

Axion Star Explosions in the Early Universe **Jniverse**

Malcolm Fairbairn

With Xiaolong Du, Charis Pooni, Miguel

Escudero, Doddy Marsh & Diego Blas

Phys.Rev.D 109 (2024) 4, 043018

Phys.Rev.D 109 (2024) 4, 043019

Malcolm Fairbairn

With Xiaolong Du, Charis Pooni, Miguel Escudero, Doddy Marsh & Diego Blas

**Malcolm Fairbairn
Malcolm Fairbairn
With Xiaolong Du, Charis Pooni, Miguel
Escudero, Doddy Marsh & Diego Blas
Phys.Rev.D 109 (2024) 4, 043018
Phys.Rev.D 109 (2024) 4, 043019**

**Dark Matter
Explosions?
Explosions?
Explosions?** $6:59$

ould Form Dark Stars, New Theory Says

astrophysical effects. The most interesting part is that people still get paid for this.

6:08 / 6:58 · Axion Stars >

Here is the Idea…

- Light dark matter forms coherent ere is the Idea...
Light dark matter forms coherent
solitonic cores inside galaxy halos
Decay to photons resonantly enhanced
Dense cores partially decay into photons
- Decay to photons resonantly enhanced
- Dense cores partially decay into photons when electron density is low enough Light dark matter forms coherent
solitonic cores inside galaxy halos
Decay to photons resonantly enhanced
Dense cores partially decay into photons
when electron density is low enough
Low energy photons absorbed by IGM
Shoc
- Low energy photons absorbed by IGM
- Shock bubbles form which expand,
- CMB

Axions

Neutron Dipole Moment and on Dipole Moment and
strong CP problem **ipole Moment and
g CP problem**
predicts electric dipole moment for
neutron d~ 10⁻¹⁶ θ ' e cm **Neutron Dipole Moment and

strong CP problem**
 $\frac{\theta}{32\pi^2}G^{a,\mu\nu}\tilde{G}^a_{\mu\nu}$ predicts electric dipole moment for

However, no edm observed down to d~ 10⁻¹⁶ θ 'e cm

Why is θ ' so small ? Solution – first prom **Strong CP problem**
 $\frac{\theta}{32\pi^2}G^{a,\mu\nu}\tilde{G}^a_{\mu\nu}$ predicts electric dipole moment for

However, no edm observed down to d~ 10⁻¹⁶ θ' e cm

Why is θ' so small ? Solution – first promote θ to expectation

value of a

neutron $d \sim 10^{-16}$ θ e cm

However, no edm observed down to $d \sim 10^{-27}$ e cm

strong CP problem
 $\frac{\theta}{32\pi^2} G^{a,\mu\nu} \tilde{G}^a_{\mu\nu}$ predicts electric dipole moment for

However, no edm observed down to d~ 10⁻¹⁶ θ 'e cm

Why is θ 's o small ? Solution – first promote θ to expectation

v

This is a prediction for axion models which solve strong CP problem.

Axion like Particles

One can simply be agnostic and leave the coupling to photons as a free parameter

One can simply be agnostic and leave the coupling to
photons as a free parameter

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{g_{a\gamma\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}
$$

creates mixing/interactions between photons and axions

laboratory CAST bound $g_{a\gamma\gamma}$ < 0.66 × 10⁻¹⁰ GeV⁻¹ for m_a < 0.02 eV

Axions can also decay! Only a small fraction would ionise the Universe

CAST bound means decay time much larger than age of Universe though!

 $g_{a\gamma\gamma}$ < 0.66 × 10⁻¹⁰ GeV⁻¹ for m_a < 0.02 eV

 $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2ma^2} \nabla^2 \psi + \frac{m\Phi}{a} \psi$

 $\nabla^2 \Phi = 4\pi G m (|\psi|^2 - \langle |\psi|^2 \rangle)$

 $r_c = 1.6 \ m_{22}^{-1} a^{1/2} \left(\frac{\zeta(z)}{\zeta(0)}\right)^{-1/6} \left(\frac{M_h}{10^9 M_{\odot}}\right)^{-1/3} \ \text{kpc}$

halos to form bigger halo

Formation of a single halo from smaller halos

As Theorists, we can contemplate many possible deaths for these dense cores…

Possible fates of dense axion cores (could also just stick around!)

Possible fates of dense axion cores (could also just stick around!)

Possible fates of dense axion cores (could also just stick around!)

Concentrate on parametric resonance

Stimulated emission exponentially enhances decay

$$
\Gamma_{\text{exp}} L \gtrsim 1
$$
, where $\Gamma_{\text{exp}} \equiv g_{a\gamma\gamma} \sqrt{\frac{\rho_a}{2}}$

Translates into halos with a certain minimum mass

$$
M_S^{\text{decay}} \simeq 8.4 \times 10^{-5} \, M_\odot \left(\frac{10^{-11} \, \text{GeV}^{-1}}{g_{a\gamma\gamma}} \right) \left(\frac{10^{-13} \, \text{eV}}{m_a} \right)
$$

And it doesn't take long to happen…

$$
\tau_S^{\text{decay}} \simeq r_c \simeq \text{day} \left(\frac{8.4 \times 10^{-5} M_{\odot}}{M_S} \right) \left(\frac{10^{-13} \text{ eV}}{m_a} \right)^2
$$

Levkov, Tkachev et al.

Need to track the production and destruction of axion stars through mergers…

Total energy emitted many orders of magnitude larger than that from Supernovae

Different Signatures \rightarrow Consequence of Plasma Blocking

Absorption of the photons in IGM through inverse Bremsstrahlung

$$
\Gamma_{\rm abs} = n_e \sigma_T \frac{\Lambda_{\rm BR}(E_\gamma,z)(1 - e^{-E_\gamma/T_e})}{(E_\gamma/T_e)^3}
$$

$$
\Lambda_{\rm BR}(E_\gamma,z) = g_{\rm BR} \frac{n_p}{m_e^3} \sqrt{\frac{2}{3}} 2\pi^{3/2} \alpha \left(\frac{T_e}{m_e}\right)^{-7/2}
$$

Absorption leads to super heated region which subsequently expands

Absorption of the photons in IGM through inverse Bremsstrahlung

Have to use technology from Supernova Remnant evolution

Picture from Ken Nagamine

Bubble of Hot Gas is created which Expands

Two simultaneous equations to solve.

$$
\dot{p} = \frac{L_{\text{tot}}}{2\pi R^3} - \frac{5Rp}{R}
$$

Evolution of Luminosity which drives Pressure

$$
\dot{p} = \frac{L_{\text{tot}}}{2\pi R^3} - \frac{5\dot{R}p}{R}
$$

 $L_{\text{tot}} = L_{\text{Explosion}} - L_{\text{Compton}} - L_{\text{Ionisation}}$ This switches off fairly quickly! $L_{\text{Compton}} = \frac{2\pi^3}{45} \frac{\sigma_T}{m_e} T_\gamma^4 pR^3$

 $L_{\text{Ionisation}} = f_m n_b I_H 4\pi^2 R^2(\dot{R} - HR)$

 $f_m \ll 1$ is fraction of baryonic mass kept inside bubble

Evolution of Bubble Size,

We end evolution when We end evolution when
internal pressure is equal to $\frac{10^{-12}}{9}$
IGM pressure!
 $\frac{10^{-14}}{9}$
 $\frac{10^{-14}}{10^{-16}}$ IGM pressure!

Injection of energy heats up baryons

$$
\frac{dT_b}{dt}\bigg|_{a\gamma\gamma} = \frac{2}{3} \frac{1}{N_H(1 + f_{\text{He}} + X_{\text{e}})} f_{\text{DM}}^{\text{burst}} \rho_{\text{DM}} \delta(t - t_{\text{DM}})
$$

Goal \rightarrow HI recombination

$$
X_{\rm e}(z) = X_{\rm HeI}(z) + X_{\rm p}(z)
$$

$$
\frac{dX_{\rm p}}{dt} = C_{\rm H} \left(\beta_{\rm H}(T_{\gamma})(1 - X_{\rm p}) e^{\frac{-\epsilon_{\rm H, 2s1s}}{T_{\gamma}}} - X_{\rm e} X_{\rm p} N_{\rm H} \alpha_{\rm H}^{(2)}(T_{b}) + \frac{dX_{\rm p}}{dt} \Big|_{\rm coll} \right)
$$

$$
\frac{dX_{\rm HeII}}{dt} = C_{\rm He} \left((f_{\rm He} - X_{\rm HeII}) \beta_{\rm He}(T_{\gamma}) e^{\frac{-\epsilon_{\rm He, 2s1s}}{T_{\gamma}}} - X_{\rm HeII}^{2} N_{\rm H} \alpha_{\rm HeII}^{(2)}(T_{b}) + \frac{dX_{\rm HeII}}{dt} \Big|_{\rm coll} \right)
$$

Net result depends on following factors:-

- **Net result depends on following factors:-**
• How many solitons exist above critical mass
when $m_a = \omega_p$? when $m_{\bar{a}} = \omega_{\rho}$? ? **Net result depends on following factors:-**
• How many solitons exist above critical mass
when $m_a = \omega_p$?
• How many solitons above critical mass form
later? **Net result depends on following factors:-**
• How many solitons exist above critical mass
when $m_a = \omega_p$?
• How many solitons above critical mass form
later?
• How much energy is dumped into the Universe?
• How much ionisa • How many solitons exist above critical mass
when $m_a = \omega_p$?
• How many solitons above critical mass form
later?
• How much energy is dumped into the Universe
• How much ionisation takes place?
• Do the bubbles Coalesce?
- later? • How many solitons exist ab
when $m_a = \omega_p$?
• How many solitons above c
later?
• How much energy is dumpe
• How much ionisation takes
• Do the bubbles Coalesce?
-
-
-

Conclusions

- Fuzzy Dark Matter leads to **ONCLUSIONS**
Fuzzy Dark Matter leads to
solitonic cores in dark matter
halos
Axion decay into photons is
enhanced in dense regions halos **CONCLUSIONS**
• Fuzzy Dark Matter leads to
solitonic cores in dark matter
halos
• Axion decay into photons is
enhanced in dense regions
• Solitons decay and ionise the
Universe
• CMB puts constraints on this
region of para
- Axion decay into photons is enhanced in dense regions
- Universe
- CMB puts constraints on this region of parameter space which Fuzzy Dark Matter leads to
solitonic cores in dark matter
halos
Axion decay into photons is
enhanced in dense regions
Solitons decay and ionise the
Universe
CMB puts constraints on this
region of parameter space which
beat