WP3: XLZD Cryostat

Pawel Majewski and Joe O'Dell (STFC/Rutherford Appleton Laboratory)

4 July 2023, Imperial College London

Key elements of this work package:

- Design (site dependent) in collaboration with KIT (Germany) and NIKHEF (Netherlands)
- 2. Material selection and procurement
- 3. Fabrication (site dependent)
- 4. Testing and cleaning
- 5. Transportation and assembly in the experimental hall (site dependent)

Top level requirements :

- 1. Design and material compliance with pressure vessel code
- 2. Cryostat material compliance with XLZD radioactivity budget from background simulations to achieve required sensitivity
- 3. Inner vessel compact geometry to minimize use of passive xenon
- 4. Outer vessel simple geometry for efficient coverage of the outer detector
- 5. Inner and outer vessel geometry facilitating staging of the TPC and increasing amount of LXe in the detector
- In case of vertical transportation and with a limited cross-section of the shaft :
 - Inner and outer vessel to be segmented into minimum number of elements to minimise complexity of fabrication u/g.
 - Required mechanical tolerances should fit to achievable precision available in the fabrication processes u/g.

Top level requirements :

In case of vertical transportation and with a limited cross-section of the shaft :

- Inner and outer vessel to be segmented into a minimum number of elements to minimise complexity of fabrication u/g.
- Required mechanical tolerances should fit to achievable precision available in the fabrication processes u/g.

LZ cryostat inner vessel in the shaft ready for transportation u/g.

For LZ cryostat deployed in the US:

- 1. ASME BPVC II (a,d) and ASME BPVC VIII div 1
 - material Ti
 - shell wall
 - dished ends and heads
 - ICV conical section
 - ports and local reinforcement
 - flanges

Product form SB265 UG-27/28 UG-32/33 UG-28.1/33 UG-36/37 M. App 2

2. ASCE 7 for seismic conditions

UK standard for pressure vessels

PD 5500

3. 2012 International Building Code

Inner Vessel							
Тор	Upper	Conical	Lower	Dished	Total		
head	wall	section	wall	end	mass		
7	9	9	9	11	950		

- Holds 10000 kg of liquid xenon and TPC
- Two segments : top head and lower part
- Suspended from OCV top head
- Ports :

2 x top head (cabling + pumping) 3 x weir ports 1 x high voltage 6 x TPC ports 1 x central dished end (cabling)

- Thermosyphon fins : 6 (wall) + 4 (dished end)
- 3 x tie rod attachments
- 2 x top head lifting points
- 5 x seismic limiters

- Holds Inner Cryostat Vessel
- Three segments : top head, middle and lower part
- Supported by the cryostat base
- Ports:
 - 2 x top head (cabling + pumping)
 3 x tie rod ports
 1 x YBe source closed port
 1 x HV port
 1 x central dished end (cabling, fluid)
- Top head flange + YBe source port reinforcement to support OD top acrylic vessels

Outer Vessel						
Тор	Top Side		Total			
head	wall	end	mass			
8	7	14	1115			

- Supports LZ cryostat (full load of 14000 kg)
- System with 3 flat legs (30 mm thick) to maximize OD tanks coverage
- Height and level adjustable with shims
- 3 shelves to support OD tanks
- Seismic conditions included in the design
- Mounting plates at the bottom for assembly with water tank base

Material search campaign

1.....

- 21 samples of Ti and 22 of stainless steel screened
- Selected : Timet heat number HN3469 Ti slab melt in Morgantown in Pennsylvania
- Three 5T slabs were made available to the project

Namo	²³⁸ U (mBq/kg)		232 Th (r	nBq/kg)	⁶⁰ Co	40 K	
Iname	early	late	early late		(mBq/kg)	(mBq/kg)	
NIRONIT (1)	7.3	0.35	1.1	4.0	14.5	0.53	
NIRONIT (2)	1.2	0.27	0.12	0.49	1.6	<0.4	
NIRONIT (3)	<1	0.54	0.49	1.1	1.7	< 0.59	
NIRONIT (4)	1.4	0.5	0.5	0.32	2.6	< 0.5	
NIRONIT (5)	1.1	0.38	0.81	0.73	5.6	<0.46	
NIRONIT (6)	0.5	1.9	1.7	1.5	4.5	< 0.5	
NIRONIT (7)	-	1.1	-	4.1	8.2	<3.0	
NIRONIT (8)	-	<0.6	-	<0.8	7.4	<3	
NIRONIT (9)	-	<0.6	-	< 0.9	6.5	<3	
NIRONIT (10)	-	4	-	2.2	26	<4	
NIRONIT (11)	-	<0.6	-	4.8	32	<2	
NIRONIT (12)	-	< 0.8	-	2.1	32	5	
NIRONIT (13)	-	<1.4	-	<1.5	335	<4	
GERDA D6	<	5	</td <td>0.4</td> <td>-</td> <td>< 0.002</td>	0.4	-	< 0.002	
published [5]	<0	0.6	<1.4		16.8 ± 2.4	<1.8	
GERDA G1	<	5	<0	<0.4		<0.003	
published [5]	<.	1.3	<2.6		45.5 ± 2.1	<2.8	
GERDA G2	<	5	<0.4		-	<0.003	
published [5]	<0	.86	< 0.24		14.0 ± 0.1	< 0.93	
NEXT 10 mm	7	46	< 0.24		-	< 0.63	
published [24]	<	21	< 0.59		2.8 ± 0.2	< 0.96	
NEXT 15 mm	12	.4	<0	.24	-	< 0.63	
published [24]	<	25	<0	.69	4.4 ± 0.3	<1.0	
NEXT 50 mm	12	.4	<0	.24	-	< 0.63	
published [24]	67 =	± 22	2.1 ± 0.4		4.2 ± 0.3	<2.5	

Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

D.S. Akerib, ^{1,2} C.W. Akerlof, ³ D. Yu. Akimov, ⁴ S.K. Alsum, ⁵ H.M. Araújo, ⁶ I.J. Arnquist, ^a M. Arthurs, ³ X. Bai, ⁷
A.J. Bailey, ⁶ , ^b J. Balajthy, ⁸ S. Balashov, ⁹ M.J. Barry, ¹⁰ J. Belle, ¹¹ , ^c P. Beltrame, ¹² T. Benson, ⁵ E.P. Bernard, ^{13,14}
A. Bernstein, ¹⁵ T.P. Biesiadzinski, ^{1,2} K.E. Boast, ¹⁶ A. Bolozdynya, ⁴ B. Boxer, ^{17,9} R. Bramante, ^{1,2} P. Brás, ¹⁸
J.H. Buckley, ¹⁹ V.V. Bugaev, ¹⁹ R. Bunker, ^{7, d} S. Burdin, ¹⁷ J.K. Busenitz, ²⁰ C. Carels, ¹⁶ D.L. Carlsmith, ⁵
B. Carlson, ²¹ M.C. Carmona-Benitez, ²² C. Chan, ²³ J.J. Cherwinka, ⁵ A.A. Chiller, ²⁴ C. Chiller, ²⁴ A. Cottle, ¹¹
R. Coughlen, ⁷ W.W. Craddock, ¹ A. Currie, ⁶ , ^e C.E. Dahl, ^{25,11} T.J.R. Davison, ¹² A. Dobi, ^{10, f} J.E.Y. Dobson, ²⁶
E. Druszkiewicz, ²⁷ T.K. Edberg, ⁸ W.R. Edwards, ¹⁰ W.T. Emmet, ¹⁰ C.H. Faham, ¹⁰ S. Fiorucci, ¹⁰ T. Fruth, ¹⁶
R.J. Gaitskell, ²³ N.J. Gantos, ¹⁰ V.M. Gehman, ¹⁰ , ^h R.M. Gerhard, ²⁸ C. Ghag, ²⁶ M.G.D. Gilchriese, ¹⁰ B. Gomber, ⁵
C.R. Hall, ⁸ S. Hans, ²⁹ K. Hanzel, ¹⁰ S.J. Haselschwardt, ³⁰ S.A. Hertel, ³¹ S. Hillbrand, ²⁸ C. Hjemfelt, ⁷ M.D. Hoff, ¹⁰
B. Holbrook, ²⁸ E. Holtom, ⁹ E.W. Hoppe, ^a J.Y-K. Hor, ²⁰ M. Horn, ²¹ D.Q. Huang, ²³ T.W. Hurteau, ¹⁴
C.M. Ignarra, ^{1, 2} R.G. Jacobsen, ¹³ W. Ji, ^{1, 2} A. Kaboth, ^{9,1} K. Kamdin, ^{10, 13} K. Kazkaz, ¹⁵ D. Khaitan, ²⁷ A. Khazov, ⁹
A.V. Khromov, ⁴ A.M. Konovalov, ⁴ E.V. Korolkova, ³² M. Koyuncu, ²⁷ H. Kraus, ¹⁶ H.J. Krebs, ¹ V.A. Kudryavtsev, ³²
A.V. Kumpan, ⁴ S. Kyre, ³⁰ C. Lee, ^{1, 2, j} H.S. Lee, ³³ J. Lee, ³³ D.S. Leonard, ³³ R. Leonard, ⁷ K.T. Lesko, ¹⁰
O T

Namo	Type	238 U (mBq/kg)			$ ^{232}$ Th (mBq/kg)		40 K
Name	Type	early	late	$ ^{210}\mathbf{Pb}$	early	late	(mBq/kg)
Supra Alloy Sheet (1)	ASTM Grade 1 Sheet	32	4.2	-	3.3	2.8	<1.9
Supra Alloy Sheet (2)	ASTM Grade 2 Sheet	110	<2	-	200	180	25
TIMET Sponge (1)	Sponge	25	<2	250	<4.1	<4.1	<12
TIMET Sponge (2)	Sponge	<25	<2	6200	<4.1	<2.4	<15
TIMET Sponge (3)	Sponge	<25	<2	<62	< 5.3	<1.6	<12
TIMET Sponge (4)	Sponge	74	<2	120	<4.1	<1.6	<12
TIMET Sponge (5)	Sponge	<12	<2	740	<4.1	<1.6	<12
TIMET Sponge (6)	Sponge	74	<4	2500	<5.3	14	<19
TIMET Sponge (7)	Sponge	37	25	2500	12	5.7	<12
TIMET Sheet (1)	ASTM Grade 1 Sheet	11	<0.62	-	< 0.8	<0.6	<2.5
TIMET Sheet (2)	ASTM Grade 1 Sheet	5	3.3	-	2.8	0.8	<1.5
TIMET Sheet (3)	ASTM Grade 1 Sheet	8.5	0.37	-	0.45	0.61	<0.5
TIMET Sheet (4)	ASTM Grade 1 Sheet	8.0	< 0.12	-	< 0.12	<0.1	<0.6
TIMET HN3469-T	ASTM Grade 1 Slab	<1.6	< 0.09	-	0.28	0.23	<0.5
TIMET HN3469-M	ASTM Grade 1 Slab	2.8	<0.10	-	< 0.20	0.25	<0.7
PTG Sheet (1)	ASTM Grade 1 Sheet	47	2.8	-	2.0	2.8	<1.9
PTG Sheet (2)	ASTM Grade 2 Sheet	<9.9	3.7	-	< 0.81	2.4	<2.2
Bolts	Bolts	1300	< 6.2	-	160	160	<37
Nuts/Washers	Nuts/Washers	520	<8.6	-	<12	81	<62
Honeywell Sheet	ASTM Grade 1 Sheet	3.7	4.7	-	1.5	1.6	<1.5
VSMPO Disc $(10\% \text{ scrap})$	ASTM Grade 1 Metal	62	< 6.2	-	<4.1	<4.1	<31
VSMPO Sponge	ASTM Grade 1 Sponge	17	12	-	<4.1	<4.1	<6.2

ep 2017

Fabrication process

Material - Titanium CP-1 (grade 1) from Timet

Machining

Assembly at Loterios

Cryostat metrology as built

Final cleaning at AstroPak (CA)

Cryostat vessels at SURF in the SAL

From a single slab to a beautiful engineering and manufacturing marvel.

XLZD Cryostat@Boulby

- We designed the LZ cryostat and together with our colleagues from KIT and NIKHEF who designed the Darwin cryostat we are well prepared for the next step.
- We have successfully selected the best radio-pure material to date and we know low radioactivity material suppliers worldwide.
- In collaboration with TWI and Nuclear AMRC we can reach best UK vessel manufacturers to help us in our XLZD endeavor deep in the Yorkshire salt.