

DELight: a **Direct** search **Experiment** for **Light** dark matter with superfluid helium

Francesco Toschi for the DELight collaboration ALPS-DM 2024 – 04.04.2024, Obergurgl

www.kit.edu

2

Superfluid ⁴He as target

- Impurities freezing out (~20 mK)
- Multiple signal channels
 - ER/NR discrimination
 - Energy reconstruction
- Inexpensive material and scalable technology

Light nuclei maximize recoil energy for LDM

Institut für Astroteilchenphysik (IAP)

- Prompt detection of UV and IR photons
- Ballistic triplet excimer (13 s lifetime, O(m/s) speed)
 - Decay at interface with solid or vacuum

- Production of phonons and rotons
- Quasiparticles propagate ballistically within the He target
- Reflected at the interface with solid

- Noise-free gain \gtrsim 10 in the MMC as binding energy He-He is smaller than He-absorber
- MMCs in vacuum need to be ⁴He film-free \rightarrow film burner (already tested by HERON)

- Noise-free gain \gtrsim 10 in the MMC as binding energy He-He is smaller than He-absorber
- MMCs in vacuum need to be ⁴He film-free \rightarrow film burner (already tested by HERON)

Signal partitioning in superfluid ⁴He

- Interaction-by-interaction" estimate of energy partition into different channels using measured and calculated cross sections
- Very promising discrimination between electronic (background) and nuclear (signal) recoil

Magnetic microcalorimeters (MMC)

- Energy deposit in an absorber converted to a temperature increase δT, changing the magnetization of the paramagnetic sensor δM ∝ δT
- Change in magnetization measured by a coupled SQUID as change in current $\delta I \propto \delta M$

Magnetic microcalorimeters (MMC)

-379 (2018)

l emp.

(2024)

32601

Phys

Appl

2024)

- Previous best MMC resolution: $\Delta E_{FWHM} = 1.58 \text{ eV} \otimes 5.9 \text{ keV} (x-rays from {}^{55}Fe)$ ⁽¹⁾
- Achieved best resolution to date with optimum-filter based analysis^(2,3):
 - ΔE_{FWHM} = **1.25(18) eV** @ 5.9 keV;
 - **a**mplitude fit to K_{α} data, validation reconstruction K_{β} .

MMCs in DELight

First phase

- ~50 MMC-based wafer calorimeters
- 5-6 eV resolution \Rightarrow ~20 eV threshold
- Sapphire or silicon substrate wafer
- Athermal phonon detection (R&D)

Thermal phonon detector

 $C_{\rm tot} = C_{\rm sens} + C_{\rm abs}$

thermal bath

absorber

veak thermal link

Time

Helium cell @ Heidelberg University

- Operating in the ECHo experiment cryostat
- Planned/ongoing tests:
 - operation of MMC in superfluid helium,
 - direct quasiparticle measurement,
 - detection of UV photons and triplets,
 - and much more!

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Simulations

- GEANT4 model of preliminary detector geometry
- Quasiparticle physics and propagation implemented
- First simulations of possible waveforms
- Backgrounds and discrimination studies ongoing

First waveform expectations

First preliminary expectations using (x-ray) MMC response

MMC-based wafer calorimeters might likely have different time response

Vue-des-Alpes underground laboratory

- Shallow underground lab close to Neuchâtel, Switzerland
- Rock overburden of 620 m.w.e. \Rightarrow muon flux reduced by 1/2000
- Gamma and radon background measurements
- Operated by University of Freiburg (hosting GeMSE gamma spectrometer)

universitätfreiburg

The future of DELight

First phase

- Above ground and/or shallow lab (e.g., VdA)
- 10 L target volume (≳1 kg)
- Threshold of 20 eV
- Probing new physics with exposure of 1 kg·d

and beyond

- Underground lab
- Larger cell + long exposure
- Threshold <10 eV</p>

The future of DELight

First phase

- Above ground and/or shallow lab (e.g., VdA)
- 10 L target volume (≳1 kg)
- Threshold of 20 eV
- Probing new physics with exposure of 1 kg·d

and beyond

- Underground lab
- Larger cell + long exposure
- Threshold <10 eV</p>

Backup slides

DELight phase-I: threshold impact

Quasiparticle in superfluid ⁴He

- Non-monotonic dispersion relation
- No anharmonic decay below ~1 keV/c
- As scattering off surfaces, quasiparticles can change their nature

HERON

UV signal

ER leakage (PRELIMINARY)

- Gaussian fit of the ER band in slices of quasiparticle energy
- Leakage as fraction of ER below the NR median

