Jz =
1

2
= 0.42± 0.19+ Lz for ∆G > 0

or

Jz = −0.21± 0.46+ Lz for changing sign∆G

1



New relation between transverse angular

momentum and GPDs

1



Although painful, the traditional approach is fruitful,

because it connects matrix elements of J with matrix

elements of the energy momentum tensor tµν.

The most general form of the matrix elements of tµν,

say for quarks, is ( similar for gluons)

⟨P ′, S′ | tµνq (0) |P, S ⟩ = [ū′γµu P̄ ν + (µ ↔ ν)]Dq(∆
2)/2

−
[
i∆ρ

2M
ū′σµρu P̄ ν + (µ ↔ ν)

]
[Dq(∆

2)/2− Sq(∆2)]

+
ū′u

2M

[
1

2
[Gq(∆

2)− Hq(∆
2)](∆µ∆ν −∆2gµν) +M2Rq(∆

2)gµν
]

where

u ≡ u(P, S) u′ ≡ u(P ′, S′) ∆ = P ′ − P.
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Comparing with the definition of GPDs one finds

∫ 1

−1
dxxHq(x,0,0) = Dq = momentum fraction carried by quarks

Therefore∫ 1

−1
dxx[Hq(x,0,0) +HG(x,0,0)] = Dq + DG = 1
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Also, comparing with GPDs,∫ 1

−1
dxxEq(x,0,0) = (2 Sq − Dq)
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From these∫ 1

−1
dxxHq(x,0,0) +

∫ 1

−1
dxxEq(x,0,0) = 2 Sq.

Longitudinal polarized nucleon

BLT showed that

⟨⟨| Jz(quark) |⟩⟩ = Sq

so that∫ 1

−1
dxx[H(x,0,0) + E(x,0,0)] = 2 Jz(quark)

which is the relation first derived by Ji.
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How to test these results?

Ji likes to define

Lz(quark) =
1

2

∫ 1

−1
dxx[Hq(x,0,0)+Eq(x,0,0)]−

1

2
∆ΣM̄S

Compare with model calculation? Or with Lattice cal-

culation?

Or compare

1

2

∫ 1

−1
dxx[Hq(x,0,0) + Eq(x,0,0)]

directly with calculation of ⟨⟨ Jz(quark)⟩⟩. Or test∫ 1

−1
dxxEq(x,0,0) + EG(x,0,0) = 0
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Transversely polarized nucleon

From BLT

⟨⟨ Jx(quark ⟩⟩ =
1

2M
[(M − P0)Dq +2P0 Sq]

=
1

2M
[(P0 (2 Sq − Dq) +M Dq]

Thus, new result:

⟨⟨ Jx(quark ⟩⟩ =
1

2M

[
P0

∫ 1

−1
dxxEq(x,0,0) +M

∫ 1

−1
dxxHq(x,0,0)

]
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⟨⟨ Jx(quark ⟩⟩ =
1

2M

[
P0

∫ 1

−1
dxxEq(x,0,0) +M

∫ 1

−1
dxxHq(x,0,0)

]

Dependence on P0 ? Expected or unexpected?

Expected: supported by a purely classical picture where
the orbital angular momentum is generated by the quark
rotating about the CM of the nucleon.

Of course

⟨⟨ Jx(quark ⟩⟩+ ⟨⟨ Jx(gluon ⟩⟩
is independent of P0 since∫ 1

−1
dxx[Eq(x,0,0) + EG(x,0,0)] = 0
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How to test these results?

Calculate ⟨⟨ Jx(quark ⟩⟩ on the Lattice ?

Define

⟨⟨Lx(quark) ⟩⟩ = ⟨⟨ Jx(quark) ⟩⟩ −
1

2

∫
dx∆T q(x)

and calculate ⟨⟨Lx(quark) ⟩⟩ in model or on Lattice?
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Summary

1) Have given new relations between GPD structure

functions and Transverse angular momentum of quarks

and gluons.

2) Would be very interesting to try to test these.
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