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Adiabatic Perturbations

* The primordial perturbations are measured by the CMB to be
adiabatic to good precision.
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Any thermodynamic Perturbation of the
quantity common clock

* Any perturbations that don’t satisfy this have an
“isocurvature” component.
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e CMB puts a constraint on the power spectrum of S.



Production of Isocurvature

* For a single field, slow roll inflation, only adiabatic modes
are produced.

* For multi-field inflation, any perturbation of a single field is
not adiabatic.
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Axion Isocurvature

e.g. Beltran, Garcia-Bellido, Lesgourgues 2006

e Standard Axion Isocurvature: during inflation, axions get
dS-fluctuations
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* These fluctuations cannot be removed by the
perturbations of the clock.

e |n other words:
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Axion Isocurvature

e \We can estimate the isocurvature
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e From CMB
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 Bound on high scale inflation
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Our Idea

Regime with negligibleaxion field perturbations

Assume that the axion can move a bit during inflation:

The length of inflation is given by the inflation field, which has
perturbations, i.e. 7;, - is inhomogeneous

Result: The axion at the end of inflation is inhomogeneous.



Estimating the Effect

e The distance the axion moves is
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 The adiabatic perturbation can be written as
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* Therefore the axion perturbation is

d¢
S5 ~ —2SN. » S=2
¢a dN inf ¢a Flgflf



Low Scale Inflation

* |socurvature perturbation:
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e The CMB is sensitive to
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e Very low scale of inflation,
H, S eV . Ajyr S 100 TeV



Isocurvature Constraint

* Doing the calculation with re-less squiggly lines
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Wait...

Where are the equations?
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Solving the Perturbations
during inflation

* During inflation, taking the newtonian gauge
ds® = (1 + 2®)dt? — a(t)?(1 — 20)dZ - dF

* For all the fields during inflation:
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 Assuming slow roll and superhorizon
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Adiabatic and Isocurvature
INn Inflation

e The solution can be written as
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 Where the constants are determined by initial conditions
(Bunch-Davies)

H(t | aeis
66;(k,t) = J(z—'“gej(k) . s
Va, > Vvi/ C3 ~ il z(k)7

(ej(k)ef (K)) = 8;0®) (k — k) o t T 2Ry



Transition to Hot Big Bang

o After inflation, the C5 contribution to @ vanishes. And so

C,= adiabatic, (3= isocurvature

(Assumes axion vacuum energy is subdominant during inflation)

e Together the two modes give
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Isocurvature



Primordial Initial Conditions

e For the CMB calculation, S and ® are the initial
conditions.

e Adiabatic mode
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More Gauge Invariantly

Start in newtonian gauge:
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e Calculate the gauge invariant perturbation:
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 The gauge invariant isocurvature during inflation:
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More Gauge Invariantly

e \When the mode exits the horizon
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e Evolution of the isocurvature perturbation:
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e After the axion starts to oscillate (at radiation domination)
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Results
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Power Spectra

e Power spectra

k3 e
A%(k) = ﬁ <R2> SMI%ZI;T2€k
V/ " 2H2 4 V/ ¢a
A2 (k) 2ﬂ.2 <S2> - Wzv(/qéqbzgcid) 9 HEL¢ )k A2
k3 BHAV (¢a)e _ 2V (¢a
A%R(k) 27T <S R> 27.(.2V/(¢Ej; )Qfa = SHE‘QQ;G): A’?Q

e Fully correlated! (Not surprising - only inflaton
perturbation)



Spectral Indices

e Definition

e Results
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Constraints

e The isocurvature ratio
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 The bounds on (anti-)correlated isocurvature from Planck
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Relic Abundance

There is a second bound: if the axion moves - it can roll to the bottom!

Model dependent - how long inflation lasts before the CMB modes exit
the horizon.

Taking the conservative approach of the shortest possible inflation:

And so we get a bound around
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Slightly weaker, but the isocurvature bound can be improved in the
future!



Conclusion

 Bounds on the scale of inflation not only from above, but
also from below.

Isocurvature
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* A new source of fully anti-correlated axion isocurvature

* The mechanism is general for any production mechanism
before inflation.



