SHiP - Search for Hidden Particles.

Alexey Boyarsky

Leiden University

イロン イ団 と イヨン イヨン

2

We observe a number of phenomena that require some extension of the Standard Model:

- Dark matter
- O Neutrino masses and oscillations
- Baryon assymetry of the Universe

イロン イ団 と イヨン イヨン

Frontier in particle physics

nteraction strength>	Known physics Intensity Frontier Hidden Sector → Fixed target facility	Energy Frontier SUSY, extra dim. Composite Higgs → LHC, FHC Unknown physics
	Energy s	scale>

(日) (四) (三) (三) (三) (三)

Energy frontier

• Experiments at LHC can directly probe energy frontier: search for particles that are heavy

э

イロト イヨト イヨト

Intensity frontier

- We may have not observed new particles not because they are too heavy but too feebly coupled to the SM – new physics is suppressed by small dimensionless parameter
- Portals: simple classification of low-energeric parts of NP:
 - Scalar portal

$$\mathcal{L}_S = c_1 H^{\dagger} H S + c_2 H^{\dagger} H S^2, \qquad (1)$$

ermion portal (HNLs)

$$\mathcal{L}_N = F_{N\alpha} \bar{N}^c \sigma_2 H^* L_\alpha + \text{h.c.}, \qquad (2)$$

Over a state of the state of

$$\mathcal{L}_{V} = -\frac{\epsilon}{2} V_{\mu\nu} B^{\mu\nu}, \qquad (3)$$

Axion (not renormalizable but phenomenologically attractive) portal

$$\mathcal{L}_{a} = \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu} \tag{4}$$

イロト イヨト イヨト

Intensity frontier at LHC/FCC

- Feebly interacting particles (FIPs) — large intensity of the experiments
- LHC during high luminosity phase and FCC will collect large integrated luminosity can probe intensity frontier below $\sim 100 \text{ GeV}$
- Also, FIPs lifetime $\sim 1/m_{\rm FIP}^n$ (n = 1 - 5, depending on portal), so light ~ 1 GeV FIPs may have macroscopic decay length and escape the detectors
- LHC/FCC are not suitable for probing NP at GeV scale

Intensity frontier: BDF

- BDF experiments may search for all new particles regardless of their nature
- BDF experiments may measure the properties of new particles - mass, spin, their being portal particles or particles from more complicated models
- → potentially we can not only find FIPs, but also probe their connection to BSM problems!

Production of FIPs

Optimized geometry

[2304.02511]

< □ > < □ > < □ > < □ > < □ >

Experimental facility

э

イロン イ団 とくほと くほとう

Muon shield

イロン イ団 と イヨン イヨン

Alexey Boyarsky

11 / 25

2

SND

SND

- Heavy target for neutrino interactions
- \triangleright First observation of $\bar{\nu}_{\tau}$
- $\triangleright \nu_{\tau}$, $\bar{\nu}_{\tau}$ physics with high statistics
- $\triangleright \nu_{\tau}$ magnetic moment
- ▷ F4 and F5 structure functions
- $\triangleright \nu_e$ cross sections
- \triangleright ν -induced charm production
- strange quark nucleon content

イロト イヨト イヨト イヨト

- ⊳ LFV
- ▷ LDM via elastic scattering

Alexey Boyarsky

2

Hidden sector decay volume and spectrometer

Alexey Boyarsky

SHiP is more than just a signal discovery

Alexey Boyarsky

SHiP

Distinguishing FIPs

э

《曰》 《西》 《臣》 《臣》

Example: Neutrino Portal and BSM problems. I

 Neutrino oscillation can be described by an effective dimension-5 operator (Weinberg operator). ⇒ new particles (e.g. HNL) are needed:

 Naïvely, to explain neutrino oscillations HNL interacts with SM through small mixing angles U_α ~ F_α/M_N of order

$$U_{\text{seesaw}}^{2} \equiv \frac{\sqrt{\Delta m_{\text{atm}}^{2}}}{M_{N}} = 5 \cdot 10^{-11} \frac{1 \text{ GeV}}{M_{N}}$$
(5)

$$\int_{10^{-6}}^{10^{-6}} \frac{1}{M_{N}} \frac{1}{M_{N}$$

ß

Example: Neutrino Portal and BSM problems. II

- To explain oscillation data (two mass differences in active neutrino) at least two HNLs are needed
- In this case, mixing angle $U^2 \gg U_{seesaw}^2$ can exist, but they require approximate symmetry between HNLs. The difference between HNL parameters should be:

$$M_1 U_1^2 - M_2 U_2^2 \sim \sqrt{\Delta m_{\mathsf{atm}}^2} \tag{6}$$

To quantify how fine-tuned such HNLs are, one can define the ξ -parameter

$$\xi = \frac{\sqrt{\Delta m_{\text{atm}}^2}}{M_i U_i^2} = \frac{U_{\text{seesaw}}^2}{U^2} \qquad (7)$$

A (1) × A (2) × A (2) ×

Alexey Boyarsky

Example: Neutrino Portal and BSM problems. III

 SHiP would allow to probe many orders of magnitude larger ξ than the past experiments, approaching to the most interesting part of the parameter space!

∃ ► < ∃ ►</p>

Example: Neutrino Portal and BSM problems. IV

• Above 2 GeV, the region of large ξ may be further explored with FCC-ee, FCC-hh

| 4 回 2 4 三 2 4 三 3

2. Probing neutrino oscillations I

Alexey Boyarsky

2. Probing neutrino oscillations II

3. Probing BAU

- Same HNLs that are responsible for neutrino oscillations can generate baryon asymmetry of the Universe
- Baryon asymmetry also demands *at least* 2 HNLs with **almost degenerate**

masses:

 $\Delta M = |M_1 - M_2| \ll M_1, M_2$ and have the same mixing angles:

$$U_{\alpha 2}^{2} = U_{\alpha 1}^{2} \left[1 + O\left(\frac{\Delta M}{M_{N}}, \frac{U_{\text{seesaw}}^{2}}{U^{2}}\right) \right]$$
(8)

イロト イボト イヨト イヨト

Can we understand that we observed such HNLs?

Alexey Boyarsky	А	lexe	γВ	оy	ars	kу
-----------------	---	------	----	----	-----	----

Distinguishing two HNLs?

- Two HNLs with similar masses \Rightarrow HNL oscillations
- Ratio of probability of lepton number violating (LNV) and conserving (LNC) processes:

 $rac{P_{
m LNV}}{P_{
m LNC}} \sim rac{1-\cos\Delta M au}{1+\cos\Delta M au} ~~ au$ – HNL proper time

LNV

• Kinematics of LNV and LNC decays is statistically different

✓ SHiP can resolve HNL oscillations [1912.05520]

✓ Needs $O(10^3)$ events – middle of the exploration region

✓ Oscillation period: $2\pi/\Delta M$

イロト イポト イヨト イヨト

SHiP: not one channel but frontier

SHiP can observe new physics directly

- SHiP does not study some specific channel it can explore the whole intensity frontier to $\sim m_B$ masses, push the constraints by orders of magnitudes for a generic model with light FIPs
- ... and potentially resolve the BSM problems! inflation, complex higgs sector, dark matter, cosmological axions...

イロト イボト イヨト イヨト

- Energy frontier is quite explored already and is going to be explored even more at FCC
- Still no physics found need to search for heavy physics in rare processes effective operators
- Intensity frontier not explored. A single experiment can explore the whole frontier, probing various models
- BDF can directly observe new physics particle and measure its properties
- Finally, BDF can probe connections of the new physics to BSM problems

イロン イロン イヨン イヨン