

Sabine Kraml (LPSC Grenoble)

for the SModelS collaboration

Gaël Alguero, Mohammad Altakach, SK, Andre Lessa, Sahana Narasimha*, Timothée Pascal*, Humberto Reyes Gonzàlez, Wolfgang Waltenberger

pyhf Users and Developers workshop, 4-8 Dec 2023, CERN & online

* current PhD students, thanks for plots.

What is SModelS?

- Public tool for the fast reinterpretation of LHC * searches on the basis of simplified-model results.
- Working principle: **decompose** the signatures of full BSM scenarios into simplified model **components**, which are then confronted against the experimental constraints from a large database of results.
- Input: SLHA files with mass spectrum, decay tables and cross sections.
- Mostly results from SUSY searches, but works for * any BSM model with a Z_2 -like symmetry!

https://smodels.github.io

What is SModelS? -cont-

- Public tool for the fast reinterpretation of LHC * searches on the basis of simplified-model results.
- Advantages are simplicity and speed! \rightarrow very fast b/c no MC simulation needed \rightarrow well suited for large scans and model surveys
- Large database of experimental results
- ATLAS and CMS, Run 1 and Run 2, prompt and • long-lived results all treated simultaneously
- Easy classification of unconstrained cross section, missing topologies
- Limitation: kind and variety of avilable simplified-model results.

https://smodels.github.io

What is SModelS? -cont-

- Public tool for the fast reinterpretation of LHC • searches on the basis of simplified-model results.
- Advantages are simplicity and speed! \rightarrow very fast b/c no MC simulation needed \rightarrow well suited for large scans and model surveys
- Large database of experimental results *
- ATLAS and CMS, Run 1 and Run 2, prompt and long-lived results all treated simultaneously
- Easy classification of unconstrained cross section, missing topologies
- Limitation: kind and variety of avilable simplified-model results.

https://smodels.github.io

- ³⁸⁶⁷²⁶ Orename, France
 ² Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Nikolsdorfer Gasse 18, 1050 Vienna, Austria
 ³ Institut de Diele Universidade de São Davile, São Davile, São Presid
- ³ Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil

Received: 15 January 2014 / Accepted: 22 April 2014 / Published online: 20 May 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present a general procedure to decompose Beyond the Standard Model (BSM) collider signatures presenting a \mathbb{Z}_2 symmetry into Simplified Model Spectrum (SMS) topologies. Our method provides a way to cast BSM predictions for the LHC in a model independent framework,

mental constraints. Our concrete focusses on supersymmetry searc for which a large variety of SMS CMS are available. As show-case

arXiv:1312.4175 procedure to two scans of the minimal supersymmetric standard model. We discuss how the SMS limits constrain various particle masses and which regions of parameter space remain unchallenged by the current SMS interpretations of the LHC

1 Introduction

Searches at the ATLAS and CMS experiments at the LHC show no signs of physics beyond the Standard Model (BSM). After the first phase of LHC operation at centre-of-mass energies of 7-8 TeV in 2010-2012, the limits for the masses of supersymmetric particles, in particular of 1st/2nd generation squarks and gluinos, have been pushed well into the Tev range [1,2]. Likewise, precision measurements in the

- *e-mail: sabine.kraml@lpsc.in2p3.fr
- ^be-mail: suchita.kulkarni@lpsc.in2p3.fr ° a-mail: ursula_laa@assoc.oeaw.ac.at
- ^de-mail: lessa@if.usp.br
- e c-mail: wolfgang.magerl@assoc.ocaw.ac.at fe-mail: doris.proschofsky@assoc.oeaw.ac.at
- ^ge-mail: wolfgang.waltenberger@oeaw.ac.at

flavor sector, in particular in B-physics, are well consistent with Standard Model (SM) expectations [3,4] and show no sign, or need, of new physics. At the same time the recent discovery [5,6] of a Higgs-like particle with mass around 125 GeV makes the question of stability of the electroweak

ge hierarchy problem-even more symmetry (SUSY) is arguably the solve the gauge hierarchy problem like Higgs boson. So, the Higgs has

Looking closely [7-12] one soon realizes that many of the current limits on SUSY particles are based on severe model assumptions, which impose particular relations between particle masses, decay branching ratios, etc. The prime example is the interpretation of the search results within the Constrained Minimal Supersymmetric Standard Model (CMSSM). The interpretation of the search results within a much more general realization of the MSSM is perfectly feasible, see [7,8,13], but computationally very demanding and certainly not suitable for a "quick" survey.

An approach which has therefore been adopted systematically by the ATLAS and CMS collaboration

pret the results within so-calle

tra [14,15]. Simplified Model § are effective-Lagrangian descript number of new particles. They we for the characterization of new pl large variety of results on searche nels are available from both ATL general cross section limits for SM using these results to constrain con-BSM) scenarios is not straightforwa

In this paper, we present a method ... becompose the signal of an arbitrary SUSY spectrum into simplified model topolo-

Experimental results in SModelS

upper limit (UL) maps and A×ε 'efficiency' maps (EM)

Experimental results in SModelS

Maps of A ϵ for the signal regions of an analysis allow us

to sum different contributions to the same signal region

$$n_{\rm sig} = \sum A\epsilon \left[\sigma \times BR \times BR \right] \times \mathcal{L}$$

given expected and observed numbers of events, compute a likelihood for the hypothesised signal *)

 $\mathcal{L}(\mu, \theta | D) = P(D | \mu s + b + \theta) p(\theta)$

do sophisticated statistical evaluations (likelihood ratio tests, confidence levels, p-values, etc.)

A×ε 'efficiency' maps (EM)

*) if information on correlations is available, SRs can be combined

pyhf Users and Developers workshop, 4-8 Dec 2023

Interface to pyhf

- Interface to pyhf established in 2020.
- Whenever a statistical model is available we use it. A real boon for us!
- SModelS needs to be fast \rightarrow we typically use simplify 'ed JSONs *)

https://github.com/eschanet/simplify

• Usage of full llhds can be enforced through database add-on

path = latest+full llhds

→ replaces simplify'ed HistFactory models by full ones; available from SModelS v2.3 (June 2023) onwards

	Computer Physics Communications
	A SModelS interface for pyhf likelihoods ☆,
•	<u>Gaël Alguero</u> ^a ⊠ , <u>Sabine Kraml</u> ^a ⊠ , <u>Wolfgang Waltenberger</u> ^{b c} ♀ ⊠ Show more ∨
7	+ Add to Mendeley 📽 Share 🍠 Cite https://doi.org/10.1016/j.cpc.2021.107909 🏹
	Get rights and content A Abstract
ŷ	SModelS is an automatized tool enabling the fast interpretation of simplified model results from the LHC within any model of new <u>physics</u> respecting a \mathbb{Z}_2 symmetry. We here present a new version of SModelS, which can use the full likelihoods now provided by ATLAS in the form of pyhf JSON files. This much improves the statistical evaluation and therefore also the limit setting on new physics seemed.

*) subject to validation

The Database v2.3

- In total exp. results from 111 ATLAS
 and CMS publications
- * Run 1: 15 ATLAS + 18 CMS analyses
- Run 2: 38 ATLAS + 40 CMS analyses
 (17 ATLAS+13 CMS for full luminosity)
- 10 LLP searches: HSCP, disappearing tracks, displaced vertices
- * 7 ATLAS analyses with pyhf llhds

→ bkg-only.json

ATLAS Run 2 analyses in SModelS v2.3 database

ID	Short Description	\mathcal{L} [fb ⁻¹]	UL _{obs}	UL_{exp}	EM	comb.
ATLAS-SUSY-2015-01	2 <i>b</i> -jets	3.2	\checkmark			
ATLAS-SUSY-2015-02	1ℓ stop	3.2	√		\checkmark	
ATLAS-SUSY-2015-06	0ℓ + 2–6 jets	3.2			\checkmark	
ATLAS-SUSY-2015-09	jets + 2 SS or $\geq 3\ell$	3.2	\checkmark			
ATLAS-SUSY-2016-06	disappearing tracks	36.1			\checkmark	
ATLAS-SUSY-2016-07	0ℓ + jets	36.1	🗸		\checkmark	
ATLAS-SUSY-2016-08	displaced vertices	32.8	🗸			
ATLAS-SUSY-2016-14	2 SS or 3 ℓ 's + jets	36.1	🗸			
ATLAS-SUSY-2016-15	0ℓ stop	36.1	√			
ATLAS-SUSY-2016-16	1ℓ stop	36.1	√		\checkmark	
ATLAS-SUSY-2016-17	2 OS <i>l</i>	36.1	🗸			
ATLAS-SUSY-2016-19	2 <i>b</i> -jets + τ 's	36.1	√			
ATLAS-SUSY-2016-24	2–3 ℓ's, EWK	36.1	 ✓ 		\checkmark	
ATLAS-SUSY-2016-26	$\geq 2c$ -jets	36.1	 ✓ 			
ATLAS-SUSY-2016-27	jets + γ	36.1	\checkmark		\checkmark	
ATLAS-SUSY-2016-28	2 <i>b</i> -jets	36.1	√			
ATLAS-SUSY-2016-32	HSCP	31.6	\checkmark	\checkmark	\checkmark	
ATLAS-SUSY-2016-33	2 SFOS <i>l</i> 's	36.1	\checkmark			
ATLAS-SUSY-2017-01	Wh(bb), EWK	36.1	\checkmark			
ATLAS-SUSY-2017-02	0ℓ + jets	36.1	√	√		
ATLAS-SUSY-2017-03	multi-ℓ EWK	36.1	\checkmark		\checkmark	
ATLAS-SUSY-2018-04	2 hadronic taus	139.0	\checkmark		\checkmark	Pyhf
ATLAS-SUSY-2018-05	2ℓ + jets, EWK	139.0	\checkmark		\checkmark	Pyhf
ATLAS-SUSY-2018-05	2ℓ + jets, strong	139.0			\checkmark	
ATLAS-SUSY-2018-06	3ℓ, EWK	139.0	√	✓	\checkmark	
ATLAS-SUSY-2018-08	2 OS <i>l</i>	139.0	√		\checkmark	
ATLAS-SUSY-2018-10	1ℓ + jets	139.0	√		\checkmark	
ATLAS-SUSY-2018-12	0ℓ + jets	139.0	\checkmark	\checkmark	\checkmark	
ATLAS-SUSY-2018-14	displaced vertices	139.0			\checkmark	Pyhf
ATLAS-SUSY-2018-22	multi-jets	139.0	\checkmark		\checkmark	
ATLAS-SUSY-2018-23	$Wh(\gamma\gamma)$, EWK	139.0	\checkmark	\checkmark		
ATLAS-SUSY-2018-31	2b + 2h(bb)	139.0	\checkmark		\checkmark	Pyhf
ATLAS-SUSY-2018-32	2 OS <i>l</i>	139.0	\checkmark		\checkmark	Pyhf
ATLAS-SUSY-2018-40	$2b + 2h(\tau\tau)$	139.0	√	√	\checkmark	
ATLAS-SUSY-2018-41	hadr. EWK search	139.0	√	√	\checkmark	SLv1
ATLAS-SUSY-2018-42	charged LLPs, dE/dx	139.0	√	✓	\checkmark	
ATLAS-SUSY-2019-02	2 soft ℓ's, EWK	139.0	\checkmark		\checkmark	SLv1
ATLAS-SUSY-2019-08	$1\ell + h(bb)$, EWK	139.0	\checkmark		\checkmark	Pyhf
ATLAS-SUSY-2019-09	3ℓ, EWK	139.0	\checkmark	\checkmark	\sim	Pyhf

(database validation)

ATLAS-SUSY-2018-05: Searches for new phenomena in events with two leptons, jets, and missing transverse momentum

plots: Sahana Narasimha

ATLAS-SUSY-2018-32: Charginos and sleptons decaying into final states with two leptons and missing transverse momentum

pyhf Users and Developers workshop, 4-8 Dec 2023

plots: Sahana Narasimha

need to include CRs in fit

ATLAS-SUSY-2019-08: Electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson

pyhf Users and Developers workshop, 4-8 Dec 2023

plots: Sahana Narasimha

full JSON file \rightarrow good obs. limit; but why is exp. off?

ATLAS-SUSY-2019-02: sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass

13

Efficiency maps from patchsets

for pure simplified models pyhf signal patchsets shipped with the background-only JSON files allow us to extract efficiency maps for all SRs (and the CRs)

provided we have also the exact cross sections as used in the analysis

- Analysis has 7 "exclusive" (WW, WZ, ZZ, Wh, Zh) and 3 "inclusive" (VV, VZ, Vh) signal regions wrt gauge bosons in the decays
- Originally published EMs only for 4Q-VV, 2B2Q-VZ, and 2B2Q-Vh SRs; supposedly independent

						<u></u> .
Region	CR0L-4Q	CR0L-2B2Q	SR-4Q-WW	SR-4Q-WZ	SR-4Q-ZZ	SR-4Q-VV
Observed	129	83	2	3	1	3
Post-fit	129 ± 11	83 ± 9	1.9 ± 0.4	3.4 ± 0.7	1.9 ± 0.5	3.9 ± 0.8
W+jets	24.2 ± 2.2	16.6 ± 2.0	0.37 ± 0.08	0.60 ± 0.13	0.26 ± 0.07	0.69 ± 0.15
Z+jets	78 ± 7	44 ± 5	1.0 ± 0.21	1.8 ± 0.4	1.26 ± 0.32	2.1 ± 0.4
VV	21.5 ± 1.9	7.1 ± 0.9	0.35 ± 0.11	0.73 ± 0.24	0.26 ± 0.09	0.79 ± 0.25
VVV	0.9 ± 0.4	0.10 ± 0.05	0.17 ± 0.09	0.19 ± 0.10	0.11 ± 0.07	0.23 ± 0.12
tī	1.38 ± 0.12	7.8 ± 0.9	0.039 ± 0.009	0.060 ± 0.018	0.025 ± 0.010	0.063 ± 0.018
t+X	1.32 ± 0.12	2.87 ± 0.34	0.015 ± 0.006	0.039 ± 0.016	0.012 ± 0.005	0.039 ± 0.016
$t\bar{t}+X$	1.3 ± 0.9	3.7 ± 2.6	-	-	-	-
Other	< 0.1	0.95 ± 0.11	< 0.001	< 0.001	< 0.001	< 0.001
Region	SR-2B2Q-WZ	SR-2B2Q-Wh	SR-2B2Q-ZZ	SR-2B2Q-Zh	SR-2B2Q-VZ	SR-2B2Q-Vh
Region Observed	SR-2B2Q-WZ 2	SR-2B2Q-Wh 0	SR-2B2Q-ZZ 2	SR-2B2Q-Zh 1	SR-2B2Q-VZ 2	SR-2B2Q-Vh 1
Region Observed Post-fit	SR-2B2Q-WZ 2 1.6 ± 0.4	$\frac{\text{SR-2B2Q-Wh}}{0}$ 1.9 ± 0.7	SR-2B2Q-ZZ 2 1.7 ± 0.5	$\frac{\text{SR-2B2Q-Zh}}{1}$ 1.6 ± 0.5	$\frac{\text{SR-2B2Q-VZ}}{2}$	$\frac{\text{SR-2B2Q-Vh}}{1}$ 2.5 ± 0.8
Region Observed Post-fit W+jets	SR-2B2Q-WZ 2 1.6 ± 0.4 0.11 ± 0.06	SR-2B2Q-Wh 0 1.9 ± 0.7 0.24 ± 0.09	$SR-2B2Q-ZZ = 2 = 0.23 \pm 0.08$	SR-2B2Q-Zh 1 1.6 ± 0.5 0.26 ± 0.10	SR-2B2Q-VZ 2 2.2 ± 0.6 0.26 ± 0.09	$\frac{\text{SR-2B2Q-Vh}}{1} \\ 2.5 \pm 0.8 \\ 0.26 \pm 0.09$
Region Observed Post-fit W+jets Z+jets	$SR-2B2Q-WZ = 2 = 0.11 \pm 0.06 = 0.84 \pm 0.27 = 0.27 = 0.022 = $	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5$	$SR-2B2Q-ZZ = 2 = 0.23 \pm 0.08 = 0.78 \pm 0.23 = 0.23 \pm 0.08 = 0.78 \pm 0.23 = 0.23 = 0.023 \pm 0.023 \pm 0.023 = 0.023 \pm 0.02$	SR-2B2Q-Zh 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24	$SR-2B2Q-VZ = 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33$	$SR-2B2Q-Vh \\ 1 \\ 2.5 \pm 0.8 \\ 0.26 \pm 0.09 \\ 1.4 \pm 0.5$
Region Observed Post-fit W+jets Z+jets VV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03$	$SR-2B2Q-ZZ = 2 = 0.23 \pm 0.08 = 0.23 \pm 0.023 \pm 0.23 = 0.23 \pm 0.23 = 0.32 \pm 0.10 = 0.10 = 0.10 \pm 0.1$	$SR-2B2Q-Zh \\ 1 \\ 1.6 \pm 0.5 \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032$	SR-2B2Q-VZ = 2 2.2 ± 0.6 0.26 ± 0.09 1.15 ± 0.33 0.37 ± 0.11	$SR-2B2Q-Vh \\ 1 \\ 2.5 \pm 0.8 \\ 0.26 \pm 0.09 \\ 1.4 \pm 0.5 \\ 0.085 \pm 0.030$
Region Observed Post-fit W+jets Z+jets VV VVV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03 < 0.01$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \end{array}$	$SR-2B2Q-Zh \\ 1 \\ 1.6 \pm 0.5 \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032 \\ 0.011 \pm 0.007$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \end{array}$	$SR-2B2Q-Vh \\ 1 \\ 2.5 \pm 0.8 \\ 0.26 \pm 0.09 \\ 1.4 \pm 0.5 \\ 0.085 \pm 0.030 \\ 0.011 \pm 0.007$
RegionObservedPost-fit W +jets Z +jets VV VV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03 < 0.01 0.13 \pm 0.04$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \end{array}$	$SR-2B2Q-Zh \\ 1 \\ 1.6 \pm 0.5 \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032 \\ 0.011 \pm 0.007 \\ 0.40 \pm 0.16 \\ \end{bmatrix}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18
RegionObservedPost-fit W +jets Z +jets VV VV $t\bar{t}$ $t+X$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03 < 0.01 0.13 \pm 0.04 0.07 \pm 0.04 0.07 \pm 0.04 $	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007 0.40 ± 0.16 0.041 ± 0.022	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18 0.10 ± 0.05
RegionObservedPost-fit W +jets Z +jets VV VV $t\bar{t}$ $t+X$ $t\bar{t}+X$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \\ 0.10 \pm 0.08 \end{array}$	$SR-2B2Q-Wh$ 0 1.9 ± 0.7 0.24 ± 0.09 1.3 ± 0.5 0.09 ± 0.03 < 0.01 0.13 ± 0.04 0.07 ± 0.04 0.07 ± 0.04 $0.07^{+0.10}_{-0.07}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \\ 0.14 \pm 0.12 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007 0.40 ± 0.16 0.041 ± 0.022 $0.08^{+0.09}_{-0.08}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \\ 0.18 \pm 0.14 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18 0.10 ± 0.05 $0.10_{-0.10}^{+0.11}$

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

- Analysis has 7 "exclusive" (WW, WZ, ZZ, Wh, Zh) and 3 "inclusive" (VV, VZ, Vh) signal regions wrt gauge bosons in the decays
- Originally published EMs only for 4Q-VV, 2B2Q-VZ, and 2B2Q-Vh SRs; supposedly independent
- Some validations worked well, others didn't $\rightarrow ??$

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

Examples:

with 4Q-VV, 2B2Q-VZ and 2B2Q-Vh EMs

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

- New HEPData record now contains
 - full BG-only JSON file (not only signal-specific llhds)
 - signal patchsets for "pure" simplified models
- We can extract EMs for *excl*. SRs from these
 - would be good to have also patchsets for pure ZZ, Zh and hh decay modes

patchset_hinoAxino_brN2H0.json → ZZ
patchset_hinoAxino_brN2H100.json → hh
patchset_hinoAxino_brN2H50.json → Zh,ZZ,hh ??

Version 3 modifications: Added CRs to likelihoods

2023-11-13

BGOnlyFit fullLH.json

patchset_SM_C1C1_WW.json patchset SM C1N2 Wh.json patchset SM C1N2 WZ.json

many thanks to Shion Chen (et al.)!

pyhf Users and Developers workshop, 4-8 Dec 2023

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

Observed limits

HistFactory

& EMs from patchsets

Expected limits

HistFactory

& EMs from patchsets

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

implementation and validation by Timothée Pascal

& EMs from patchsets

validating scenarios with mixed final states (from BRs)

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

validating scenarios with mixed final states (from production)

HistFactory

& EMs from patchsets

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum

validating scenarios with mixed final states (from production)

implementation and validation by Timothée Pascal

& EMs from patchsets

Conclusions

- **I** Full statistical models are extremely useful
- In SModelS, we are mostly using simplify'ed ones for speed reasons
- Some differences wrt official ATLAS limits (exp vs obs limit) \rightarrow ?
- \Box Tools for different simplification schemes would be welcome, (e.g., simplified likelihood with linearised systematics, SLLS, by Nicolas Berger) but please always provide the full BG-only model
- **M** Patchsets for pure simplified models allow us to extract efficiency maps for the SModelS database (NB not possible for patchsets with mixed production/decay modes)

Openissues

- SUSY-2018-06 full llhd doesn't work properly
- SUSY-2018-16 provides full llhd, but so far we could not validate the EMs from this analysis in SModelS
- SUSY-2018-41 ... questions, see above
- Backend dependence: PyTorch gives reliable results, but issues with numpy

