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open issues on global fits and related problems ....

TMD evolution: importance for predictions of Sivers 
asymmetry in D-Y processes

Fit of SIDIS data and TMD extraction: x-k⊥ 
factorization, gaussian dependence, etc...
Flavour separation, role of sea quarks....

SSAs in pp, quark gluon correlation T_q and the 
Sivers function: sign mismatch

the contribution of strange quarks to 
longitudinal spin  

.......
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S‖ ε sin(2φh)F sin 2φh

UL + S‖ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)

UT

+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S‖ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT # ΛQCD $ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)

LT ∼
∑

q

e2
q gq

1T ⊗ Dq
1 (10)

FLL ∼
∑

q

e2
q gq

1L ⊗ Dq
1 F sin(φ−φS)

UT ∼
∑

q

e2
q f⊥q

1T ⊗ Dq
1 (11)

F cos(2φ)
UU ∼

∑

q

e2
q h⊥q

1 ⊗ H⊥q
1 F sin(φ+φS)

UT ∼
∑

q

e2
q hq

1T ⊗ H⊥q
1 (12)
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dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

p⊥ ! P T − zh k⊥

d6σ ≡ d6σ!p↑→!hX

dxB dQ2 dzh d2P T dφS

TMDs from fits of SIDIS data



x-k⊥factorization of TMDs? 
functional form of TMDs (nodes)?
Gaussian k⊥ distribution of TMDs?

 
x, z dependence? 

flavour dependence?
energy dependence?

k⊥ dependence of ∆q vs. q?
role of higher twists

.....................

〈k2
⊥〉(x, Q2) 〈p2

⊥〉(z, Q2)

Sivers and Collins effects well established
Sivers and Collins functions extracted with 

most simple assumptions 



! !

simple Sivers functions for u and d quarks are sufficient 
to fit the available SIDIS data 

large and very small x dependence not constrained by data 

talk by S. Melis 

new and previous  
extraction of       
u and d Sivers 

functions 

Anselmino et al.
Eur. Phys. J. A39,89 (2009)

S. Melis and A. Prokudin, 
preliminary results



azimuthal dependences from 
target fragmentation region

(fracture functions, talk by A. Kotzinian)  
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Figure 1: The handbag diagram for the SIDIS hadronic tensor in the current fragmentation region
(left) and in the target fragmentation region (right).

Current fragmentation region (CFR): P+
h ∼ Q ,

Target fragmentation region (TFR): P+
h ∼ 0 .

Equivalently, defining in the c.m. γ∗N frame the hadron momentum as Ph = (Eh, P h⊥, Ph‖), the
usual Feynman variable xF = 2Ph‖/W identifies the CFR and the TFR, respectively, by xF > 0 and
xF < 0. A detailed discussion of the operational criteria to separate the two regions can be found in
Ref. [3].

In the CFR the SIDIS cross section integrated over the transverse momentum of the final hadron
can be factorized at lowest order as

dσCFR

dxB dy dzh

=
∑

a

e2
a fa(xB)

dσ̂

dy
Da(zh) , (3)

where fa(xB) is the distribution function of parton a, Da(zh) is the fragmentation function of parton
a into hadron h and dσ̂/dy is the elementary cross section of lepton-quark scattering. The parton-
model graph describing this process is the handbag diagram shown in Fig. 1 (left). The partonic
meaning of the two variables is the following: xB is the fraction of the longitudinal momentum of
the nucleon carried by the quark, zh is the fraction of the longitudinal momentum of the struck
quark carried by the final hadron (we have dropped all scale dependences in the distribution and
fragmentation functions).

In the TFR the factorization in xB and zh of Eq. (3) does not hold any longer, as it is not possible
to separate the quark emission from the hadron production. Moreover, zh is not the proper variable
to describe this region. The reason is easily understood if we write zh in the c.m. γ∗N frame (we
neglect as usual hadron masses):

zh =
Eh

E(1 − xB)

(1 − cos θh)

2
, (4)

where θh is the angle between P h and P . The zh variable does not discriminate between two different

3

dσTFR =
∑

a

Ma(xB , ζ,P 2
h⊥)⊗ dσ̂(y)

fracture functions

ζ ! Eh

E
! (1− xB)|xF |

CFR

TFR

P h⊥



possible Sivers-like azimuthal dependence 
from target fragmentation region 

azimuthal modulations in TFR   
(M.A, V. Barone, A. Kotzinian, PL B699 (2011) 108 ) 

∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂⊥ +
mN

mh

k⊥ · P h⊥

k2
⊥

∆T M̂h

}

= −(1 − xB) h⊥
1 (xB, k2

⊥) (46)

∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂⊥⊥
T +

m2
N

m2
h

2(k⊥ · P h⊥)2 − k2
⊥P 2

h⊥

(k2
⊥)2

∆T M̂hh
T

}

(47)

= (1 − xB) h⊥
1T (xB, k2

⊥)
∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂T +
k2
⊥

2m2
N

∆T M̂⊥⊥
T +

P 2
h⊥

2m2
h

∆T M̂hh
T

}

= (1 − xB) h1(xB, k2
⊥) . (48)

These are the momentum sum rules satisfied by the unintegrated fracture functions. They might be
useful for constraining and guiding simple models of fracture functions.

5 Cross sections and angular distributions

Contracting the hadronic tensor, Eqs. (23, 24), with the symmetric and antisymmetric part of the
leptonic tensor, Eqs. (13, 14), and using Eq. (25), yields

Lµν
(s)W

(s)
µν =

8Q2

y2

(

1 − y +
y2

2

)

ζ
∑

a

e2
a

∫

d2k⊥ M[γ−] (49)

Lµν
(a)W

(a)
µν = λl

8Q2

y2
y

(

1 −
y

2

)

ζ
∑

a

e2
a

∫

d2k⊥M[γ−γ5] . (50)

We focus on three processes:

1. lepto-production of a spinless hadron, l + N → l′ + h + X;

2. lepto-production of a spinless hadron plus a quark jet, l + N → l′ + h + jet + X;

3. lepto-production of a polarized hadron, l + N → l′ + h↑ + X (integrated over all transverse
momenta).

5.1 Lepto-production of a spinless hadron

Consider the lepto-production of an unpolarized or spinless hadron (for instance, pion lepto-production,
which is the most common process). Inserting Eqs. (30, 33) into Eqs. (49, 50), and using Eq. (10),
one finds that the cross section for this process is

dσTFR

dxB dy dζ d2P h⊥ dφS

=
2α2

em

Q2y

{(

1 − y +
y2

2

)

×
∑

a

e2
a

[

M(xB , ζ , P 2
h⊥) − |S⊥|

|P h⊥|
mh

Mh
T (xB, ζ , P 2

h⊥) sin(φh − φS)

]

+ λl y
(

1 −
y

2

)

∑

a

e2
a

[

S‖ ∆ML(xB, ζ , P 2
h⊥)

+ |S⊥|
|P h⊥|
mh

∆Mh
T (xB, ζ , P 2

h⊥) cos(φh − φS)

]}

. (51)

11

cross section for lepto-production of an unpolarized or 
spinless hadron in the TFR 



Transversity & Collins function phenomenology 
in SIDIS and e+e-

Same simple parametrization as for Sivers  
Collins effect has been clearly observed by 

four independent experiments:
HERMES, COMPASS, Belle, BaBar

Collins function expected to be universal

QCD evolution important, as Belle data are at 
a much higher energy than SIDIS data

Two different (?) sets of Belle data, A12 and A0, 
some inconsistencies. P⊥ dependence?



great improvement in study of QCD evolution 
(talk by Aybat) 
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strong Sivers evolution, might affect D-Y predictions 



John Koster talk 

AN in p↑p → π X, the big challenge

AN ≡ dσ↑ − dσ↑

dσ↑ + dσ↑



1. Generalization of collinear scheme 
(assuming factorization)

(Field-Feynman in unpolarized case)
M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a
b

c
X

X

σ̂

dσ↑ =
∑

a,b,c=q,q̄,g

fa/p↑(xa,k⊥a)⊗ fb/p(xb,k⊥b)⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

single spin effects in TMDs

Only one large scale, PT. Any role for TMDs? 
TMD factorization not proven  



U. D’Alesio, F. Murgia

E704 data STAR data

fit prediction
p p→ π XSivers effect 

TMD factorization at work ....



2. Higher-twist partonic correlations    
(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike ... ) 

d∆σ ∝
∑

a,b,c

Ta(k1, k2,S⊥)⊗ fb/B(xb)⊗Hab→c(k1, k2)⊗Dh/c(z)

twist-3 functions hard interaction, 
not a cross section

higher-twist partonic correlations - factorization OK  

(Ta ∝ f⊥(1)
1T )

possible project: compute Ta using SIDIS extracted Sivers 
functions  



fits of E704 and STAR data 
Kouvaris, Qiu, Vogelsang, Yuan



sign mismatch 
(Kang, Qiu, Vogelsang, Yuan) 
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2
M

f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π〈k2⊥〉
e−k2

⊥/〈k2
⊥〉 (13)

with a fitting parameter 〈k2⊥〉 for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

compare

as extracted from fitting AN data, with that obtained by 
inserting in the the above relation the SIDIS extracted 

Sivers functions

similar magnitude, but opposite sign!  
the same mismatch does not occurr adopting 

TMD factorization; the reason is that the hard 
scattering part in higher-twist factorization is 

negative  
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where M0 and M1 are fitted parameters.
Since for both parameterizations the k⊥-dependence is assumed to be decoupled from the x-dependence, we can

derive the x-dependence of the associated twist-3 quark-gluon correlation Tq,F (x, x) analytically, using the relation in
Eq. (10). By substituting the parameterization of the Sivers function in Eq. (12) into the right-hand-side of Eq. (10),
and using the fitting parameters extracted in Refs. [10] and [11], we obtain the following two parameterizations for
the correlation function Tq,F (x, x):

gTq,F (x, x)|old Sivers = 0.40f q
1 (x)Nq(x)|old, (16)

gTq,F (x, x)|new Sivers = 0.33f q
1 (x)Nq(x)|new. (17)

From the existing data, the best constrained Sivers functions are those of u and d quarks. Using the fitted functions
Nq(x)|old and Nq(x)|new from Refs. [10] and [11], respectively, we plot the drived quark-gluon correlation functions
x gTu,F (x, x) (left) and x gTd,F (x, x) (right) in Fig. 1. The dashed lines are for the quark-gluon correlation functions
obtained by using the new Sivers parameterization, while the dotted lines are for the old Sivers parameterization. We
find that for these “indirectly” obtained quark-gluon correlation functions, Tu,F (x, x) is positive, while Td,F (x, x) is
negative.
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FIG. 1: The quark-gluon correlation function gTq,F (x, x) as a function of momentum fraction x for u-quarks (left) and d-quarks
(right). The dashed (dotted) lines are gTq,F (x, x)|new Sivers (gTq,F (x, x)|old Sivers) obtained by taking the k⊥-moments of the
corresponding quark Sivers functions according to the right-hand-side of Eq. (10). The solid lines represent the correlation
functions extracted directly from data on SSAs for inclusive pion production in proton-proton collisions, p↑p → π + X [14],
after correcting for the sign convention (see text).

On the other hand, the ETQS function Tq,F (x, x) can be “directly” extracted from data on SSAs for inclusive
single hadron production in hadronic collisions, p↑p → h(Ph⊥, y)+X , assuming these asymmetries are predominantly
generated by the Sivers effect (or rather, its twist-3 counterpart). Such SSAs have been measured at sufficiently
large transverse momentum Ph⊥ by the E704 Collaboration at Fermilab [1], and the STAR, PHENIX, and BRAHMS
collaborations at RHIC [7]. Since they depend only on one large momentum scale Ph⊥, these SSAs are better studied
in the collinear factorization approach, where they may be generated by three possible mechanisms: (1) the twist-
3 quark-gluon and tri-gluon correlation functions of the polarized hadron, (2) the transversity distribution of the
polarized hadron combined with the twist-3 quark-gluon fragmentation functions to the observed hadron, and (3) the
transversity distribution combined with possible twist-3 unpolarized quark-gluon correlation functions [30]. It was
found that the third mechanism only makes a small contribution [31]. By assuming that the observed SSAs are mainly
generated by the ETQS functions Tq,F (x, x), a set of Tq,F (x, x) was extracted by a global fitting procedure [14]. In the
course of our investigations, we have revisited the sign convention adopted in [14], which was based on the earlier work
[14, 29, 30]. We have discovered that the convention was at odds with that chosen in the experimental studies. The
inconsistency can be traced to the value of the contracted Levi-Civita tensor appropriate for the spin asymmetry. We
provide a detailed discussion of this issue in the Appendix. Correcting the sign convention of [14, 29, 30] means that
one needs to change the signs of the Tq,F (x, x) functions extracted in [14]. We plot the resulting “directly” extracted
Tq,F (x, x) functions as solid lines in Fig. 1, along with the previous ones derived “indirectly” from the k⊥-moment of
the quark Sivers functions. Surprisingly, we find that the two sets of functions have opposite signs, both for up and
for down quarks.
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production in hadronic collisions, A↑(S⊥) +B → h(Ph⊥) +X :

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x
fa/A(x)H

U
ab→c(ŝ, t̂, û)δ

(

ŝ+ t̂+ û
)

, (A.1)

where fa/A(x) and fb/B(x
′) are the PDFs, Dc→h(z) are the FFs, andHU

ab→c are the partonic hard-scattering functions,

with ŝ, t̂, and û the Mandelstam variables at the parton level. Including only the contributions by the twist-3 quark-
gluon correlation functions, the spin-dependent cross section d∆σ(s⊥) ≡ [dσ(s⊥)− dσ(−s⊥)]/2 is given by

Eh
d∆σ(s⊥)

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x

√
4παs

(

εPh⊥s⊥nn̄

zû

)

×
[

Ta,F (x, x)− x
d

dx
Ta,F (x, x)

]

Hab→c(ŝ, t̂, û)δ
(

ŝ+ t̂+ û
)

, (A.2)

where the relevant hard-scattering functions Hab→c(ŝ, t̂, û) can be written as

Hab→c(ŝ, t̂, û) = HI
ab→c(ŝ, t̂, û) +HF

ab→c(ŝ, t̂, û)

(

1 +
û

t̂

)

, (A.3)

with HI
ab→c and HF

ab→c representing the contributions from initial- and final-state interactions, respectively. The
explicit forms of HU

ab→c, H
I
ab→c, and HF

ab→c are given in [14]. It is important to point out that the spin-dependent
cross section in Eq. (A.2) is calculated from an interference between two partonic amplitudes. It thus depends on
the sign convention for the coupling constant g; the form given in Eq. (A.2) is based on the convention in Eq. (4).
If one uses the other sign convention for the covariant derivative, there will be an extra minus sign appearing on the
right-hand side of Eq. (A.2), which would be compensated by an extra sign in Eq. (10).
The SSA, AN , is given by the ratio of spin-dependent and spin-averaged cross sections:

Eh
d∆σ(s⊥)

d3Ph

/

Eh
dσ

d3Ph
≡ AN sin(φs − φh), (A.4)

where φh and φs are the azimuthal angles of the hadron transverse momentum Ph⊥ and the spin vector s⊥, respectively.
The absolute sign of AN depends on the choice of frame and the coordinate system. In experiment the following
convention is used: positive values of AN correspond to a larger cross section for hadron production to the beam’s left
when the beam’s proton spin is vertically upward [30], as sketched in Fig. A.1. In the center-of-mass frame of A and
B, a convenient coordinate system (consistent with the experimental convention) is given by choosing the polarized
nucleon A to move along +z, the unpolarized B along −z, the spin vector s⊥ along y, and the produced hadron’s
transverse momentum Ph⊥ along the x-direction. In this frame, φh = 0, φs = π/2, and

εPh⊥s⊥nn̄ = −|Ph⊥||s⊥|. (A.5)

We note at this point that there is an overall sign error in [30] and consequently in [14], because in these papers the

h

TS
x

y

z

FIG. A.1: Illustration of the sign convention for AN : positive AN means that more hadrons are produced to the left of the
beam direction when the beam’s spin is vertically upward.

choice εPh⊥s⊥nn̄ > 0 was made (see Eq. (73) of [30], in contrast to Eq. (A.5) above).
In the forward direction, qg → qg is the dominant partonic scattering channel for inclusive single hadron production.

The corresponding hard-scattering functions are given by [14]

HU
qg→qg =

N2
c − 1

2N2
c

[

− ŝ

û
− û

ŝ

] [

1− 2N2
c

N2
c − 1

ŝû

t̂2

]

|t̂|%ŝ∼|û|−→
[

2ŝ2

t̂2

]

, (A.6)



disentangle the role of Collins effect in AN

p↑p → π, jet + X

which has been presented and discussed at length in a
series of papers (see, e.g., Refs. [39,42,43]). We will then
present the expression of the polarized cross section for the
process of interest, discussing in detail the different par-
tonic contributions to the process; we will finally list the
azimuthal asymmetries that can be measured and their
physical content. In Sec. III we will present phenomeno-
logical results for the azimuthal asymmetries discussed in
the kinematical configuration of the RHIC experiments, at
different c.m. energies and for central- and forward-
rapidity jet production. In particular, we will first present
results for the totally maximized effects, by taking all
TMD functions saturated to natural positivity bounds and
adding in sign all possible partonic contributions. This will
assess the potential phenomenological relevance of each
effect. We will then consider more carefully those effects
involving the Sivers and Boer-Mulders distributions and
the Collins fragmentation function, for which phenomeno-
logical parametrizations obtained by fitting combined data
for azimuthal asymmetries in SIDIS, Drell-Yan, and eþe"

collisions are available. Section IV contains our final re-
marks and conclusions.

II. FORMALISM

In this section we present and summarize the expres-
sions of the polarized cross section and of the measurable
azimuthal asymmetries for the process A"B ! jetþ
!þ X, where A and B are typically a pp or p !p pair.
Since most of the formalism has been already presented
in Refs. [39,42,43], we will shortly recall the main ingre-
dients of the approach, discussing more extensively only
relevant details specific to the process considered.

Within a generalized TMD parton model approach in-
cluding spin and intrinsic parton motion effects, and as-
suming factorization, the invariant differential cross
section for the process AðSAÞB ! jetþ !þ X can be
written, at leading twist in the soft TMD functions, as
follows:

Ejd"
AðSAÞB!jetþ!þX

d3pjdzd
2k?!

¼
X

a;b;c;d;f#g

Z dxadxb
16!2xaxbs

d2k?a

&d2k?b$
a=A;SA
#a#

0
a
f̂a=A;SAðxa;k?aÞ$b=B

#b#
0
b
f̂b=Bðxb;k?bÞ

&M̂#c;#d;#a;#b
M̂'

#0
c;#d;#

0
a;#

0
b
%ðŝþ t̂þ ûÞD̂!

#c;#
0
c
ðz;k?!Þ: (1)

In an LO pQCD approach the scattered parton c in the
hard elementary process ab ! cd is identified with
the observed fragmentation jet. Let us summarize briefly
the physical meaning of the terms in Eq. (1). Full details
and technical aspects can be found in Refs. [39,42,43].

We sum over all allowed partonic processes contributing
to the physical process observed. f#g stays for a sum over
all partonic helicities, # ¼ (1=2ð(1Þ for quark (gluon)
partons, respectively. xa;b and k?a;b are, respectively, the
initial parton light-cone momentum fractions and intrinsic

transverse momenta. Analogously, z and k?! are the light-
cone momentum fraction and the transverse momentum of
the observed pion inside the jet with respect to (w.r.t.) the
jet (parton c) direction of motion.

$a=A;SA
#a#

0
a
f̂a=A;SAðxa; k?aÞ contains all information on the

polarization state of the initial parton a, which depends in
turn on the (experimentally fixed) parent hadron A polar-
ization state and on the soft, nonperturbative dynamics
encoded in the eight leading-twist polarized and transverse
momentum–dependent parton distribution functions,

which will be discussed in the following. $a=A;SA
#a#

0
a

is the

helicity density matrix of parton a. Analogously, the po-
larization state of parton b inside the unpolarized hadron B

is encoded into $b=B
#b#

0
b
f̂b=Bðxb;k?bÞ.

The M̂#c;#d;#a;#b
’s are the pQCD leading-order helicity

scattering amplitudes for the hard partonic processab ! cd.
The D̂!

#c;#
0
c
ðz;k?!Þ’s are the soft leading-twist TMD

fragmentation functions describing the fragmentation pro-
cess of the scattered (polarized) parton c into the final
leading pion inside the jet.
As already said, we will consider as initial particles A, B,

two spin-1=2 hadrons (typically, two protons) with hadron
B unpolarized and hadron A in a pure transverse spin state
denoted by SA, with polarization (pseudo)vector PA.
Ej and pj are, respectively, the energy and three-

momentum of the observed jet.
Unless otherwise stated, we will always work in the AB

hadronic c.m. frame, with hadron A moving along the
þẐcm direction; we will define ðXZÞcm as the production
plane containing the colliding beams and the observed jet,
with ðpjÞXcm

> 0. We therefore have, neglecting all masses
(see also Fig. 1):

FIG. 1 (color online). Kinematical configuration for the pro-
cess AðSAÞB ! jetþ !þ X in the hadronic c.m. reference
frame.
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view, this would be a crucial test for the TMD approach,
independently of the open issues concerning factorization
and universality of the TMD distribution functions men-
tioned in the introduction.

Expressions similar to those shown above for the
qq ! qq and gg ! gg channels hold also for all partonic
contributions involved, with the appropriate combinations
of quark and gluon distribution and fragmentation func-
tions. In general, fewer terms are present both in the
denominator and the numerator of the asymmetry.
Moreover, as a general rule distribution and fragmentation
functions related to transversely (linearly) polarized quarks
(gluons) appear only in couples. This limits the number of
allowed terms.

According to these results, the single-transverse polar-
ized cross section for the process AðSAÞB ! jetþ !þ X
will have the following general structure:

2d"ð#SA ;#
H
! Þ $ d"0 þ d!"0 sin#SA þ d"1 cos#

H
!

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d"2 cos2#

H
! þ d!"%

2 sinð#SA % 2#H
! Þ

þ d!"þ
2 sinð#SA þ 2#H

! Þ: (28)

Equivalently, the numerator and denominator of the
asymmetry will have the following expression:

d"ð#SA ;#
H
! Þ % d"ð#SA þ !;#H

! Þ $ d!"0 sin#SA

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d!"%

2 sinð#SA % 2#H
! Þ þ d!"þ

2 sinð#SA þ 2#H
! Þ;
(29)

d"ð#SA ;#
H
! Þ þ d"ð#SA þ !;#H

! Þ
& 2d"unpð#H

! Þ $ d"0 þ d"1 cos#
H
! þ d"2 cos2#

H
! :

(30)

In terms of the polarized cross section, Eq. (28), we can
define average values of appropriate circular functions of
#SA and #H

! , in order to single out the different contribu-
tions of interest:

hWð#SA ;#
H
! Þiðpj; z; k?!Þ

¼
R
d#SAd#

H
!Wð#SA ;#

H
! Þd"ð#SA ;#

H
! ÞR

d#SAd#
H
!d"ð#SA ;#

H
! Þ

: (31)

Alternatively, for the single-spin asymmetry we can, in
close analogy with the case of semi-inclusive deeply in-
elastic scattering, define appropriate azimuthal moments,

A
Wð#SA

;#H
! Þ

N ðpj; z; k?!Þ & 2hWð#SA ;#
H
! Þiðpj; z; k?!Þ ¼ 2

R
d#SAd#

H
!Wð#SA ;#

H
! Þ½d"ð#SA ;#

H
! Þ % d"ð#SA þ !;#H

! Þ)R
d#SAd#

H
! ½d"ð#SA ;#

H
! Þ þ d"ð#SA þ !;#H

! Þ)
;

(32)

where Wð#SA ;#
H
! Þ is again some appropriate circular

function of #SA and #H
! . In practice, it will be any of the

circular functions appearing, e.g., in Eqs. (23) and (27) for
specific partonic channels, and for polarized cross sections
in general in Eq. (29) so that the coefficient related to the
corresponding azimuthal moment is singled out.

III. PHENOMENOLOGY

In this section wewill present and discuss some phenome-
nological implications of our approach for the unpolarized
and single-transverse polarized cases in kinematical configu-
rations accessible at RHIC by the STAR and PHENIX ex-
periments. We will consider both central ($j ¼ 0) and
forward ($j ¼ 3:3) (pseudo)rapidity configurations and dif-
ferent c.m. energies,

ffiffiffi
s

p ¼ 62:4, 200, 500 GeV, aiming at a
check of the potentiality of the approach in disentangling
among different quark- and gluon-originating effects. We
will also consider two very different situations concerning
the TMD distribution and fragmentation functions involved.

Wewill first consider, for!þ production only, a scenario
in which the effects of all TMD functions are overmaxi-
mized. By this we mean that all TMD functions are

maximized in size by imposing natural positivity bounds
(and the Soffer bound for transversity [47,48]); moreover,
the relative signs of all active partonic contributions are
chosen so that they sum up additively. This very extreme
scenario of course might imply the violation of other, more
stringent, bounds and sum rules; examples are the Burkardt
sum rule for the Sivers distribution [49], and the Schäfer-
Teryaev sum rule for the Collins function [50]. On the
other hand, it has the advantage of setting an upper bound
on the absolute value of any of the effects playing a
potential role in the azimuthal asymmetries. Therefore,
all effects that are negligible or even marginal in this
scenario may be directly discarded in subsequent refined
phenomenological analyses.
As a second step in our study we will consider, for both

neutral and charged pions, only the surviving effects, in-
volving TMD functions for which parametrizations are
available from independent fits to other spin and azimuthal
asymmetries data in SIDIS, DY, and eþe% processes. Even
if in our approach factorization and universality are not
guaranteed for the process under consideration,
we still believe that at the present stage this analysis can
be of phenomenological relevance. It can certainly help in
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view, this would be a crucial test for the TMD approach,
independently of the open issues concerning factorization
and universality of the TMD distribution functions men-
tioned in the introduction.

Expressions similar to those shown above for the
qq ! qq and gg ! gg channels hold also for all partonic
contributions involved, with the appropriate combinations
of quark and gluon distribution and fragmentation func-
tions. In general, fewer terms are present both in the
denominator and the numerator of the asymmetry.
Moreover, as a general rule distribution and fragmentation
functions related to transversely (linearly) polarized quarks
(gluons) appear only in couples. This limits the number of
allowed terms.

According to these results, the single-transverse polar-
ized cross section for the process AðSAÞB ! jetþ !þ X
will have the following general structure:

2d"ð#SA ;#
H
! Þ $ d"0 þ d!"0 sin#SA þ d"1 cos#

H
!

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d"2 cos2#

H
! þ d!"%

2 sinð#SA % 2#H
! Þ

þ d!"þ
2 sinð#SA þ 2#H

! Þ: (28)

Equivalently, the numerator and denominator of the
asymmetry will have the following expression:

d"ð#SA ;#
H
! Þ % d"ð#SA þ !;#H

! Þ $ d!"0 sin#SA

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d!"%

2 sinð#SA % 2#H
! Þ þ d!"þ

2 sinð#SA þ 2#H
! Þ;
(29)

d"ð#SA ;#
H
! Þ þ d"ð#SA þ !;#H

! Þ
& 2d"unpð#H

! Þ $ d"0 þ d"1 cos#
H
! þ d"2 cos2#

H
! :

(30)

In terms of the polarized cross section, Eq. (28), we can
define average values of appropriate circular functions of
#SA and #H

! , in order to single out the different contribu-
tions of interest:

hWð#SA ;#
H
! Þiðpj; z; k?!Þ

¼
R
d#SAd#

H
!Wð#SA ;#

H
! Þd"ð#SA ;#

H
! ÞR

d#SAd#
H
!d"ð#SA ;#

H
! Þ

: (31)

Alternatively, for the single-spin asymmetry we can, in
close analogy with the case of semi-inclusive deeply in-
elastic scattering, define appropriate azimuthal moments,

A
Wð#SA

;#H
! Þ

N ðpj; z; k?!Þ & 2hWð#SA ;#
H
! Þiðpj; z; k?!Þ ¼ 2

R
d#SAd#
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!Wð#SA ;#

H
! Þ½d"ð#SA ;#
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! Þ % d"ð#SA þ !;#H

! Þ)R
d#SAd#

H
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H
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! Þ)
;

(32)

where Wð#SA ;#
H
! Þ is again some appropriate circular

function of #SA and #H
! . In practice, it will be any of the

circular functions appearing, e.g., in Eqs. (23) and (27) for
specific partonic channels, and for polarized cross sections
in general in Eq. (29) so that the coefficient related to the
corresponding azimuthal moment is singled out.

III. PHENOMENOLOGY

In this section wewill present and discuss some phenome-
nological implications of our approach for the unpolarized
and single-transverse polarized cases in kinematical configu-
rations accessible at RHIC by the STAR and PHENIX ex-
periments. We will consider both central ($j ¼ 0) and
forward ($j ¼ 3:3) (pseudo)rapidity configurations and dif-
ferent c.m. energies,

ffiffiffi
s

p ¼ 62:4, 200, 500 GeV, aiming at a
check of the potentiality of the approach in disentangling
among different quark- and gluon-originating effects. We
will also consider two very different situations concerning
the TMD distribution and fragmentation functions involved.

Wewill first consider, for!þ production only, a scenario
in which the effects of all TMD functions are overmaxi-
mized. By this we mean that all TMD functions are

maximized in size by imposing natural positivity bounds
(and the Soffer bound for transversity [47,48]); moreover,
the relative signs of all active partonic contributions are
chosen so that they sum up additively. This very extreme
scenario of course might imply the violation of other, more
stringent, bounds and sum rules; examples are the Burkardt
sum rule for the Sivers distribution [49], and the Schäfer-
Teryaev sum rule for the Collins function [50]. On the
other hand, it has the advantage of setting an upper bound
on the absolute value of any of the effects playing a
potential role in the azimuthal asymmetries. Therefore,
all effects that are negligible or even marginal in this
scenario may be directly discarded in subsequent refined
phenomenological analyses.
As a second step in our study we will consider, for both

neutral and charged pions, only the surviving effects, in-
volving TMD functions for which parametrizations are
available from independent fits to other spin and azimuthal
asymmetries data in SIDIS, DY, and eþe% processes. Even
if in our approach factorization and universality are not
guaranteed for the process under consideration,
we still believe that at the present stage this analysis can
be of phenomenological relevance. It can certainly help in
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view, this would be a crucial test for the TMD approach,
independently of the open issues concerning factorization
and universality of the TMD distribution functions men-
tioned in the introduction.

Expressions similar to those shown above for the
qq ! qq and gg ! gg channels hold also for all partonic
contributions involved, with the appropriate combinations
of quark and gluon distribution and fragmentation func-
tions. In general, fewer terms are present both in the
denominator and the numerator of the asymmetry.
Moreover, as a general rule distribution and fragmentation
functions related to transversely (linearly) polarized quarks
(gluons) appear only in couples. This limits the number of
allowed terms.

According to these results, the single-transverse polar-
ized cross section for the process AðSAÞB ! jetþ !þ X
will have the following general structure:

2d"ð#SA ;#
H
! Þ $ d"0 þ d!"0 sin#SA þ d"1 cos#
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Equivalently, the numerator and denominator of the
asymmetry will have the following expression:
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In terms of the polarized cross section, Eq. (28), we can
define average values of appropriate circular functions of
#SA and #H

! , in order to single out the different contribu-
tions of interest:
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Alternatively, for the single-spin asymmetry we can, in
close analogy with the case of semi-inclusive deeply in-
elastic scattering, define appropriate azimuthal moments,
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where Wð#SA ;#
H
! Þ is again some appropriate circular

function of #SA and #H
! . In practice, it will be any of the

circular functions appearing, e.g., in Eqs. (23) and (27) for
specific partonic channels, and for polarized cross sections
in general in Eq. (29) so that the coefficient related to the
corresponding azimuthal moment is singled out.

III. PHENOMENOLOGY

In this section wewill present and discuss some phenome-
nological implications of our approach for the unpolarized
and single-transverse polarized cases in kinematical configu-
rations accessible at RHIC by the STAR and PHENIX ex-
periments. We will consider both central ($j ¼ 0) and
forward ($j ¼ 3:3) (pseudo)rapidity configurations and dif-
ferent c.m. energies,

ffiffiffi
s

p ¼ 62:4, 200, 500 GeV, aiming at a
check of the potentiality of the approach in disentangling
among different quark- and gluon-originating effects. We
will also consider two very different situations concerning
the TMD distribution and fragmentation functions involved.

Wewill first consider, for!þ production only, a scenario
in which the effects of all TMD functions are overmaxi-
mized. By this we mean that all TMD functions are

maximized in size by imposing natural positivity bounds
(and the Soffer bound for transversity [47,48]); moreover,
the relative signs of all active partonic contributions are
chosen so that they sum up additively. This very extreme
scenario of course might imply the violation of other, more
stringent, bounds and sum rules; examples are the Burkardt
sum rule for the Sivers distribution [49], and the Schäfer-
Teryaev sum rule for the Collins function [50]. On the
other hand, it has the advantage of setting an upper bound
on the absolute value of any of the effects playing a
potential role in the azimuthal asymmetries. Therefore,
all effects that are negligible or even marginal in this
scenario may be directly discarded in subsequent refined
phenomenological analyses.
As a second step in our study we will consider, for both

neutral and charged pions, only the surviving effects, in-
volving TMD functions for which parametrizations are
available from independent fits to other spin and azimuthal
asymmetries data in SIDIS, DY, and eþe% processes. Even
if in our approach factorization and universality are not
guaranteed for the process under consideration,
we still believe that at the present stage this analysis can
be of phenomenological relevance. It can certainly help in
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look at pion inside the jet
Yuan; D’Alesio, Murgia, Pisano



p↑p → π X vs. l p↑→ π X

PT

p↑p → π X, large PT, positive and large xF

l p↑→ π X, large PT, negative and large xF

p p

pl



p p

Q2 = M2

qT

qL

l+

l–

dσD−Y =
∑

a

fq(x1,k⊥1;Q2)⊗ fq̄(x2,k⊥2;Q2) dσ̂qq̄→!+!−

TMDs in Drell-Yan processes               

factorization holds, two scales, M2, and qT << M

direct product of TMDs,  no fragmentation process

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY



q = u, ū, d, d̄, s, s̄

dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p↑(x1,k⊥)⊗ fq̄/p(x2)⊗ dσ̂

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

p p
qT

qL

(p-p c.m. frame) 
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√
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0 ≤ y ≤ 3. The results are given at

√
s = 200 GeV. The right panel shows the allowed region of x1 values as a function of xF .

Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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√
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panel shows the allowed region of x2 values as a function of xF .
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FIG. 4: The single spin asymmetry A
sin(φγ−φS)
N for the Drell-Yan process p↑p → µ+µ− X at RHIC, as a function of xF (left

panel) and M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV and (4 ≤ M ≤ 9) GeV, with the further constraint
0 ≤ y ≤ 3. The results are given at

√
s = 200 GeV. The right panel shows the allowed region of x1 values as a function of xF .



more and more data available
more precise determination of TMDs is becoming 

possible 
study role of TMDs in different processes

is there a basic QCD mechanism to generate SSAs?
TMDs and the partonic momentum structure of 

nucleons, orbital motion ....  
TMDs, GPDs and the full 3-dimensional momentum 

and space distribution of partons
..........

global analysis



Stratmann at DIS 2011!



DSS !



Boer 
Kang,Prokudin 

•  Perhaps TF(x,x) has node in x? !

joint fit to SIDIS and pp data: !

Kang, shown at RHIC Users meeting 2011 

(conflict with BRAHMS data?)!




