STAYING ON TOP OF LIKELIHOOD ANALYSES

Using pyhf for global SMEFT analyses with SFitter

Nikita Schmal

Collaborators: Nina Elmer, Emma Geoffray, Michel Luchmann, Maeve Madigan, Tilman Plehn

What's the purpose of this talk?

> Problem: Large number of observations cannot be explained by the SM alone

- Goal: Put constraints on physics beyond the Standard Model

Outline

> Intro: Standard Model Effective Field Theory
> Part I: Statistical analysis using SFitter
> Part II: SFitter analyses with pyhf

- Conclusion

Standard Model Effective Field Theory

SMEFT

> Well established model agnostic approach in searches for BSM physics

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{d=5}^{n} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)}
$$

> Up to quadratic order SMEFT contributions included i.e.

$$
\sigma=\sigma_{S M}+\frac{c_{6}}{\Lambda^{2}} \sigma_{6}+\frac{c_{6}^{2}}{\Lambda^{4}} \sigma_{6 \times 6}+\frac{c_{8}}{\Lambda^{4}} \sigma_{8}+\mathcal{O}\left(\Lambda^{5}\right)
$$

Standard Model Effective Field Theory

SMEFT

> Well established model agnostic approach in searches for BSM physics

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{d=5}^{n} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)}
$$

> Up to quadratic order SMEFT contributions included i.e.

$$
\sigma=\sigma_{S M}+\frac{c_{6}}{\Lambda^{2}} \sigma_{6}+\frac{c_{6}^{2}}{\Lambda^{4}} \sigma_{6 \times 6}+\frac{8}{\Lambda^{4}} \varphi_{8}+\mathcal{O}\left(\Lambda^{5}\right)
$$

> Restrict ourselves to operators of dimension 6

Standard Model Effective Field Theory

Model and dataset

arXiv:1910.03606 [hep-ph]

- Restrict ourselves to the Top sector
$>$ Include $t \bar{t}, t \bar{t} \mathrm{Z}, t \bar{t} W$ and single top data
> Total ~ 116 datapoints
> Impose $U(2)_{q} \times U(2)_{u} \times U(2)_{d}$ symmetry
> Consider a total of 22 Operators

Operator	Definition	Operator	Definition
$O_{Q q}^{3,8}$	$\left(\bar{Q} \gamma_{\mu} T^{A} \tau^{I} Q\right)\left(\overline{q_{i}} \gamma^{\mu} T^{A} \tau^{I} q_{i}\right)$	$O_{Q q}^{3,1}$	$\left(\bar{Q} \gamma_{\mu} \tau^{I} Q\right)\left(\overline{q_{i}} \gamma^{\mu} \tau^{I} q_{i}\right)$
$O_{Q q}^{1,8}$	$\left(\bar{Q} \gamma_{\mu} T^{A} Q\right)\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right)$	$O_{Q q}^{1,1}$	$\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right)$
$O_{t u}^{8}$	$\left(\overline{\left.\gamma_{\mu} T^{A} t\right)\left(\bar{u}_{i} \gamma^{\mu} T^{A} u_{i}\right)}\right.$	$O_{t u}^{1}$	$\left(\bar{t} \gamma_{\mu} t\right)\left(\bar{u}_{u} \gamma^{\mu} u_{i}\right)$
$O_{t d}^{8}$	$\left(\bar{t} \gamma_{\mu} T^{A} t\right)\left(\bar{d}_{i} \gamma^{\mu} T^{A} d_{i}\right)$	$O_{t d}^{1}$	$\left(\bar{t} \gamma_{\mu} t\right)\left(\bar{d}_{i} \gamma^{\mu} d_{i}\right)$
$O_{Q u}^{8}$	$\left(\bar{Q} \gamma^{\mu} T^{A} Q\right)\left(\bar{u}_{i} \gamma_{\mu} T^{A} u_{i}\right)$	$O_{Q u}^{1}$	$\left(\bar{Q} \gamma^{\mu} Q\right)\left(\bar{u}_{i} \gamma_{\mu} u_{i}\right)$
$O_{Q d}^{8}$	$\left(\bar{Q} \gamma^{\mu} T^{A} Q\right)\left(\bar{d}_{i} \gamma_{\mu} T^{A} d_{i}\right)$	$O_{Q d}^{1}$	$\left(\bar{Q} \gamma^{\mu} Q\right)\left(\overline{\left.d_{i} \gamma_{\mu} d_{i}\right)}\right.$
$O_{t q}^{8}$	$\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right)\left(\bar{t} \gamma_{\mu} T^{A} t\right)$	$O_{t q}^{1}$	$\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right)\left(\bar{t} \gamma_{\mu} t\right)$
$O_{\phi Q}^{3}$	$\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{\left.D_{\mu} \phi\right)\left(\bar{Q} \gamma^{\mu} \tau^{I} Q\right)}\right.$	$O_{\phi Q}^{1}$	$\left(\phi^{\dagger} i \stackrel{D}{\mu}_{\mu} \phi\right)\left(\bar{Q} \gamma^{\mu} Q\right)$
$O_{\phi t}$	$\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D} \phi \phi\right)\left(\bar{\tau} \gamma^{\mu} t\right)$	$O_{\phi t b}$	$\left(\tilde{\phi}^{\dagger} i D_{\mu} \phi\right)\left(\bar{t} \gamma^{\mu} b\right)$
$O_{t B}$	$\left(\bar{Q} \sigma^{\mu \nu} t\right) \tilde{\phi} B_{\mu \nu}$	$O_{t W}$	$\left(\bar{Q} \sigma^{\mu \nu} t\right) \tau^{I} \tilde{\phi} W_{\mu \nu}^{I}$
$O_{b W}$	$\left(\bar{Q} \sigma^{\mu \nu} b\right) \tau^{I} \phi W_{\mu \nu}^{I}$	$O_{t G}$	$\left(\bar{Q} \sigma_{\mu \nu} T^{A} t\right) \tilde{\phi} G_{\mu \nu}^{A}$

PARTI

Statistical analysis with SFitter

What is our tool of choice?

SFitter

> Used for various global SMEFT analyses (Higgs, Di-Boson, EWPO, Top)
> Comprehensive treatment of uncertainties
> Fully correlated systematic uncertainties within experiments
> Allows for both profiling and marginalization methods
> Mapping of likelihood using MCMC
> Goal of this part: Explain what we mean with all of this

What is SFitter?

The exclusive likelihood
> Likelihood for a single measurements modelled as

$$
\mathcal{L}_{e x c l}=\operatorname{Pois}\left(d \mid p\left(\alpha_{n}, \theta_{i}, b\right)\right) \operatorname{Pois}\left(b_{C R} \mid b k\right) \prod_{i} \mathcal{C}\left(\theta_{i}, \sigma_{i}\right)
$$

> SMEFT contributions are incorporated into model parameters α_{n}
> Uncertainties included via nuisance parameters (NP) θ_{i}
> Constraint term $\mathcal{C}\left(\theta_{i}, \sigma_{i}\right)$ depends on uncertainty considered

What is SFitter?

Uncertainty constraints

> Systematic unc. $\mathcal{N}(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
$>$ Statistical unc. $\operatorname{Pois}(n \mid \nu)=\frac{\nu^{n} e^{-\nu}}{n!}, \quad \nu>0$

- Theory unc. $\mathcal{F}(x \mid \mu, \sigma)=\frac{1}{2 \sigma} \Theta[x-(\mu-\sigma)] \Theta[(\mu+\sigma)-x]$
> Choice of constraint is motivated by physical intuition
> However: They are a choice and could technically be chosen differently

What is SFitter?

Generalization to multiple measurements

> Global analyses study numerous different processes

$$
\mathcal{L}_{\mathrm{excl}, \mathrm{full}}=\prod_{c} \operatorname{Pois}\left(d_{c} \mid p_{c}\right) \operatorname{Pois}\left(b_{C R_{c}} \mid b_{c} k_{c}\right) \prod_{i} \mathcal{C}\left(\theta_{i, c}, \sigma_{i, c}\right)
$$

> Take into consideration correlations between these measurements

$$
\mathcal{N}\left(\theta_{\text {syst }, i} \mid 0, \sigma_{i}\right) \longrightarrow \mathcal{N}\left(\vec{\theta}_{\text {syst }, i} \mid \overrightarrow{0}, \Sigma_{i}\right)
$$

> Assumption: Systematics are fully correlated between measurements

What is SFitter?

Systematic uncertainties

> Each category of systematic is fully correlated within CMS and ATLAS

- Luminosity correlated between both experiments

Systematic uncertainties
Beam
Background (Separate for each channel)
ETmis
Jets
Leptons
LightTagging
Luminosity
Pileup
Trigger
Tune
bTagging
partonShower
tTagging
tauTagging

What is SFitter?

Systematic uncertainties

> Each category of systematic is fully correlated within CMS and ATLAS

- Luminosity correlated between both experiments
> Clear shift in the likelihoods due to correlations between systematics
arXiv:2208.08454 [hep-ph]

What is SFitter?

To profile or to marginalize
> Common exclusive likelihood constructed

$$
\mathcal{L}_{e x c l}=\operatorname{Pois}\left(d \mid p\left(\alpha_{n}, \theta_{i}, b\right)\right) \operatorname{Pois}\left(b_{C R} \mid b k\right) \prod_{i} \mathcal{C}\left(\theta_{i}, \sigma_{i}\right)
$$

- The NPs θ_{i} are not physically interesting

What is SFitter?

To profile or to marginalize
> Common exclusive likelihood constructed

$$
\mathcal{L}_{e x c l}=\operatorname{Pois}\left(d \mid p\left(\alpha_{n}, \theta_{i}, b\right)\right) \operatorname{Pois}\left(b_{C R} \mid b k\right) \prod_{i} \mathcal{C}\left(\theta_{i}, \sigma_{i}\right)
$$

> The NPs θ_{i} are not physically interesting
> Decision: How do we handle the NPs?

Profiling:

$$
\mathcal{L}_{\mathrm{prof}}(\alpha)=\max _{\theta} \mathcal{L}_{\mathrm{excl}}(\alpha, \theta)
$$

Marginalization:

$$
\mathcal{L}_{\text {marg }}(\alpha)=\int d \theta \mathcal{L}_{\text {excl }}(\alpha, \theta)
$$

What is SFitter?

To profile or to marginalize

- Comparison for the product of Gaussian and uniform distributions
> Marginalization over multiple flat unc. gives Gaussian results

Some Results

Profiling vs Marginalization

> Stronger constraints for marginalized likelihood as a result of large theory uncertainties

Some Results

Profiling vs Marginalization

> Expected behaviour due to marginalization of flat theory uncertainties

What is SFitter?

Takeaway

> Uncertainty treatment essential to our SFitter analysis

- Implementation of theory, statistical and systematic uncertainties
> Furthermore: Correlated systematics of the same type
- Theory prediction and uncertainties done by us
> However: The systematics have to be provided by experiment
> How is this data provided and how can we use it?

PART II SFitter analyses with $\mathbf{P}=\mathbf{f}$ \mathscr{L} ikelihoods

Published Likelihoods

Quick overview

> Likelihoods published in the HistFactory format

$$
\mathcal{L}\left(n_{c b}, a_{\chi} \mid \eta, \chi\right)=\prod_{c \in \text { channels }} \prod_{b \in \text { bins }} \operatorname{Pois}\left(n_{c b} \mid \nu_{c b}(\eta, \chi)\right) \prod_{\chi \in \vec{\chi}} \mathcal{C}_{\chi}\left(a_{\chi} \mid \chi\right)
$$

> Provides effect of large number of individual NPs
> Analysed using dedicated python libraries such as pyhf and cabinetry
> Question: How to make use of this in SFitter analyses?

Likelihoods published by ATLAS

arXiv:2006.13076 [hep-ex]
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

EXPERIMEN T
Phys. Lett. B 810 (2020) 135797 DOI: 10.1016/j.physletb.2020.135797
 10th November 2020

Measurement of the $t \bar{t}$ production cross-section in the lepton+jets channel at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS experiment
arXiv:2103.12603 [hep-ex]

Eur. Phys. J. C (2021) 81:73
https://doi.org/10.1140/epjc/s10052-021-09439-4

The European
Physical Journal C

Regular Article - Experimental Physics

Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

ATLAS Collaboration ${ }^{\star}$
CERN, 1211 Geneva 23, Switzerland
Received: 24 March 2021 / Accepted: 10 July 2021 / Published online: 16 August 2021 © CERN for the benefit of ATLAS Collaboration 2021

- Full likelihoods publicly available on HEPData

Published Likelihoods

Quick overview (Reproduction)

From arXiv:2006.13076 [hep-ex]

Published Likelihoods

Uncertainties

- Previously: Uncertainties taken as given in the paper
> Now: Uncertainties extracted from profiling fit via pyhf
> Implemented into SFitter using the constraints terms $\mathcal{C}\left(\theta_{i}, \sigma_{i}\right)$
> Problem: Difficult to automate due to inconsistent naming conventions

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{t} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{t} Z}}{\sigma_{t \bar{Z} Z}}[\%]$
$t t Z$ parton shower	3.1	3.1
$t W Z$ modeling	2.9	2.9
b-tagging	2.9	2.9
$W Z / Z Z+$ jets modeling	2.7	2.8
$t Z q$ modeling	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
Jets $+E_{T}^{\text {miss }}$	2.1	2.1
Fake leptons	2.1	2.1
$t \bar{t} Z$ ISR	1.7	1.6
$t \bar{t} Z \mu_{F}$ and μ_{r} scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t \bar{t} Z$ PDF	0.2	0.2
Stat	5.2	5.2

Published Likelihoods

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{t} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Assign	Systematic uncertainties
$t t Z$ parton shower	3.1	3.1		Beam
$t W Z$ modeling	2.9	2.9		Background (Separate for each channel)
b-tagging	2.9	2.9		ETmis
$W Z / Z Z+$ jets modeling	2.7	2.8		Jets
$t Z q$ modeling	2.6	2.6		Leptons
Lepton	2.3	2.3		LightTagging
Luminosity	2.2	2.2		Light Tagging
Jets $+E_{T}^{\text {miss }}$	2.1	2.1		Luminosity
Fake leptons	2.1	2.1		Pileup
$t \bar{t} Z$ ISR	1.7	1.6		Trigger
$t \bar{t} Z \mu_{F}$ and μ_{r} scales	0.9	0.9		Tune
Other backgrounds	0.8	0.7		bTagging
Pile-up	0.7	0.7		partonShower
$t \bar{t} Z \mathrm{PDF}$	0.2	0.2		tTagging
Stat	5.2	5.2		tauTagging

Published Likelihoods

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z}}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{E} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Assign	Systematic uncertainties
$t t Z$ parton shower	3.1	3.1		Beam
$t W Z$ modeling	2.9	2.9		Background (Separate for each channel)
b-tagging	2.9	2.9		ETmis
$W Z / Z Z+$ jets modeling	2.7	2.8		Jets
$t Z q$ modeling	2.6	2.6		Leptons
Lepton	2.3	2.3		LightTagging
Luminosity	2.2	2.2		Light Tagging
Jets $+E_{T}^{\text {miss }}$	2.1	2.1		Luminosity
Fake leptons	2.1	2.1		Pileup
$t \bar{t} Z$ ISR	1.7	1.6		Trigger
$t \bar{t} Z \mu_{F}$ and μ_{r} scales	0.9	0.9		Tune
Other backgrounds	0.8	0.7		bTagging
Pile-up	0.7	0.7		partonShower
$t \bar{t} Z$ PDF	0.2	0.2		tTagging
Stat	5.2	5.2		tauTagging

Published Likelihoods

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{t} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Assign

Published Likelihoods

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Assign

- Previously: Possibly incompatible groups, how to correlate?

Published Likelihoods

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Paper $\frac{\Delta \sigma_{t \bar{Z} Z}}{\sigma_{t \bar{Z} Z}}[\%]$	Assign

> Now: Simply separate the NPs in profile likelihood fit

Published Likelihoods

Implementation

> Low dimensional fit to only $C_{t G}$ and total cross section measurements
> Neglect theory uncertainties
> Excellent agreement between both methods of implementation

Published Likelihoods

Parameter scans with 昆cabinetry

> NPs are all very Gaussian, only small number of exceptions

- Validates Gaussian constraint term $\mathcal{C}\left(\theta_{i}, \sigma_{i}\right)$ for systematics

Published Likelihoods

Concerning Correlations

> Currently: No correlations between uncertainties in SFitter

Published Likelihoods

Concerning Correlations

> Currently: No correlations between uncertainties in SFitter
> Correlations of systematics included in SFitter are negligibly small

Published Likelihoods

Constraints

> Visible shift from new measurements
> Constraints shift slightly after including both new measurements
> Measurements of total cross sections barely affect constraints

Concluding

> Summary: Uncertainties and correlations are essential to SFitter constraints
> Large effect of theory uncertainties in the top sector
> Published likelihoods provide an alternative way to use experimental data
> Validates assumptions made in previous analyses
> However: Currently available likelihoods not particularly SMEFT sensitive
> Publication of more differential measurements would be useful
> Global SMEFT analysis requires data from all kinds of processes

