Rare species of dark matter Maxim Pospelov FTPI and U of Minnesota

- Introduction. Difficult spots for direct detection. A. Light dark matter. B. Thermalized dark matter fraction. *Dark matter through multiple collisions*.
- Light dark matter reflected from A. the Sun, B. from cosmic rays. Constraints on scattering cross section.
- Rare species of strongly interacting dark matter. DM flux: "traffic jam" and hydrostatic population
- Signatures: A. Signatures for neutrino detectors: Direct annihilation inside underground neutrino detectors. B. Possible use of underground accelerators: a scheme to search for strongly interacting DM in double collision C. Constraints from the DM detectors at nuclear reactors. D. De-excitations of nuclear isomers. Interesting case of ¹⁸⁰Ta.

References and Collaborators

- New sensitivity to light dark matter via solar reflection (With H. Nie, H. An, J. Pradler, A. Ritz). (2018 PRL, 2021 PRD)
- Acceleration of DM by cosmic rays (With T. Bringmann). 1810.10543 [hep-ph], (2019 PRL)
- Possible use of underground accelerators? (With M. Moore, D. McKeen, D. Morrissey, H. Ramani). 2202.08840[hep-ph]
- Constraints on Dark Matter from Nuclear Reactors. 2402.03431 [hep-ph] (With Y. Ema, A. Ray)
- Constraints on Dark Matter from Nuclear Isomers. 1907.00011 [hep-ph] (With S. Rajendran, H. Ramani). B. Lehnert et al., 1911.07965 [Astro-ph.co], PRL 2020
- I also worked on related topics with A. Berlin, H. Liu.

 Impressive 2022-24 updates of Direct detection limits by LZ, XenonNT.

25

 $- B_0$

т

3

Blind areas for direct detection

1. ~MeV scale dark matter: Kin Energy $= mv^2/2 \sim (10^{-3}c)^2 (MeV/c^2) \sim eV$. Below the ionization threshold! (v < 2*10⁻³ c)

 Strongly-interacting subdominant component of Dark Matter. Thermalizes before reaching the underground lab, Kin energy ~ kT ~0.03 eV

(Typically cannot be entire DM, but is limited to fraction $f_{\gamma} < 10^{-3}$)

Below the ionization threshold!

Different strategies to cover blind spots

1. Develop new technologies that will be sensitive to the sub-eV energy deposition.

2. Explore multiple collisions of DM to fill in "blind spots"

Excess background at low energy

- LZ, Xenon NT, the counting rate is as low as ~ 10 events / ton / year / keV ~ below 10⁻⁴ events/kg/day, With E > 0.5 keV
- Typical counting rates at lowest threshold semiconductor detectors are large, currently plagued by unexplained excess:

Collaborative summary paper based on the results reported at EXCESS 2021

https://arxiv.org/abs/2202.05097

Counting rates in low-threshold semiconductors, at a ~ few 10 eV electron recoil, ~ 10^{6} events/kg/day

"Reflected DM": extending the reach of Xe experiments to WIMP scattering on electrons

- Initial kinetic energy $m_{dm}(v_{dm})^2/2$ with $v_{dm} \sim 10^{-3}$ c (that has an endpoint at ~600 km/sec)can be changed by scattering with electrons, $v_{el} \sim (2 T_{core} / m_e)^{1/2} \sim up$ to 0.1 c. In particular $E_{reflected}$ can become larger than $E_{ionization}$.
- Huge penalty in the flux of "reflected" DM ~ 10⁻⁶ ~ solid angle of the Sun $\Phi_{\text{refl}} \sim \frac{\Phi^{\text{halo}}}{4} \times \begin{cases} \frac{4S_g}{3} \left(\frac{R_{\text{core}}}{1 \text{ A.U.}}\right)^2 \sigma_e n_e^{\text{core}} R_{\text{core}}, & \sigma_e \ll 1 \text{ pb}, \\ S_g \left(\frac{R_{\text{scatt}}}{1 \text{ A.U.}}\right)^2, & \sigma_e \gg 1 \text{ pb}. \end{cases}$

Analogy with Sunyaev-Zeldovich effect

- CMB photons are upscattered by hot gas in clusters of galaxies. Decrement at low frequency and increase at higher frequency.
- Solar electrons will do the same to light dark matter. Sun will be seen as a "hot spot" in dark matter.

Contact mediator, limits on σ_e

only electrons

electrons and protons

An, Nie, MP, Pradler, Ritz, 2017, 2022

- Large Xe-based detectors improve sensitivity to σ_e through reflected flux. Sensitivity to cross section on electrons down to 10^{-38} cm².
- Significant fraction of "freeze-out" line for DM abundance is excluded in a simple WIMP model.

Massless mediators, limits on σ_e

An, Nie, MP, Pradler, Ritz, 2021

- Large Xe-based detectors improve sensitivity to σ_e through reflected flux.
- Second case, massless mediator = milli-charged dark matter, Xe1T is sensitive to $Q_{eff} \sim \text{few } 10^{-10} \text{ e.}$
- The results are cross-checked with Stony Brook group (some errors corrected)

Light DM accelerated by cosmic rays

- There is always a small energetic component to DM flux (Bringmann, Pospelov, PRL 2019, others) due to interaction with cosmic rays.
- Typically: MeV DM mass \rightarrow eV kinetic energy \rightarrow sub-eV nuclear recoils. No limits for $\sigma_{nucleon-DM}$ for DM in the MeV range.
- This is not quite true because there is always an energetic component for DM, not bound to the galaxy. Generated through the very same interaction cross section: σ_{χ}

Main idea: Collisions of DM with cosmic rays generate subdominant DM flux with ~ 100 MeV momentum – perfect for direct detection type recoil.

Resulting limits on WIMP-nucleon scattering

• Spin-independent limits. [Notice the constraint from Miniboone, from measurements of NC nu-p scattering]. Exclusion of σ = 10⁻²⁹-10⁻³¹cm² !

- Scattering on free protons in e.g. Borexino, SNO, SK sre also very constraining e.g. for the spin-dependent scattering.
- (Ema, Sala, Sato had an independent work along the same lines for σ_e)

Updated limits on WIMP-nucleon scattering

Two blind areas for direct detection

1. ~MeV scale dark matter: Kin Energy $= mv^2/2 \sim (10^{-3}c)^2 (MeV/c^2) \sim eV$. Below the ionization threshold!

 Strongly-interacting subdominant component of Dark Matter. Thermalizes before reaching the underground lab, Kin energy ~ kT ~0.03 eV

(Typically cannot be entire DM, but is limited to fraction $f < 10^{-3}$)

Below the ionization threshold!

-Nightmare embarrassing scenario

Rare species of strongly interacting dark matter

- Most advanced direct dark matter detection experiments are so far ahead of other probes that we would not be able to distinguish between ($f_{\chi} = 1$ and $\sigma = 10^{-47}$ cm², and e.g. $f_{\chi} = 10^{-3}$ and $\sigma = 10^{-44}$ cm²)
- Assuming a wide range of f_{χ} , 10⁻¹⁰ to 1 is reasonable, as it can be broadly consistent with the freeze-out models.
- If $f_{\chi} \ll 1$ (e.g. 10⁻⁵) significant blind spots exist for large scattering cross section values (e.g. 10⁻²⁸ cm²) which can easily arise in models with relatively light mediators. The accumulation and distribution of DM inside astrophysical bodies (most importantly, the Earth) will change.

Model realization

• Dark photon mediate DM with $m_{A'} < m_{\chi}$. $\mathcal{L} = -\frac{1}{4} \left(F'_{\mu\nu} \right)^2 - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 \left(A'_{\mu} \right)^2 + \bar{\chi} (i\gamma^{\mu} D_{\mu} - m_{\chi}) \chi ,$

Main process: $\chi \bar{\chi} \to A'A'$ with $A' \to SM$

Dark coupling constant of 0.3 and dark matter mass of 2.5 GeV results in the fractional abundance ~ 3 10⁻⁹. Scattering cross section on nucleons is large, if $m_{A'}$ is in 10's of MeV range!

$$\sigma_{\chi A} = \frac{16\pi Z^2 \alpha \alpha_d \epsilon^2 \mu_{\chi A}^2}{m_{A'}^4}$$

Rare species can be accumulated in large amounts

• When the cross section on nuclei is small, the probability of capture is very small

• When the cross section is large, the maximum capture = Flux * $\pi(R_{Earth})^2 \sim 10^{24}$ /sec for a 10 GeV WIMP. More than 10 order of magnitude enhancement.

Dark matter traffic jam

- Rapid thermalization
- Flux conservation: $v_{in}n_{halo} = v_{terminal} n_{lab}$.
- Terminal sinking velocity is determined by the effective mobility (~ inverse cross section) and gravitational forcing

$$v_{\rm term} = \frac{3M_{\chi}gT}{m_{\rm gas}^2 n \langle \sigma_t v_{\rm th}^3 \rangle}$$

- Change in velocity from incoming $\sim 10^7$ cm/s to typical sinking velocity of 10 cm/s results in $n_{lab} \sim 10^6 n_{halo}$. Not visible to DD
- At masses < 10 GeV upward flux is important and density goes up.

MP, Rajendran, Ramani 2019 MP, Ramani 2020, Berlin, Liu, MP, Ramani, 2021

Density of trapped particles: best mass range = few GeV.

 Lowest mass – evaporation, Highest mass – traffic jam, intermediate mass – trapping with almost uniform distribution inside Earth's volume.

- Enhancement of the density can be as high as 10¹⁴. (First noted by Farrar and collaborators)
- "Less is more". Having 1 GeV particle with $f_{\chi} = 10^{-5}$ fractional DM abundance may result in ~ 10^9 /cm³ concentrations, not 10^{-5} /cm³. This has to be exploited.

Signature #1: annihilation inside the SK volume 5 10
IDM is often searched by its annihilation to meutifiervs] with subsequent conversion of neutrinos to visible energy inside neutrino telescopes
to subset the propose that DM can be searched wfitted with a subset of the searched wfitted with a subset of the mass range ~ 1-5 GeV.

 Hydrostatic population is built up by incoming DM until it is counterbalanced by the annihilation (we assume s-wave). The distribution over radius is given by Euler eq. (see our papers, + Leane, Smirnov)

$$\frac{\nabla n_{\chi}(r)}{n_{\chi}(r)} + (\kappa + 1) \frac{\nabla T(r)}{T(r)} + \frac{m_{\chi}g(r)}{k_BT(r)} = 0$$

Annihilation rate inside SK is easily calculable

$$\Gamma_{\rm ann}^{\rm SK} = \langle \sigma v \rangle_{\rm ann} n_{\chi}^2(R_{\oplus}) V_{\rm SK}$$

$$\Gamma_{\rm ann}^{\rm SK} = \Gamma_{\rm cap} \times \frac{V_{\rm SK} G_{\chi}^2(R_{\oplus})}{4\pi \int_0^{R_{\oplus}} r^2 dr G_{\chi}^2(r)} \xrightarrow{G_{\chi} \to 1} \Gamma_{\rm cap} \times \frac{V_{\rm SK}}{V_{\oplus}}, \qquad 20$$

Similar to di-nucleon decay signatures

- Constraints from a possible background-free search
- Lower masses evaporate, heavier masses sink too much.

Assuming a background free search with $2m_{\chi}$ invariant mass energy release. In many models: strong similarity to nn $\rightarrow \pi^0 \pi^0$ search by SK (background free, ~0.1 signal efficiency).

Constraints on dark photon mediated DM

• Dark photon mediate DM with $m_{A'} < m_{\chi}$. $\mathcal{L} = -\frac{1}{4} \left(F'_{\mu\nu} \right)^2 - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 \left(A'_{\mu} \right)^2$

$$+\,ar\chi(i\gamma^\mu D_\mu-m_\chi)\chi\,,$$

 $\chi \bar{\chi} \to A' A'$ with $A' \to SM$

Dark coupling constant of 0.3 and dark matter mass of 2.5 GeV results in the fractional abundance $\sim 3 \ 10^{-9}$. New parameter space covered.

For heavier than 5 GeV masses main signature are neutrinos from Earth's center.₂₂

Signature # 2: Using underground accelerators to "accelerate" dark matter

- Some of the underground Labs that host Dark Matter detectors, also have nuclear accelerators (LUNA, JUNA) for a completely different purpose: studies of nuclear reactions.
- We propose to couple nuclear accelerators and dark matter detectors: accelerated protons (or other nuclei) can strike DM particles that can subsequently be detected with a nearby detector.

This is going to be relevant for models with large DM-nuclear cross section where A. interaction is enhanced, B. density is enhanced.

Spectrum of recoil

• Energy of nuclei in the detector after experiencing collision with the accelerated DM.

FIG. 3. Maximum nuclear target recoil energies E_R^{max} for dark matter upscattered by beams of protons (left) or carbon (right) with kinetic energies $E_b = 0.4$ MeV (solid) and $E_b = 1.0$ MeV (dashed) for a selection of target nuclei.

Energy of accelerator is \sim MeV, and given that the thresholds in many detectors are keV and lower, this detection scheme is realistic.

See details in M. Moore et al, 2022.

Possible new reach in the parameter space

While 100% fraction of these DM particles is excluded by combination of ballon + underground experiments (gray area), the accelerator+detector scheme is sensitive to small f_{χ} .

 This is a promising scheme that can be tried without additional enormous investment, with existing accelerators (LUNA, JUNA)

Signature #3: Nuclear reactors as beam dumps

- Commercial reactors produce over 10²⁰ neutrons/sec. It is a source of anti-neutrinos, and can also be viewed as a neutron beam dump.
- Recently (last O(5) years), there has been explosion of efforts to detect coherent nucleus-neutrino scattering (CEvNs): i.e. direct detection style detectors are brought to O(20-30m) proximity to reactor cores. Importantly, these detectors are achieving low counting rates (e.g. CONUS collaboration).
- If there is a "bath" of thermalized DM particles, fast neutron scattering will create velocitized DM, $\chi + n \rightarrow \chi_E + n$.
- Ema, MP, Ray, 2024, reanalyzed the results of the CEvNs searches using CONUS experiment, and translated it to constraints on GeV dark matter.

Constraints on upscattering of DM

Novel limits are derived for spin-dependent scattering. No new limits for spin-independent case, as large amount of shielding (over 6m of concrete) leads to suppression of DM energy at CONUS detector 27 location. *Motivates experiments at research reactors with less shielding*.

Signature # 4: DM-catalyzed quenching of nuclear isomers

Tantalum180m level structure

- Lifetime of the 9- level exceeds 10¹⁷ years (not established yet)
- Natural abundance is not all that small, 0.01%.

DM is a source of large recoil momentum \rightarrow Enhancement of decay

- Momentum transfer k mediated in the γ,β transitions is small: on the order of decaying energy, e.g. 100 keV.
- $(R_{nuclear} k) \sim 10^{-3}$. Enters in the HUGE power in the rate, $(R_{nuclear} k)^{2\Delta L} \sim (10^{-3})^{14}$.
- Dark matter is rare etc etc but it carries large k! k ~ / $R_{nuclear}$ easily. Kinematic suppression by $(R_{nuclear} / \lambda)^{2\Delta L}$ is gone.

Interesting candidate isomers

	Isomer	$\Delta E_N^{\rm max}$	levels	Half-life	Source	Amount	Signal	Hindrance (F_{γ})
Γ	$^{180\mathrm{m}}\mathrm{Ta}$	77 keV	2	$> 10^{16} \text{ y}$	Natural	0.3 gram year	Ground State Decay / Secondary	0.16[14]
	^{137m} Ba	661 keV	2	$2.55 \min$	Nuclear Waste	0.5 gram year	Secondary	1
	$^{177\mathrm{m}}\mathrm{Lu}$	970 keV	27	160 d	Medical Waste	1 mg year	Secondary	0.17^{a}
	$^{178\mathrm{m}}\mathrm{Hf}$	$2.4 { m MeV}$	110	31 y	Old experiments	$1 \ \mu g \ year$	γ end-point / Secondary	0.29 ^a

^a Hindrance factors for Lu and Hf derived from the observed half-lifes.

- Tantalum 180m is naturally occurring. Non-radioactive. Provides the safest opportunity.
- First searches have been performed, but there is a sustained interest to this element from the nuclear physics community.

Experimental search

- DM induces de-excitation of Ta180m down to the ground state.
- Ta180gs decays within a few hours to W and Hf. These decays produce 103.5 and 93.3 keV gammas.
- Search of these gammas above the background in the old data from HADES lab produced upper limits on DM-induced deexcitation of Ta180m. $T_{1/2}>1.3 \ 10^{14} \text{ yr}$

Experimental constraints

- Left: constraints on strongly-inte 10⁻⁴ fraction of the total DM abui to XQC are covered.
- Right: constraints on inelastic da are covered.
- Bulk Ta can be used to "accelerate Livi.
- New experimental study by Majorana: 2306.01965

Conclusions

- There are important "difficult corners" in direct detection. For light dark matter below few MeV best limits come from Xenon+ solar DM.
- Interesting physics can result from *rare species of DM*, as their elastic cross sections can be very sizeable resulting in enhanced population inside the Earth (traffic jam and hydrostatic population).
- The diversity of DM models creates a diversity of experimental signatures – now it is the right time to explore them, as much investment is made into direct detection of dark matter.
- Signature 1: direct annihilation inside the neutrino detectors (strong constraints from SK).
- Signature 2: nuclear accelerators to up-scatter DM and detect recoil.
- Signature 3: DM experiments at nuclear reactors can be used.
- Signature 4: nuclear isomer de-excitation is catalyzed. Ta180 is a very attractive candidate. No decay (or DM-induced de-excitation) detected thus far.