Low Mass Dark matter searches with liquid Argon

Masayuki Wada

AstroCeNT, Warsaw April 04 2024 ALPS 2024

DARKSIDE PROGRAM

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from both neutrons and β/γ's

DarkSide-10

DarkSide-50

and **DarkSide-LowMass** for low-mass dark matter searches

FEATURES OF NOBLE LIQUID DETECTORS

- > Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- High scintillation & ionization (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation
- No mechanical stress on target materials (one origin of low-energy backgrounds)
- > Purification in situ after commissioning

For TPC

- High electron mobility and low diffusion
- > Amplification (electroluminescence gain) for ionization signal
- Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Sensitive to low mass WIMP

Liquid **Argon**

- lower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter
- Higher sensitivity at low mass WIMP

UNDERGROUND Ar

- Intrinsic ³⁹Ar radioactivity in **atmospheric argon** is the primary background for argon-based detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is less effective)

³⁹Ar is a **cosmogenic isotope**, and the activity in argon from **underground sources** can be significantly lower compared to **atmospheric argon**

Frank Calaprice

SENSITIVITY TO HIGH AND LOW MASS WIMPS

Need lower threshold — Ionization signal (S2)

- Rise at high mass is due to fixed energy density of WIMPs.
 - Need large target mass.
 - Scalability is important!

plot credit: http://resonaances.blogspot.ca

LIQUID Ar TPC FOR DARK MATTER SEARCHES

- Scintillation (S1) & Ionization (S2)
- Pulse Shape Discrimination (PSD)
- Drift time provides vertical event position

Low Mass Search Low Energy Events

- Electrofluorescence in gas gap lets us detect single e- with high efficiency.
 - →Lower energy threshold
- No PSD
- No vertical position

WHAT WE ACHIEVED IN DS-50

- Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr}
- Ionization signal (S2): threshold < 0.1 keV_{ee} / 0.4 keV_{nr} Can go lower threshold!
- Use Ionization (S2) Only.
 - Amplified in the gas region (~23 PE/e⁻ or more)
 - Sensitive to a single extracted electron!
 - The electron yield for nuclear recoils increases at low energy

Events / [0.05 $\mathrm{N_{e^{-}}} imes \mathrm{kg} imes \mathrm{day}$] DS-50 DATA Center PMT Getter Off 10² Getter On Ext. e 10 Ext. e's 1 10^{-1} 10^{-2} 1.5 N_e-0.5 1 2 2.5

 Ar has lighter mass than Xe.
 So, more efficient momentum transfer from low mass DM.

WHAT WE ACHIEVED IN DS-50

Phys. Rev. D 107, 063001

The most stringent limit at $M_{\chi} = [1.2, 3.6] \text{ GeV/c}^2$

Annual modulation analysis on arXiv! arXiv:2307.07249

WHAT LIMITS SENSITIVITY?

- Internal βs from ⁸⁵Kr and ³⁹Ar
- γs from photosensors and cryostat

- Spurious electrons (setting the energy threshold)
- Limited understanding of LAr responses

CRITERIA FOR FUTURE LAr TPC

- Low activity of ³⁹Ar
- Low impurity
 - good electron lifetime
 - Iow rate of the single electron events
- Ultra-pure photo-sensor
- Pure (or no) cryostat

<u>Phys. Rev. D 107, 112006</u>

10

DarkSide-LowMass conceptual design

REDUCING β BACKGROUNDS

- Urania (Extraction):
 - Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon

DArT (assay):

 A single phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches.

WHAT IF WITH HIGHER ³⁹Ar CONCENTRATION?

- DarkSide-50 established we can achieve at least 750 µBq.
- With one path of ARIA (~75 µBq), DarkSide-LowMass
 can search down to
 neutrino fog at 5 GeV/c²
 DM mass.
- Lowering the threshold is more important to be sensitive to lower DM mass.

LOW ENERGY BACKGROUND

WHAT CAUSE SPURIOUS ELECTRONS?

- From correlation with absence of a purification system etc., up to ~50% of SE can be **impurity origin**.
- No identified SE events related to grid emission (seen in xenon-based detector). Wire vs plane
 (ITO) on the cathode and anode make difference?
- Electron extraction efficiency is higher in Ar than Xe.

FIG. 1. Dependence of the coefficient of electron emission from solid (\blacktriangle , 80 K) and liquid (\bullet —fast component, \circ —fast plus slow components, 90 K) argon, and solid (\triangle , 160 K) and liquid (\Box , 165 K) xenon on the electric field intensity. Solid lines—calculations.

RADIOPURE DETECTOR

PHOTO SENSOR

- Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy.
- Key features
 - Photon detection efficiency (PDE) ~45%
 - Low dark-count rate < 0.01 Hz/mm² at 77K
- Mass production of the raw wafer in LFoundry company and assembly in a dedicated facility at LNGS (NOA).
- SiPM with integrated electronics (ASIC) will reduce radioactive components.

Single SPADs ~25-30 µm²

Photo Detector Module (PDM) = matrix of 24 SiPMs, 5 x 5 cm² 4 PDUs are summed and read as a single channel (largest single SiPM unit ever!)

SENSITIVITY PREDICTION

90% CL upper limits

With 1 t yr exposure, ν-fog is reachable!

LOCATIONS

Candidate locations:

- The Gran Sasso National Laboratory (LNGS), Italy
- The China Jinping Underground Laboratory (CJPL), China
- Boulby Underground Laboratory, UK (SOLAIRE, <u>DRD2</u> proposal)
- Any other place?

ReD EXPERIMENT

- Low energy Nuclear Recoil calibration is necessary to model DM signals.
- A small TPC with SiPM readout
- Finished the directionality study and prepare for low energy NR calibration
- New results with a Cf neutron source is underway.
- Calibration point down to 1-2 keV.

ReD TPC

Low energy Nuclear recoil calibration setup

OTHER LAr DM DETECTOR

SCINTILLATING BUBBLE CHAMBER

- ER free bubble chamber + good energy resolution of liquid scintillator.
- No bubble formation from ERs via this heat channel.
- BG free even at low energy NRs (<1 keV).</p>
- I ton-yr exposure with BG free could be achievable with extrapolation of the current technology.

SUMMARY

- LAr-based detectors have **several advantages for low mass DM searches**.
- DarkSide-50 has established the sensitivity of LAr for low mass dark matter.
- DarkSide-LowMass has a clear path to the v-fog with the technologies developed for DarkSide-20k.
- Significant γ-ray background reduction due to radio pure materials and the veto system.
- Room for additional sensitivity gains from:
 - ³⁹Ar reduction: Improvements in UAr extraction with the Urania plant and isotopic purification with the Aria cryogenic distillation column,
 - Lower energy threshold: Lower SE backgrounds, better UAr purity, and optimized field design.
- Ongoing R&D for spurious electron suppression, low-energy recoil calibration measurements, and further energy threshold reduction.

Backup

ID

ACTIVATION IN TRANSIT

enic activation in transportation is inevitable.

tation calculations for plausible tation paths, UAr purification at Aria.

	³⁹ Ar	$^{37}\mathrm{Ar}$	$^{3}\mathrm{H}$
		$[\mu Bq/kg]$	
Urania→Aria	14.7 ± 1.3	806 ± 73	58 ± 12
Aria (1 mo., surface)	2.57 ± 0.33	294 ± 39	9.0 ± 2.8
Aria→LNGS	0.86 ± 0.11	118 ± 15	3.00 ± 0.95
Aria \rightarrow N. America	5.73 ± 0.73	483 ± 64	20.0 ± 6.3

▶ ³⁷Ar: (EC, x-rays+e- ~ 277 or 2829 eV) $t_{1/2}$ = 35 days → Good calibration, removes itself

- ³H: (β-, Qβ = 18.6 keV) t_{1/2} = 12.3 years → Remove w/ chem. purification (ex situ: Aria, in situ: Getter)
- ³⁹Ar: (β-, Qβ = 565 keV) t_{1/2} = 269 years → Sets floor: Hard to go below ~1 µBq/kg.
 For reference, 100× reduction relative to DS-50 gives 7.3 µBq/kg