
pyhf Users and Developers Workshop

Introduction and Logistics

Matthew Feickert, Lukas Heinrich, Giordon Stark

December 4th, 2023

Welcome!

The pyhf developer team is happy to have you all participating in this workshop!

If you have any questions throughout the week please ask one of us and/or email **pyhf-workshop-organisers@cern.ch**

Matthew Feickert

Lukas Heinrich

Workshop Goals: Users Section (Monday - Wednesday)

- Bring the **user community together** to discuss use and find potential overlaps (kernels for common use/new features) and collaborations
- Learn what tooling is being built on top of pyhf to meet analysis needs
 - Can this be put into common libraries (e.g. <u>cabinetry</u>, <u>spey</u>)?
 - Projects to extend for analysis (e.g. <u>abcd_pyhf</u>, <u>neos</u>, <u>bayesian_pyhf</u>)
- Study **user experience**: identify common pain points, areas for improvements
- Start writing these down **collectively** in the **workshop Google Doc**

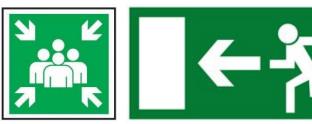
Workshop Goals: Developers Section (Thursday - Friday)

- Make everyone who wants to contribute to pyhf feel <u>empowered</u> to do so and equipped with knowledge of how
 - pyhf is an open source project for the whole community. It can be *your* project too.
- On-boarding session to induct new (and old) developers
- **Birds of a Feather** sessions: optimization, models, docs, etc.
- **Developer sprints**: got a task/feature/bug you wanna work on or fix? Documentation to improve?
- Sign up new volunteers to the developer team!
- Start writing these down collectively in the workshop Google
 <u>Doc</u>

Meeting Rooms

M :	222/R-003		304/1-007
T:	6/R-012		6/R-012
₩:	4/S-030	I	28/S-029
R:	42/3-002		6/2-024
F:	6/2-004	ĺ	6/2-004

Resources:


- CERN Map
- CERN Campus mobile app (<u>Google</u>, <u>iOS</u>)

Safety and Evacuation

Follow these signs:

- If alarm sounds, leave the building using the nearest and safest exit route. All doors should be closed (but not locked) on leaving.
- If possible take your personal belongings (such as handbags and briefcases) with you when you leave.
 Do NOT return to collect belongings.
- 3. In the case of a fire, do not use the lifts.
- 4. Assist any person with a disability or reduced mobility to leave the building. Use evacuation chairs to carry people down the stairs.
- 5. Walk quickly and calmly to the designated assembly area (see below) for your building or as advised by an Emergency Guide or Fire and Rescue Service personnel.
- 6. Remain at the assembly area (in groups) until instructed to leave by the TSO or Fire and Rescue Service personnel.
- 7. Do not re-enter the building until informed that it is safe to do so by the TSO or Fire and Rescue Service personnel.

Food and Refreshments

- Snacks: in the workshop rooms for morning and afternoon sessions!
 - Will try to rotate them out daily(!)
- CERN Restaurants rotate menu daily
 - R1: <u>https://www.mynovae.ch/en/restaurant/13-restaurant-r1/</u>
 - R2: <u>https://www.mynovae.ch/en/restaurant/21-restaurant-r2-/</u>
- Snacking Areas: open from Monday to Friday in buildings 6, 13, 30, 40, 54
- Vending Machines: <u>maps.cern.ch map</u> (accepts card and cash)
- Click-and-Collect: <u>mynovae details</u> (order ahead, pick-up later)

Social Dinner: Tuesday, 19h30

https://www.luigia.ch/en/academy/

Restaurant has wifi, password: happyluigia

Menu: https://menu.luigia.ch/menu/luigia

We will cover 50CHF/pp, order a la carte (drinks included), but you are responsible for anything over your allowance

Contains Celery If you see this symbol, the dish contains the indicated allergen.rv

n/a

n/a

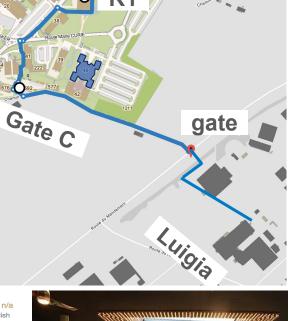
Vegetarian n/a This symbol indicates vegetarian product

Contiene Senape If you see this symbol, the dish contains the indicated allergen

Contains Gluten If you see this symbol the ontains the indicated alle

Contains Eggs If you see this symbol the contains the indicated alle

rustaceans ou see this symbol th contains the indicated alle


Contains Dairy If you see this symbol the dish contains the indicated allergen

Contains Traces Of n/a Nuts If you see this symbol, the dish

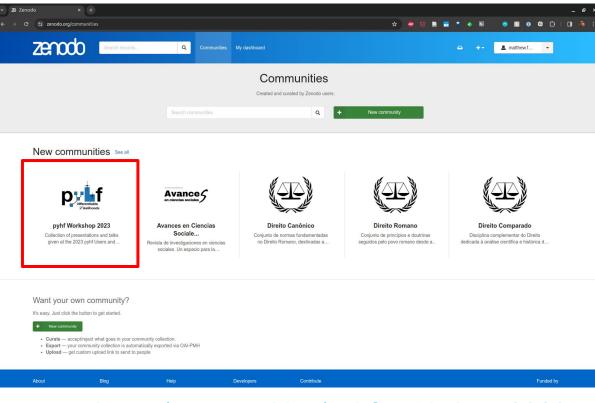
contains the indicated allergen

Contains Molluscs If you see this symbol the dish contains the indicated allergen

SSL BinderHub / JupyterHub

- Thanks to the <u>IRIS-HEP Scalable</u> <u>Systems Laboratory</u> (SSL) for use of their BinderHub and JupyterHub instances
- These provide a JupyterHub based computing environment that allow for interactive computing and following talks and demos in real time
- https://binderhub.ssl-hep.org/
- https://jupyterhub.ssl-hep.org/
- Introduction to using BinderHub
 YouTube video

KEYCLOAK
Sign in to your account Username or email Password
Sign In Or sign in with
cilogon


CILogon

Consent
IC AF requests access to the following information. If you do not approve this request, do • Your CILogon user identifier
Select
Re

Type to search ORCID 29 Mayis University A*STAR - Agency for Science, Technology and Research A. T. Still University AAF Virtual Home aai.lab.maeen.sa	
29 Mayis University Consent t A*STAR - Agency for Science, Technology and Research A. T. Still University AAF Virtual Home	
Consent t A*STAR - Agency for Science, Technology and Research A. T. Still University AAF Virtual Home	
A*STAR - Agency for Science, Technology and Research A. T. Still University AAF Virtual Home	
a request, do nc AAF Virtual Home	
AAF Virtual Home	
aai.lab.maeen.sa	
AAI@EduHr Single Sign-On Service	
Select a	
Aalto University	
Aarhus School of Architecture	
Aarhus School of Marine and Technical Engineering	
Rem Aarhus University	
AARNet	
Aba Teachers University	
By selecting "Log Abertay University	
Aberystwyth University	
ABES - French Bibliographic Agency for Higher Education	
Abingdon and Witney College	
Absalon University College	
Academia Cotopaxi - cotopaxi	4

Zendo Community archive of workshop

zenodo.org/communities/pyhf-workshop-2023

Thanks to supporting organizations

OPEN CODE = BETTER SCIENCE

Support, funding, infrastructure, and services (NSF Cooperative Agreement <u>PHY-2323298</u>)

2023 Small Development Grant

Use Citations

1. Shelley Tong, James Corcoran, Max Fieg, Michael Fenton, and Daniel Whiteson. New Physics in Single Resonant Top Quarks. 10 2023. arXiv:2311.00121

2. Jan Gavranovič and Borut Paul Kerševan. Systematic Evaluation of Generative Machine Learning Capability to Simulate Distributions of Observables at the Large Hadron Collider. 10 2023. arXiv:2310.08994.

4. Matthe

4. Ma

5. Mohar 6. Michae

7. ATLAS

8. Luc Da

9. Jack Y. Araz. Spey: smooth interence for reinterpretation studies. / 2023. arXiv:2307.06996.

10. Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, and Wolfgang Waltenberger. SModelS v2.3: enabling global likelihood analyses. 6 2023. arXiv:2306.17676.

11. Giordon Stark, Camila Aristimuno Ots, and Mike Hance. Reduce, Reuse, Reinterpret: an end-to-end pipeline for recycling particle physics results. 6 2023. arXiv:2306.11055.

12. Jay Chan. Investigation of Higgs Boson Decaying to Di-muon, Dark Matter Produced in Association with a Higgs Boson Decaying to \$b\$-quarks and Unbinned Profiled Unfolding. PhD thesis, University of Wisconsin-Madison, 5 2023. arXiv:2305.19436.

13. Belle II Collaboration. Search for lepton-flavor-violating \$\tau ^- \to \ell ^-\phi \$ decays in 2019-2021 Belle II data. 5 2023. arXiv:2305.04759.

14. Oksana Shadura and Alexander Held. First performance measurements with the Analysis Grand Challenge. 4 2023. arXiv:2304.05214.

and thanks to you

15. Qilong Guo, Leyun Gao, Yajun Mao, and Qiang Li. Vector-like lepton searches at a muon collider in the context of the 4321 model*. Chin. Phys. C, 47(10):103106, 2023. arXiv:2304.01885, doi:10.1088/1674-1137/ace5a7.

16. Subhasish Behera, Manuel Hageluken, and Matthias Schott. Prospects of Searches for Anomalous Hadronic Higgs Boson Decays at the LHeC. 2 2023. arXiv:2302.12885.

17. Jay Chan and Benjamin Nachman. Unbinned profiled unfolding. Phys. Rev. D, 108(1):016002, 2023. arXiv:2302.05390, doi:10.1103/PhysRevD.108.016002.

18. ATLAS Collaboration. Search for long-lived, massive particles in events with displaced vertices and multiple jets in pp collisions at \$ \sqrt s \$ = 13 TeV with the ATLAS detector. JHEP, 2306:200, 2023. arXiv:2301.13866, doi:10.1007/JHEP06(2023)200.

19. Nicolas Berger. Simplified likelihoods using linearized systematic uncertainties. JHEP, 04:084, 2023. arXiv:2301.05676, doi:10.1007/JHEP04(2023)084.

20. Belle II Collaboration. Search for an Invisible Z' in a Final State with Two Muons and Missing Energy at Belle II. Phys. Rev. Lett., 130(23):231801, 2023. arXiv:2212.03066, doi:10.1103/PhysRevLett.130.231801.

21. Matthew Feickert, Lukas Heinrich, and Giordon Stark. pyhf: a pure-Python statistical fitting library with tensors and automatic differentiation. PoS, ICHEP2022:245, 11 2022. doi:10.22323/1.414.0245.

22. Alexander Held and Oksana Shadura. The IRIS-HEP Analysis Grand Challenge. PoS, ICHEP2022:235, 11 2022. doi:10.22323/1.414.0235.

23. Lina Alasfar. Phenomenology of the Higgs and Flavour Physics in the Standard Model and Beyond. PhD thesis, Humboldt U., Berlin, 2022. URL: https://inspirehep.net/literature/2615298, doi:10.18452/25336.

24. Diptaparma Biswas. Search for a dark leptophilic scalar produced in association with taupair in electron-positron annihilation at center-of-mass energies near 10.58 GeV. PhD thesis, Louisville U., 10 2022. URL: https://inspirehep.net/literature/2178671, doi:10.18297/etd/3967.

25. Guilherme Luis De Sousa Fihalo Guedes. A global approach to physics beyond the Standard Model. PhD thesis, Granada U., 9 2022. URL: https://inspirehep.net/literature/2157017.

26. Trygve Buanes, Iñaki Lara, Krzysztof Rolbiecki, and Kazuki Sakurai. LHC constraints on electroweakino dark matter revisited. Phys. Rev. D, 107(9):095021, 2023. arXiv:2208.04342, doi:10.1103/PhysRevD.107.095021.

27. Lukas Allwicher, Darius. A. Faroughy, Florentin Jaffredo, Olcyr Sumensari, and Felix Wilsch. HighPT: A tool for high-pT Drell-Yan tails beyond the standard model. Comput. Phys. Commun., 289:108749, 2023. arXiv:2207.10756, doi:10.1016/j.cpc.2023.108749.

28. Belle Collaboration. Search for a dark leptophilic scalar produced in association with \$\tau ^-\\$ pair in \$e^+e^-\$ annihilation at center-of-mass energies near 10.58 GeV. 7 2022. arXiv:2207.07476.

29. Gaël Alguero, Jack Y. Araz, Benjamin Fuks, and Sabine Kraml. Signal region combination with full and simplified likelihoods in MadAnalysis 5. SciPost Phys., 14(1):009, 2023. arXiv:2206.14870, doi:10.21468/SciPostPhys.14.1.009.

30. Audrey Kvam. Search for Events with Two Displaced Vertices from Pair-Produced Neutral Long-Lived Particles Decaying to Hadronic Jets in the Muon Spectrometer of the ATLAS Detector with Full Run 2 Data. PhD thesis, Washington U., Seattle, 2022. URL: https://cds.cern.ch/record/2812260.

31. ATLAS Collaboration. Search for heavy, long-lived, charged particles with large ionisation energy loss in \$pp\$ collisions at \$\sqrt s = 13 \text TeV\$ using the ATLAS experiment and the full Run 2 dataset. JHEP, 2306:158, 2023. arXiv:2205.06013, doi:10.1007/JHEP06(2023)158.

32. Lucas Santiago Borgna. Search for pair production of Higgs Bosons decaying to four bottom quarks with data collected by the ATLAS detector. PhD thesis, University Coll. London, 2022. URL: https://cds.cern.ch/record/2812193.

33. Alexander Albert and others. Strange quark as a probe for new physics in the Higgs sector. In 2022 Snowmass Summer Study. 3 2022. arXiv:2203.07535.

34. Nathan Simpson and Lukas Heinrich. neos: End-to-End-Optimised Summary Statistics for High Energy Physics. 3 2022. arXiv:2203.05570.

35. ATLAS Collaboration. Search for neutral long-lived particles in \$pp\$ collisions at \$\sqrt s=13\$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter. JHEP, 06:005, 2022. arXiv:2203.01009, doi:10.1007/JHEP06(2022)005.

36. ATLAS Collaboration. Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at \$\sqrt s\$=13\\TeV. Phys. Rev. D, 106(3):032005, 2022. arXiv:2203.00587, doi:10.1103/PhysRevD.106.032005. 37. Florentin Jaffredo. Revisiting mono-tau tails at the LHC. Eur. Phys. J. C, 82(6):541, 2022. arXiv:2112.14604, doi:10.1140/epjc/s10052-022-10504-9.

38. Moritz Elias Hesping. Differential Cross Section Measurement of the \$pp\rightarrow WH\rightarrow WWW\$ Process With the ATLAS Experiment. PhD thesis, Johannes Gutenberg-Universität Mainz, 11 2021. URL: https://cds.cern.ch/record/2799614.

39. ATLAS Collaboration. Implementation of simplified likelihoods in HistFactory for searches for supersymmetry. Geneva, Sep 2021. URL: https://cds.cern.ch/record/2782654.

40. Michael J. Baker, Darius A. Faroughy, and Sokratis Trifinopoulos. Collider signatures of coannihilating dark matter in light of the B-physics anomalies. JHEP, 11:084, 2021. arXiv:2109.08689, doi:10.1007/JHEP11(2021)084.

41. Kyle Cranmer and others. Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys., 12(1):037, 2022. arXiv:2109.04981, doi:10.21468/SciPostPhys.12.1.037.

42. Kyle Cranmer and Alexander Held. Building and steering binned template fits with cabinetry. EPJ Web Conf., 251:03067, 2021. doi:10.1051/epjconf/202125103067.

43. ATLAS Collaboration. Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in \(\sqrt s = 13\\text TeV\) \(pp\) collisions with the ATLAS detector. Eur. Phys. J. C, 81:1118, 2021. arXiv:2106.01676, doi:10.1140/epjc/s10052-021-09749-7.

44. Belle II Collaboration. Search for \$B^+ \to K^+ \nu \bar \nu \$ decays with an inclusive tagging method at the Belle II experiment. In 55th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5 2021. arXiv:2105.05754.

45. Belle II Collaboration. Search for B+\textrightarrow K+\ensuremath \nu \ensuremath \nu \textasciimacron Decays Using an Inclusive Tagging Method at Belle II. Phys. Rev. Lett., 127(18):181802, 2021. arXiv:2104.12624, doi:10.1103/PhysRevLett.127.181802.

46. Andrei Angelescu, Damir Bečirević, Darius A. Faroughy, Florentin Jaffredo, and Olcyr Sumensari. Single leptoquark solutions to the B-physics anomalies. Phys. Rev. D, 104(5):055017, 2021. arXiv:2103.12504, doi:10.1103/PhysRevD.104.055017.

47. Matthew Feickert, Lukas Heinrich, Giordon Stark, and Ben Galewsky. Distributed statistical inference with pyhf enabled through funcX. EPJ Web Conf., 251:02070, 2021. arXiv:2103.02182, doi:10.1051/epjconf/202125102070.

48. Rodolfo Capdevilla, Federico Meloni, Rosa Simoniello, and Jose Zurita. Hunting wino and higgsino dark matter at the muon collider with disappearing tracks. JHEP, 06:133, 2021. arXiv:2102.11292, doi:10.1007/JHEP06(2021)133.

49. Vincenzo Cirigliano, Kaori Fuyuto, Christopher Lee, Emanuele Mereghetti, and Bin Yan. Charged Lepton Flavor Violation at the EIC. JHEP, 03:256, 2021. arXiv:2102.06176, doi:10.1007/JHEP03(2021)256.

50. Benjamin Fuks and others. Proceedings of the second MadAnalysis 5 workshop on LHC recasting in Korea. Mod. Phys. Lett. A, 36(01):2102001, 2021. arXiv:2101.02245, doi:10.1142/S0217732321020016.