Dark matter: landscape and XLZD reach

Christopher McCabe

XLZD @ Boulby Open Community Meeting, Imperial, 4 July 2023

Dark matter landscape

Reminder: we have detected dark matter

Christopher McCabe

Existence of DM on astrophysical and cosmological scales is known and well characterised

the microscopic nature of DM is almost completely unconstrained

Dark Matter Particle (X^0)

 X^0 mass: m = ? X^0 spin: J = ? X^0 parity: P = ? X^0 lifetime: $\tau = ?$ X^0 interactions with normal matter?

Why should DM interact with normal matter?

&

Particle Physics

Informs and limits the possible interactions

Cosmology

$\Omega_{\rm DM} h^2 = 0.120 \pm 0.001$

Explaining this value suggests dark and visible matter interactions are generic

candidates)

DM landscape: classifying by mass and interaction

Boveia et al, arXiv:2211.07027

DM landscape: classifying with clever people's 'mind-map'

Christopher McCabe

Bertone, Tait, Nature arXiv:1810.01668

8

How can we make progress?

Cosmic Frontier's recommendation:

- Aim: determine DM mass and interaction cross section
- (or, experimentally exclude the broadest accessible ranges of both quantities)
 - Approach: search for direct interaction of DM with a terrestrial detector

- **Delve deep** (cover high priority targets e.g., WIMPs) Search wide (explore as much DM parameter space as possible)

Dark matter landscape in the context of XLZD

XLZD detection principle

Christopher McCabe

Christopher McCabe

3D reconstruction of interaction position:

Can exploit Xe self-shielding to search in quietest parts of the detector

XLZD detection principle

Christopher McCabe

Discrimination between different interactions

arXiv:1802.06039

Why can XLZD improve on previous experiments?

Christopher McCabe

Bigger target mass: Rare events occur more frequently

Lower background: Rarer events can be observed over background

High priority target: WIMPs

- WIMPs, historically, are the most studied DM candidate
- Advantages:
 - 'naturally' produced with the right relic abundance
 - Embedded in theories that alleviate the 'hierarchy problem' (SUSY, etc)
- Idea of 'Natural WIMPs'

High priority target: WIMPs

- WIMPs, historically, are the most studied DM candidate
- Advantages:
 - 'naturally' produced with the right relic abundance
 - Embedded in theories that alleviate the 'hierarchy problem' (SUSY, etc)
- Idea of 'Natural WIMPs'

'Delve deep'

16

Non-natural WIMPs: heavier candidates

- WIMPs, historically, are the most studied DM candidate
- Advantages:
 - 'naturally' produced with the right relic abundance
 - Embedded in theories that alleviate the 'hierarchy problem' (SUSY, etc)
- Link to hierarchy problem not needed for DM
 - Idea of 'non-natural WIMPs'

Aalbers, JPhyD arXiv:2203.02309

Even heavier candidates: towards the Planck scale

Non-natural WIMPs: towards lighter DM candidates

Aalbers, JPhyD arXiv:2203.02309

Non-natural WIMPs: towards lighter DM candidates

'Migdal effect': electrons and the nucleus are coupled in atoms so perturbations of the nucleus can induce electronic transitions

Allows XLZD to prove the sub-GeV window

(Several activities ongoing to gain a better understanding of the effect)

 10^{-31} section [cm²] 10^{-33} 10^{-35} WIMP-nucleon cross 10^{-37} 10^{-30} 10^{-41} 10^{-43} SI 10^{-45} 10^{-47}

XLZD: multi-target detector

Xenon naturally contains several isotopes with sizeable abundance (>~5%) 'Odd neutron isotopes' (129Xe and 131Xe) give sensitivity to interactions that couple to spin [136Xe for neutrinoless double-beta decay]

LXe-TPC

XLZD: multi-target detector

Xenon naturally contains several isotopes with sizeable abundance (>~5%)'Odd neutron isotopes' (129Xe and 131Xe) give sensitivity to interactions that couple to spin [136Xe for neutrinoless double-beta decay]

XLZD: multi-target detector

Xenon naturally contains several isotopes with sizeable abundance (>~5%)[136Xe for neutrinoless double-beta decay]

LXe-TPC

Type

Magnetic Di Electric Dip Vector Axial-vector Tensor⊗Ter Pseudo-tensor Scalar⊗Sca Scalar-glue Pseudo-scalar $Pseudo-scalar \otimes$ Spin-2 Axial-vector & Axi

- 'Odd neutron isotopes' (129Xe and 131Xe) give sensitivity to interactions that couple to spin
 - Can test a menagerie of dark matter interactions

	Abbrev.	Operator	Dimension	Coherent	Coefficients
		(\mathcal{Q})		enhancement	
ipole	_	$\bar{\chi}\sigma^{\mu u}\chi F_{\mu u}$	5	Partial	C_F
pole	-	$ar{\chi}\sigma^{\mu u}\chi ilde{F}_{\mu u}$	5	Yes	$ ilde{C}_F$
ctor	VV	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	6	Yes	$C_{u,d,s}^{VV}$
Vector	AV	$ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}q$	6	Yes	$C^{AV}_{u,d}$
nsor	TT	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	6	Yes	$C_{u,d,s}^{TT}$
⊗Tensor	\widetilde{TT}	$\bar{\chi}\sigma^{\mu u}i\gamma_5\chi\bar{q}\sigma_{\mu u}q$	6	Yes	$ ilde{C}_{u,d,s}^{TT}$
alar	SS	$ar\chi\chi m_qar q q$	7	Yes	$C_{u,d,s}^{SS}$
on	S_g	$lpha_s \bar{\chi} \chi G^a_{\mu u} G^{\mu u}_a$	7	Yes	C_g^S
- gluon	$ ilde{S}_g$	$\alpha_s \bar{\chi} i \gamma_5 \chi G^a_{\mu u} G^{\mu u}_a$	7	Yes	$ ilde{C}_g^S$
\otimes Scalar	PS	$ar{\chi}i\gamma_5\chi m_qar{q}q$	7	Yes	$C^{PS}_{u,d,s}$
	-	$ar{\chi}\gamma_{\mu}i\partial_{ u}\chiar{ heta}^{\mu u}_{q(g)}$	8	Yes	$C_{u,d,s,g}^{\left(2 ight) }$
ial-vector	AA	${ar \chi} \gamma^\mu \gamma_5 \chi {ar q} \gamma_\mu \gamma_5 q$	6	No	$C_{u,d,s}^{AA}$

Multiple DM candidates have been proposed with sub-structure

Allows for inelastic scattering of DM with nuclei

Rich phenomenology of signals: higher energy signals; mixed nuclear recoil and electronic recoil signals

Larger TPC allows for larger DM lifetimes to be probed

[WIMPs can also excite the xenon nucleus: could be used as a secondary discovery channel]

XLZD: beyond elastic scattering

'Search wide'

XENON, JCAP, arXiv:1704.05804

24

Broadening the search: charge only signals

Much recent activity exploring the sub-GeV window with ionisation signals, giving DM sensitivity down to ~10 MeV

Larger TPC allows for:

- Improved identification of S2s from the bottom of the detector
- decrease in Xe contamination from the relative scaling of volume and surface area

Broadening the search: charge only signals

DM absorption (bosons) gives DM sensitivity down to ${\sim}\,10\,\text{eV}$

Larger TPC and lower background rates will improve sensitivity

Allows XLZD to probe down to the particle DM/ wave DM boundary (~few eV)

Summary: what does XLZD do?

Summary: what does XLZD do?

Summary: what does XLZD do?

Christopher McCabe

Bertone, Tait, Nature arXiv:1810.01668

- The search for dark matter continues...
- Current strategy adopted by the community summarised with 'delve deep and search wide'
 - In this context, XLZD is the definitive broadband, multi-purpose particle dark matter detector
 - XLZD definitively probes 'natural-WIMPs' to the neutrino floor, and gives sensitivity to candidates up to the Planck mass and down to eV scale
 - Remarkably, candidates across the full mass range of *particle* dark matter can be tested

