

Light DM searches with Xenon TPCs and Qrocodile

ALPS 2024, an ALpine Particle Physics Symposium

Laura Baudis, University of Zurich April 4, 2024

Dark matter mass parameter space

Direct detection landscape in 2024

Liquid xenon TPCs

5D detectors: (x,y,z,E,t)

 Observe light (S1, primary scintillation) and charge signals (S2, secondary scintillation) when a particle interacts in the dense liquid target

- 3D position reconstruction
- Energy reconstruction
- Particle discrimination: ratio of charge/light (ERs vs. NRs)

Ongoing experiments

- TPCs with 2 arrays of 3-inch PMTs
- Kr and Rn removal techniques
- Ultra-pure water shields, n & µ vetos
- External and internal calibration sources

LUX-ZEPLIN at SURF 10 t LXe total 494 PMTs First results in 2022

PandaX-4T at JINPING 6.0 t LXe in total 368 PMTs First results in 2021

XENONnT at LNGS 8.6 t LXe total 494 PMTS First results in 2022/23

WIMP sensitivity

- Leading sensitivity at intermediate/high DM masses since ~2007
- Liquid xenon detectors
 - \bullet scalable \Rightarrow large target masses
 - readily purified \Rightarrow ultra-low backgrounds
 - high density \Rightarrow self-shielding
- SI and SD (¹²⁹Xe, ¹³¹Xe) interactions
- Many other science opportunities: second order weak decays of ¹²⁴Xe, ¹³⁶Xe; solar and SN neutrinos, etc

Backgrounds

• Overview: main ER and NR backgrounds

Light dark matter searches

talk by Maxim Pospelov

Signal example

○ S1 + S2 signals from an ^{83m}Kr calibration event in XENONnT

Maximum e⁻ drift time: 2.3 ms Electron lifetime τ_e : > 10 ms

XENONnT arXiv:2402.10466

Energy thresholds

• S1 + S2 searches: typically ~ 1 keV with 3-fold coincidence (ER) (hits in at least 3 PMTs within, e.g., ~50-100 ns); lower threshold (< 1 keV) with 2-fold coincidence possible (with lower signal efficiency)

• S2-only searches: down to ~ 0.2 keV, with 5 e^{-100} e⁻ detected (probe ER and NR) interactions), down to W-value, with 1 e⁻ – 5 e⁻ signal (mostly probe ER DM models due to large uncertainty in quenching factor for NRs at lowest energies)

PandaX-4T, PRL 130, 2023

S2 [PE]

ER+NR Backgrounds

• ER: ²¹⁴Pb β-decays, ¹²⁴Xe DEC, ⁸⁵Kr β-decays, ¹³⁶Xe ββ-decays

● NR: ⁸B v's

• At lowest energies: combinatorial (AC) background becomes important

XENONnT, PRL 129, 2022

LZ, PRD 108, 2023

Side remark

 $\frac{dR}{dT} = N_e \int \frac{d\Phi}{dE_{\nu}} \left(P_{ee} \frac{d\sigma_e}{dT} + (1 - P_{ee}) \frac{d\sigma_{\nu,\tau}}{dT} \right) dE_{\nu}$

AC backgrounds

- Ombinatorial background at low energies can be significant
- Main sources for isolated S1 and isolated S2 signals
 - Primary scintillation (S1s)
 - > Dark counts (pile-up) \propto nr. channels
 - Charge-insensitive regions
 - Delayed photons
 - Electroluminiscence (S2s)
 - Bulk xenon S2-only events
 - Delayed electrons
 - Electrode events

Ionisation-only backgrounds

- Radioactivity
- Solar neutrinos
- Instrumental
 - Spurious emission of single and few electrons from the cathode
 - Delayed e⁻ after large S2 signals: trapped e⁻ at the liquid/gas interface; e⁻ emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

Ionisation-only backgrounds

Radioactivity

Solar neutrinos

Instrumental

- Spurious emission of single and few electrons from the cathode
- Delayed e⁻ after large S2 signals: trapped e⁻ at the liquid/gas interface; e⁻ emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

500

90 120 150 200

PandaX-4T, PRL 130, 2023

XENON1T, PRL 123, 2019

Flat ER

3000

1000

Constraints on dark matter electrons interactions

- XENON1T: 22 t d exposure, DM particle masses > 30 MeV
- PandaX-4T: 0.55 t y exposure, DM mass range from ~ 40 MeV to 10 GeV

PandaX-4T, PRL 130, 2023

XENON1T, PRL 123, 2019

• XENON1T: extended analysis down to single electrons (1 - 5 e⁻)

 Showed that delayed e⁻ are correlated in time & space with HE events and can be vetoed (background rate of < 30 events/(kg d) after cuts)

XENON1T, PRL 106, 2022

 XENONnT: 3 x larger active target, 10 x lower overall delayed electron rate compared to XENON1T

- Single-electron delay rate as a function of delay time from the preceding S2
- In general: longer drift times ⇒ higher delayed emission rate
- XENONnT: higher LXe purity (lower concentration of electronegative impurities) & lower concentration of ²²²Rn ⇒lower S2 rates

 XENONnT: 3 x larger active target, 10 x lower overall delayed electron rate compared to XENON1T

XENONnT science data: still blinded

 Rates shown here: based on a calibration run after first science run (SRO)

XENONnT preliminary

ER: DM absorption

• ALPs and dark photons: absorption results in peak at boson mass

• Rates $\propto \phi \times \sigma = \rho \times \frac{v}{m} \times \sigma$ (here below for $\rho = 0.3$ GeV/cm³)

$$R \simeq \frac{1.5 \times 10^{19}}{A} g_{ae}^2 \left(\frac{m_a}{\text{keV}}\right) \left(\frac{\sigma_{pe}}{\text{b}}\right) \text{kg}^{-1} \text{d}^{-1}$$

$$\sigma_{ae} = \sigma_{pe} \frac{g_{ae}^2}{\beta} \frac{3E_a^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

 $R \simeq \frac{4.7 \times 10^{23}}{A} \kappa^2 \left(\frac{\text{keV}}{m_V}\right) \left(\frac{\sigma_{pe}}{\text{b}}\right) \text{kg}^{-1} \text{d}^{-1}$

strength of kinetic mixing between photon and dark photon

> An, Pospelov, Pradler, Ritz PLB 747, 2015

ER: DM absorption

Constrains on the couplings of galactic ALPs and dark photons:

 LZ, XENONnT: competitive upper limits for masses in the range ~ 1 - 140 keV

Solar reflected dark matter

 If DM particles interact with nuclei or e⁻, they will also interact with the p and e⁻ in the Sun

 \Rightarrow Up-scattering of DM particles in the Sun

- Smaller flux, but faster particles
- Allows LXe experiments to probe LDM
- Flux can be computed with, e.g., DaMaSCUS-SUN public code* (T. Emken)

*https://github.com/temken/DaMaSCUS-SUN?tab=readme-ov-file

H. An, H. Nie, M. Pospelov, J. Pradler, A. Ritz, PRD 104, 2021

T. Emken, PRD 105, 2022

SRDM in XENONnT

- Compute expected ER spectrum via MC simulations (DaMaSCUS-SUN code)
- Apply energy resolution and detection efficiency
- Event selection criteria (reject multiple scatters, events far away from ER band, coincident with neutron veto, etc)
- Unbinned loglikelihood analysis: 1-140 keV energy range, full background model (SRO)
- **XENON1T** \rightarrow **XENONnT**: 2× exposure, 5× lower ER background rate
- DM mass range probed: 4.6 keV 9 MeV

XENON collaboration, preliminary

1.0 Detection 105 Selection 10⁴ 10³ 10² 0.8 Chreshold Total Efficiency 0.6 XENO 0.4 Event 10 4.6 keV SRDM 0.2 $\sigma_{re} = 6.1 \times 10^{-36} \text{ cm}^2$ 0.0 0.1 2 3 4 5 6 m=4.6 keV Energy [keV] nT SR0 lowER SRDM search 1.16 tonne years exposure 10^{-35} 10^{-36} $\sigma_{\chi e}^{2} [cm^2]$ CDEX10 (T. Emken flux DAMIC-M (halo DM) XENON1T S2-only ENON1T low (T. Emken recast 2σ from median 10^{-38} 1σ from median - - Median 90% CL UL 90% CL UL, this worl 10^{-2}

0.1

Preliminary

10

1

Mass [MeV]

 10^{2}

Migdal effect

- Perturbations of the nucleus induce electronic transitions*
- Low-energy NRs could be observed as ERs
- Effect not yet conclusively observed experimentally (several efforts ongoing, in light atoms C, F and in heavier Ar, Xe)
- But used to set constraints on LDM

M. Ibe, W. Nakano, Y. Shoji. K. Suzuki, JHEP 03, 2018 P. Cox, M. Dolan, C. McCabe, H. Quiney. PRD 107, 2023

*DM particle collides with a Xe atom: abrupt momentum change of the nucleus with respect to the e- => excitation or ionisation

C. McCabe, Padova, Sept 2023

NR: Migdal effect

• Results on WIMP-nucleon interactions

S1 and S2, LZ, PRD 108, 2023

S2 only, PandaX-4T, PRL 131, 2023 (light and heavy mediators)

Quantum sensoR cryOgeniC search fOr Dark matter In Light mass rangE

Newly formed collaboration:

- condensed matter/astroparticle experiment/quantum sensing/particle theory
- Goal: use SC nanowires as both target and sensor for sub-GeV DM particles (scatters on electron and absorption)

QROCODILE

- Location: at UZH, in the future possibly underground (LNGS, Modane,?...)
- UZH groups (LB, I. Charaev, T. Neupert, A. Schilling)
 - sensor development, production, testing
 - background characterisation, MC simulations, material radio-assay with Gator at LNGS
 - ondensed matter theory
- MIT: B. Lehmann, Jerusalem: Y. Hochberg
 particle physics theory: DM interaction rates, based on the dielectric response of the target

Patterned WSi nanowires with e- beam lithography and reactive ion etching

QROCODILE

• Presently

• running at surface, 400 \times 400 μ m² active area, 98% detection efficiency at 1.55 μ m (0.8 eV)

- 15 counts in ~ 16 d
- test impact of radioactive sources
- \bullet probe the energy threshold (with lasers at 5 $\mu{\rm m}$ and 11 $\mu{\rm m})$

• Plans

- scale-up the SNSPDs detector mass with areas
- ~ cm² and beyond
- extend the energy threshold to the fundamental limit
- understand and reduce backgrounds

DM-electron scattering

Projections: **0.73 eV (1.6 μm)**, **0.5 eV (2 μm)** thresholds

Previous: Y. Hochberg et al., PRD 106, 2022

Events: pulses with amplitude ~1 mV, few ns long, for absorbed energies 0.1 meV - 10 eV.

Conclusions

- LXe detectors: primarily developed to search for medium to heavy (few GeV - 100 TeV) DM particles
- Due to very low background levels & charge amplification via proportional scintillation ⇒ sensitivity to various light DM particles
- Current generation of two-phase TPCs: still taking data, while several analyses of past science runs in progress
- Qrocodile: new project to use singlephoton detectors (SC nanowires) as target and sensors for sub-GeV dark matter

The end

Extra slides

1) SC nanowire maintained < T_C , current biased < I_C

2) Incoming photon get absorbed and leads to a quasiparticle cloud, or hotspot

3) The local current density around the hotspot increases, exceeding the SC state, leading to a resistive barrier

4) The increasing resistance leads to a redirection of the bias current from the nanowire to the electronic readout

5) Once the temperature around the resistive area cooled down to a certain value, SC is restored

6) The bias current through the nanowire returns to I)

Applied Phys. Lett. 118, 2021

Qrocodile setup

Current source

Qrocodile SEM images

Challenges at low NR energies

- Light and charge yields at lowest energies & their uncertainties: dominate systematics (especially in constraining NSI); in situ and special calibrations needed
- Accidental coincidence rate (due to isolated S1 and isolated S2 signals; R&D programme and modelling (semi-empirical code) for next-generation experiments

Mock data for 15.3 t y exposure

X. Xiang et al., 2304.06142

Midgal effect searches

- 1. Dense medium.
- 2. NR+EL transitions in close proximity.
- Signal from enhanced S1 and S2 due to X-rays from L and M shells.
- 4. Experiment at LLNL with fast neutrons from DT generator.
- 5. LZ experiment at SURF with fast neutrons from DD generator.

- 1. High pressure Ar (1 bar) and Xe (5 bar).
- Looking for two-cluster signals from NR+Migdal electron (cluster A). and characteristic X-ray (cluster B).
- Experiment at in Tsukuba with 565 keV neutrons from ⁷Li(p, n)⁷Be reaction at an irradiation facility at the National Institute of Advanced Industrial Science and Technology (AIST), Japan.

- 1. Low pressure operation at 66 mbar.
- 2. Enough mass as a target for fast neutrons from DD/DT neutron generators.
- NR and electrons tracks with 5 keV threshold long enough for optical detection to provide direction and dE/dx information.
- 4. Experiment at ISIS/NILE (UK).

SRDM in XENONnT

XENON collaboration, preliminary

SRDM in XENONnT

38

Future liquid xenon detectors

OARWIN/XLZD

- DARWIN: 50 t LXe (40 t active target) at LNGS; Gd-doped water n- and μ- vetoes
- XLZD: 75 t LXe (60 t active target), several labs are considered

PandaX-xT at CJPL

 43 t active volume (47 t total) at CJPL; 2 arrays of 2-inch × 2-inch flat panel PMTs; Cu inner vessel, active shield between inner and outer cryostat

Low-energy solar neutrinos

● v_e interactions: CC & NC

 \bullet v_µ and v_T interactions: only via NC

($\sigma_{tot}\approx 10^{-43}~cm^2$, solar v have low energies and the CC reactions involving v_{\mu} and v_{\tau} are kinematically not allowed)

Low-energy solar neutrinos

• What is the ν_e survival probability (P_{ee}) below 200 keV?

• What is the value of the weak mixing angle ($\sin^2 \theta_w$) at low energies?

Low-energy solar neutrinos

- Rates: 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v; ¹³N: 6.5/(t y), ¹⁵O: 7.1/(t y)
- op-flux: 0.15% statistical precision with 300 t y exposure (sub-percent after 10 t y)
- v_e survival probability & weak mixing angle < 300 keV</p>
 - P_{ee} : ~4% relative uncertainty; sin² θ_W : ~5% relative uncertainty

Where are we now?

- In XENONnT, SR0 ER background below 30 keV
 - (15.8±1.3) events/(t y keV) (0.2 x the one of XENON1T)
 - Solar ν : ~1/2 of the dominant (²²²Rn) background in SR0

CEvNS in DARWIN/XLZD

 $\nu + A \rightarrow \nu + A$

Nucleon wavefunctions in the target nucleus in phase with each other at low momentum transfer

- A neutrino hits a nucleus via Zexchange
- The nucleus recoils as a whole
- The process is coherent up to neutrino energies of ~50 MeV

CEvNS in DARWIN/XLZD

• Sources: solar ⁸B and hep v's; core-collapse SN; DSNB and atmospheric v's

CEvNS with 8B neutrinos

• ~99% of CEvENS-induced events expected < 3 keVnr</p>

• ~ 10⁴ events/(200t y) for 2-fold S1 and 5 n_e S2 (see X. Xiang et al., 2304.06142)

Signal for 200 t x y exposure

Existing ⁸B v constraints

