## Round table on global fits



Transversity 2011 - August 29- September 2, Veli Lošinj, Croatia Mauro Anselmino, Werner Vogelsang open issues on global fits and related problems ....

Fit of SIDIS data and TMD extraction:  $x-k_{\perp}$ factorization, gaussian dependence, etc... Flavour separation, role of sea quarks....

TMD evolution: importance for predictions of Sivers asymmetry in D-Y processes

SSAs in pp, quark gluon correlation T\_q and the Sivers function: sign mismatch

the contribution of strange quarks to longitudinal spin

## TMDs from fits of SIDIS data





LEPTON SCATTERING PLANE

$$\mathrm{d}\sigma^{\ell p \to \ell h X} = \sum_{q} f_q(x, \mathbf{k}_\perp; Q^2) \otimes \mathrm{d}\hat{\sigma}^{\ell q \to \ell q}(y, \mathbf{k}_\perp; Q^2) \otimes D_q^h(z, \mathbf{p}_\perp; Q^2)$$

 $oldsymbol{p}_\perp \simeq oldsymbol{P}_T - z_h \, oldsymbol{k}_\perp$ 

Sivers and Collins effects well established Sivers and Collins functions extracted with most simple assumptions x-k factorization of TMDs? functional form of TMDs (nodes)? Gaussian k distribution of TMDs?  $\langle k_{\perp}^2 \rangle(x,Q^2) = \langle p_{\perp}^2 \rangle(z,Q^2)$ x, z dependence? flavour dependence? energy dependence?  $k_{\perp}$  dependence of  $\Delta q$  vs. q? role of higher twists

simple Sivers functions for u and d quarks are sufficient to fit the available SIDIS data large and very small x dependence not constrained by data

talk by S. Melis



new and previous extraction of u and d Sivers functions

S. Melis and A. Prokudin, preliminary results

Anselmino et al. Eur. Phys. J. A39,89 (2009) azimuthal dependences from target fragmentation region (fracture functions, talk by A. Kotzinian)



### azimuthal modulations in TFR

(M.A, V. Barone, A. Kotzinian, PL B699 (2011) 108)

# cross section for lepto-production of an unpolarized or spinless hadron in the TFR

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}\zeta\,\mathrm{d}^{2}\boldsymbol{P}_{h\perp}\,\mathrm{d}\phi_{S}} = \frac{2\alpha_{\mathrm{em}}^{2}}{Q^{2}y} \left\{ \left(1 - y + \frac{y^{2}}{2}\right) \times \sum_{a} e_{a}^{2} \left[M(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2}) - |\boldsymbol{S}_{\perp}| \frac{|\boldsymbol{P}_{h\perp}|}{m_{h}} M_{T}^{h}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2}) \sin(\phi_{h} - \phi_{S})\right] + \lambda_{l} y \left(1 - \frac{y}{2}\right) \sum_{a} e_{a}^{2} \left[S_{\parallel} \Delta M_{L}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2}) + |\boldsymbol{S}_{\perp}| \frac{|\boldsymbol{P}_{h\perp}|}{m_{h}} \Delta M_{T}^{h}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2}) \cos(\phi_{h} - \phi_{S})\right] \right\}.$$

possible Sivers-like azimuthal dependence from target fragmentation region Transversity & Collins function phenomenology in SIDIS and e+e-

Same simple parametrization as for Sivers Collins effect has been clearly observed by four independent experiments: HERMES, COMPASS, Belle, BaBar

Collins function expected to be universal

QCD evolution important, as Belle data are at a much higher energy than SIDIS data

Two different (?) sets of Belle data,  $A_{12}$  and  $A_{0,}$  some inconsistencies.  $P_{\perp}$  dependence?

# great improvement in study of QCD evolution (talk by Aybat)

strong Sivers evolution, might affect D-Y predictions



# $A_{\rm N} \text{ in } \mathbf{p}^{\uparrow} \mathbf{p} \rightarrow \pi \text{ X}, \text{ the big challenge}$ $A_{N} \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\uparrow}}{d\sigma^{\uparrow} + d\sigma^{\uparrow}}$







M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... (Field-Feynman in unpolarized case) TMD factorization at work .... U. D'Alesio, F. Murgia

E704 data







possible project: compute T<sub>a</sub> using SIDIS extracted Sivers functions



fits of E704 and STAR data Kouvaris, Qiu, Vogelsang, Yuan

## sign mismatch (Kang, Qiu, Vogelsang, Yuan)

compare

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

as extracted from fitting  $A_N$  data, with that obtained by inserting in the the above relation the SIDIS extracted Sivers functions

## similar magnitude, but opposite sign!

the same mismatch does not occurr adopting TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative

$$E_{h}\frac{d\Delta\sigma(s_{\perp})}{d^{3}P_{h}} = \frac{\alpha_{s}^{2}}{S}\sum_{a,b,c}\int\frac{dz}{z^{2}}D_{c\to h}(z)\int\frac{dx'}{x'}f_{b/B}(x')\int\frac{dx}{x}\sqrt{4\pi\alpha_{s}}\left(\frac{\epsilon^{P_{h\perp}s_{\perp}n\bar{n}}}{z\hat{u}}\right)$$
$$\times \left[T_{a,F}(x,x) - x\frac{d}{dx}T_{a,F}(x,x)\right]H_{ab\to c}(\hat{s},\hat{t},\hat{u})\delta\left(\hat{s}+\hat{t}+\hat{u}\right),$$



## disentangle the role of Collins effect in $A_N$ $p^{\uparrow}p \rightarrow \pi$ , jet + X

look at pion inside the jet Yuan; D'Alesio, Murgia, Pisano

X<sub>cm</sub>

 $\mathbf{Y}_{cm}$ 

 $2d\sigma(\phi_{S_A}, \phi_{\pi}^H) \sim d\sigma_0 + d\Delta\sigma_0 \sin\phi_{S_A} + d\sigma_1 \cos\phi_{\pi}^H$  $+ d\Delta\sigma_1^- \sin(\phi_{S_A} - \phi_{\pi}^H) + d\Delta\sigma_1^+ \sin(\phi_{S_A} + \phi_{\pi}^H)$  $+ d\sigma_2 \cos 2\phi_{\pi}^H + d\Delta\sigma_2^- \sin(\phi_{S_A} - 2\phi_{\pi}^H)$  $+ d\Delta\sigma_2^+ \sin(\phi_{S_A} + 2\phi_{\pi}^H).$ 

$$A_N^{W(\phi_{S_A},\phi_{\pi}^H)}(\boldsymbol{p}_{j}, z, k_{\perp \pi}) \equiv 2\langle W(\phi_{S_A}, \phi_{\pi}^H) \rangle(\boldsymbol{p}_{j}, z, k_{\perp \pi}) =$$

Ζ,

$$2\frac{\int d\phi_{S_A} d\phi_{\pi}^H W(\phi_{S_A}, \phi_{\pi}^H) [d\sigma(\phi_{S_A}, \phi_{\pi}^H) - d\sigma(\phi_{S_A} + \pi, \phi_{\pi}^H)]}{\int d\phi_{S_A} d\phi_{\pi}^H [d\sigma(\phi_{S_A}, \phi_{\pi}^H) + d\sigma(\phi_{S_A} + \pi, \phi_{\pi}^H)]}$$



## TMDs in Drell-Yan processes



factorization holds, two scales,  $M^2$ , and  $q_T \ll M$ 

$$\mathrm{d}\sigma^{D-Y} = \sum_{a} f_q(x_1, \mathbf{k}_{\perp 1}; Q^2) \otimes f_{\bar{q}}(x_2, \mathbf{k}_{\perp 2}; Q^2) \,\mathrm{d}\hat{\sigma}^{q\bar{q} \rightarrow \ell^+ \ell^-}$$
  
direct product of TMDs, no fragmentation process  
 $[f_{1T}^{q\perp}]_{\mathrm{SIDIS}} = -[f_{1T}^{q\perp}]_{\mathrm{DY}}$ 

Sivers effect in D-Y processes

By looking at the  $d^4 \sigma / d^4 q$  cross section one can single out the Sivers effect in D-Y processes

$$d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q/p^{\uparrow}}(x_{1}, \boldsymbol{k}_{\perp}) \otimes f_{\bar{q}/p}(x_{2}) \otimes d\hat{\sigma}$$
$$q = u, \bar{u}, d, \bar{d}, s, \bar{s}$$

$$A_N^{\sin(\phi_S - \phi_\gamma)} \equiv \frac{2\int_0^{2\pi} \mathrm{d}\phi_\gamma \left[\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}\right] \sin(\phi_S - \phi_\gamma)}{\int_0^{2\pi} \mathrm{d}\phi_\gamma \left[\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}\right]}$$



### Predictions for $A_N$

#### Sivers functions as extracted from SIDIS data, with opposite sign



M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078

## global analysis

more and more data available more precise determination of TMDs is becoming possible study role of TMDs in different processes is there a basic QCD mechanism to generate SSAs? TMDs and the partonic momentum structure of nucleons, orbital motion .... TMDs, GPDs and the full 3-dimensional momentum and space distribution of partons

#### Stratmann at DIS 2011





DSS

Perhaps T<sub>F</sub>(x,x) has node in x?

### joint fit to SIDIS and pp data:

Kang, shown at RHIC Users meeting 2011



Boer

Kang, Prokudin



$$\epsilon^{P_{h\perp}s_{\perp}n\bar{n}} = -|P_{h\perp}||s_{\perp}| < 0$$