Astrophysical Probes of Dark Sector Physics

and signals of self-interacting dark matter

Oren Slone

arXiv numbers: 2108.03243, 2202.00012, 2206.12425, 2207.02861, 2402.12452

The Dark Sector

The Standard Model

The Dark Sector

"The nightmare scenario" Particle Physicists

This talk:

Turning the nightmare into a regular dream

Mapping dark sector micro-physics onto gravitational macro-physics

self interactions

global dissipation

X

maps to dark matter macro-physics

heat flow

Understand the mapping

gravitational effects

Compare to astrophysical data and answer fundamental questions

SIDM Cross Section

SIDM Cross Section

Observational consequences of

A self gravitating sphere of SIDM

Dark Sector Kinetic Theory

Is there a fluid description?

Solve for: $\{\rho, T, P, \overrightarrow{q}, \overrightarrow{u}\}$ (1. EOS: $P \propto \rho T$)

Moments of Boltzmann Equation

$$\frac{\partial}{\partial t} \langle nA \rangle + \frac{\partial}{\partial \vec{r}} \langle n\vec{v}A \rangle - n \langle \vec{v} \cdot \frac{\partial A}{\partial \vec{r}} \rangle - n \langle \vec{F} \cdot \frac{\partial A}{\partial \vec{p}} \rangle = \int d^3 p A \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

2. A = 1: Continuity equation
3. A = v: Momentum conservation
4. A = v²: Energy conservation

<u>Heat flux</u>

5. $\overrightarrow{q} = \kappa \cdot \overrightarrow{\nabla} T$ (when $\lambda_{\text{MFP}} \ll H_{\text{Jeans}} \rightarrow \kappa \propto \lambda_{\text{MFP}} v$)

SIDM and Kinetic Theory

Heat flux when $\lambda_{MFP} > H_{Jeans}$:

 $\kappa \propto \lambda_{\rm MFP} \times v \approx H_{\rm Jeans} \times H_{\rm Jeans}/t_{\rm coll}$

SIDM Dynamics

 $\rightarrow \{\rho, T, P, \overrightarrow{q}, \overrightarrow{u}\}$

- 1. Equation of state
- 2. Continuity equation
- 3. Momentum conservation
- 4. Energy conservation
- 5. Heat flux equation

Fits simulations

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

Bounds from Dwarfs

SIDM Cross Section

Some SIDM halos must Gravothermally Collapse

OS, Jiang, Lisanti & Kaplinghat

Exploring Allowed Parameter Space

16

Gravothermal Collapse Timescale

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

A Smoking-Gun Signal

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

SIDM Dwarf Galaxies in Real Environments

(Dark) Ram Pressure

Tidal Stripping

Accelerates Core Collapse

Nishikawa et. al., 2020

SIDM Dwarf Galaxies in Real Environments

Tidal Stripping

(Dark) Ram Pressure

Dark Matter Ram Pressure

Suppresses Core Collapse

Which rates control which process?

Compete with each other

New Fluid Equations

Ram Pressure + Tidal Stripping

25

Observational Signal

Use this to constrain SIDM e.g. Draco must have collapsed, so: $\tilde{\Gamma}_{\rm ev,Draco} \lesssim 10^{-2}$

Constraint on parameters

Summary and Outlook

Kinetic Theory = Powerful tool to search for dark sector signals

Thank you!