Round table on global fits

Transversity 2011 - August 29- September 2, Veli Lošinj, Croatia
Mauro Anselmino, Werner Vogelsang
open issues on global fits and related problems
Fit of SIDIS data and TMD extraction: $x-k_{\perp}$ factorization, gaussian dependence, etc... Flavour separation, role of sea quarks....

TMD evolution: importance for predictions of Sivers asymmetry in D-Y processes

SSAs in pp, quark gluon correlation T_q and the Sivers function: sign mismatch
the contribution of strange quarks to longitudinal spin

TMDs from fits of SIDIS data

$$
\mathrm{d}^{6} \sigma \equiv \frac{\mathrm{~d}^{6} \sigma^{\ell p^{\top} \rightarrow \ell h X}}{\mathrm{~d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} z_{h} \mathrm{~d}^{2} \boldsymbol{P}_{T} \mathrm{~d} \phi_{S}}
$$

Sivers and Collins effects well established Sivers and Collins functions extracted with most simple assumptions
$x-k_{\perp}$ factorization of TMDs?
functional form of TMDs (nodes)?
Gaussian k_{\perp} distribution of TMDs?

$$
\begin{gathered}
\left\langle k_{\perp}^{2}\right\rangle\left(x, Q^{2}\right) \quad\left\langle p_{\perp}^{2}\right\rangle\left(z, Q^{2}\right) \\
x, z \text { dependence? }
\end{gathered}
$$

flavour dependence?
energy dependence?
k_{\perp} dependence of Δq vs. q ?
role of higher twists
simple Sivers functions for u and d quarks are sufficient to fit the available SIDIS data large and very small \times dependence not constrained by data talk by S. Melis

new and previous extraction of u and d Sivers functions
S. Melis and A. Prokudin, preliminary results

Anselmino et al.
Eur. Phys. J. A39,89 (2009)

azimuthal dependences from target fragmentation region

(fracture functions, talk by A. Kotzinian)

azimuthal modulations in TFR

(M.A, V. Barone, A. Kotzinian, PL B699 (2011) 108)
cross section for lepto-production of an unpolarized or spinless hadron in the TFR

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{\mathrm{TFR}}}{\mathrm{~d} x_{B} \mathrm{~d} y \mathrm{~d} \zeta \mathrm{~d}^{2} \boldsymbol{P}_{h \perp} \mathrm{~d} \phi_{S}}=\frac{2 \alpha_{\mathrm{em}}^{2}}{Q^{2} y}\left\{\left(1-y+\frac{y^{2}}{2}\right)\right. \\
& \quad \times \sum_{a} e_{a}^{2}\left[M\left(x_{B}, \zeta, \boldsymbol{P}_{h \perp}^{2}\right)-\left|\boldsymbol{S}_{\perp}\right| \frac{\left|\boldsymbol{P}_{h \perp}\right|}{m_{h}} M_{T}^{h}\left(x_{B}, \zeta, \boldsymbol{P}_{h \perp}^{2}\right) \sin \left(\phi_{h}-\phi_{S}\right)\right] \\
& \quad+\lambda_{l} y\left(1-\frac{y}{2}\right) \sum_{a} e_{a}^{2}\left[S_{\|} \Delta M_{L}\left(x_{B}, \zeta, \boldsymbol{P}_{h \perp}^{2}\right)\right. \\
& \left.\left.\quad+\left|\boldsymbol{S}_{\perp}\right| \frac{\left|\boldsymbol{P}_{h \perp}\right|}{m_{h}} \Delta M_{T}^{h}\left(x_{B}, \zeta, \boldsymbol{P}_{h \perp}^{2}\right) \cos \left(\phi_{h}-\phi_{S}\right)\right]\right\} .
\end{aligned}
$$

possible Sivers-like azimuthal dependence from target fragmentation region

Transversity \& Collins function phenomenology in SIDIS and e+e-

Same simple parametrization as for Sivers Collins effect has been clearly observed by four independent experiments:
HERMES, COMPASS, Belle, BaBar
Collins function expected to be universal
QCD evolution important, as Belle data are at a much higher energy than SIDIS data

Two different (?) sets of Belle data, A_{12} and A_{0}, some inconsistencies. P_{\perp} dependence?
great improvement in study of QCD evolution (talk by Aybat)
strong Sivers evolution, might affect D-Y predictions

A_{N} in $p^{\uparrow} p \rightarrow \pi X$, the big challenge

$$
A_{N} \equiv \frac{d \sigma^{\uparrow}-d \sigma^{\uparrow}}{d \sigma^{\uparrow}+d \sigma^{\uparrow}}
$$

John Koster talk

Only one large scale, P_{T}. Any role for TMDs?

TMD factorization not proven

1. Generalization of collinear scheme (assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)}_{\text {single spin effects in TMDs }} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}
$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... (Field-Feynman in unpolarized case)

TMD factorization at work

U. D'Alesio, F. Murgia

STAR data

prediction

Sivers effect $p p \rightarrow \pi X$

2. Higher-twist partonic correlations

(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan;
Bacchetta, Bomhof, Mulders, Pijlman; Koike ...)
higher-twist partonic correlations - factorization OK

$$
\mathrm{d} \Delta \sigma \propto \sum_{a, b, c} \underbrace{T_{a}\left(k_{1}, k_{2}, \boldsymbol{S}_{\perp}\right)}_{\text {twist-3 functions }} \otimes f_{b / B}\left(x_{b}\right) \otimes \underbrace{H^{a b \rightarrow c}\left(k_{1}, k_{2}\right)}_{\substack{\text { hard interaction, } \\ \text { not a cross section }}} \otimes D_{h / c}(z)
$$

possible project: compute T_{a} using SIDIS extracted Sivers functions

fits of E704 and STAR data

Kouvaris, Qiu, Vogelsang, Yuan
sign mismatch
(Kang, Qiu, Vogelsang, Yuan)
compare

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

as extracted from fitting A_{N} data, with that obtained by inserting in the the above relation the SIDIS extracted Sivers functions
similar magnitude, but opposite sign!
the same mismatch does not occurr adopting
TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative

$$
\begin{aligned}
E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}}= & \frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int \frac{d x^{\prime}}{x^{\prime}} f_{b / B}\left(x^{\prime}\right) \int \frac{d x}{x} \sqrt{4 \pi \alpha_{s}}\left(\frac{\epsilon^{P_{h \perp} s_{\perp} n \bar{n}}}{z \hat{u}}\right) \\
& \times\left[T_{a, F}(x, x)-x \frac{d}{d x} T_{a, F}(x, x)\right] H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s}+\hat{t}+\hat{u}),
\end{aligned}
$$

disentangle the role of Collins effect in A_{N} $p^{\uparrow} p \rightarrow \pi$, jet $+X$

$$
\begin{aligned}
& \text { look at pion inside the jet } \\
& \text { Yuan; D'Alesio, Murgia, Pisano } \\
& 2 d \sigma\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right) \sim d \sigma_{0}+d \Delta \sigma_{0} \sin \phi_{S_{A}}+d \sigma_{1} \cos \phi_{\pi}^{H} \\
& +d \Delta \sigma_{1}^{-} \sin \left(\phi_{S_{A}}-\phi_{\pi}^{H}\right)+d \Delta \sigma_{1}^{+} \sin \left(\phi_{S_{A}}+\phi_{\pi}^{H}\right) \\
& +d \sigma_{2} \cos 2 \phi_{\pi}^{H}+d \Delta \sigma_{2}^{-} \sin \left(\phi_{S_{A}}-2 \phi_{\pi}^{H}\right) \\
& +d \Delta \sigma_{2}^{+} \sin \left(\phi_{S_{A}}+2 \phi_{\pi}^{H}\right) \text {. } \\
& A_{N}^{W\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right)}\left(\boldsymbol{p}_{\mathrm{j}}, z, k_{\perp \pi}\right) \equiv 2\left\langle W\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right)\right\rangle\left(\boldsymbol{p}_{\mathrm{j}}, z, k_{\perp \pi}\right)= \\
& 2 \frac{\int d \phi_{S_{A}} d \phi_{\pi}^{H} W\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right)\left[d \sigma\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right)-d \sigma\left(\phi_{S_{A}}+\pi, \phi_{\pi}^{H}\right)\right]}{\int d \phi_{S_{A}} d \phi_{\pi}^{H}\left[d \sigma\left(\phi_{S_{A}}, \phi_{\pi}^{H}\right)+d \sigma\left(\phi_{S_{A}}+\pi, \phi_{\pi}^{H}\right)\right]}
\end{aligned}
$$

$$
p^{\uparrow} p \rightarrow \pi X \text { vs. } I p^{\uparrow} \rightarrow \pi X
$$

$p^{\uparrow} p \rightarrow \pi X$, large P_{T}, positive and large X_{F}

I $p^{\uparrow} \rightarrow \pi X$, large P_{T}, negative and large X_{F}

TMDs in Drell-Yan processes

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

direct product of TMDs, no fragmentation process

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp}\right) \otimes f_{\bar{q} / p}\left(x_{2}\right) \otimes \mathrm{d} \hat{\sigma}
$$

$$
q=u, \bar{u}, d, \bar{d}, s, \bar{s}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Predictions for A_{N}

Sivers functions as extracted from SIDIS data, with opposite sign

global analysis

more and more data available more precise determination of TMDs is becoming possible
study role of TMDs in different processes is there a basic QCD mechanism to generate SSAs?

TMDs and the partonic momentum structure of nucleons, orbital motion
TMDs, GPDs and the full 3-dimensional momentum and space distribution of partons

Stratmann at DIS 2011

$$
R_{S F} \equiv \frac{\int D_{\bar{s}}^{K^{+}}(z) d z}{\int D_{u}^{K^{+}}(z) d z}
$$

DSS

- Perhaps $T_{F}(x, x)$ has node in x ? joint fit to SIDIS and pp data:

Kang, shown at RHIC Users meeting 2011

$$
\epsilon^{P_{n \perp} S_{\perp} n \bar{n}}=-\left|P_{n \perp \mid}\right|\left|S_{\perp}\right|<0
$$

