

On an active muon veto system for the COSINUS experiment

Mariano Cababie

TU UNIVERSITÄT WIEN

MEPHY / TU Wien @ ALPS 2024-DM

COSINUS

Cryogenic Observatory for SIgnals seen in Next Generation Underground Searches

Direct dark matter detection

Dark matter

- No charge
- No self-interaction
- Cold
- Stable

3 T. Lin (2019)

WIMP

- All above and...
- O(GeV) mass

Cryogenic detectors

- Clear division in multiple working areas
- Instrumented water tank for muon veto, surrounding cryostat.
- Cleanroom facility above cryostat/water tank for easy access and sample manipulation

Danger!

Neutrons!

- Water tank as **passive** shielding
- Ambient and radiogenic neutron simulated at 1 neutron per kg. year for Nal detector

The COSINUS muon veto system

Publications on muon veto system

 Passive shielding: "Simulation-based design study for the passive shielding of the COSINUS dark matter experiment", 2022, doi: 10.1140/epjc/s10052-022-10184-5

 Active shielding: "Water Cherenkov muon veto for the COSINUS experiment: design and simulation optimization", on peer-review process.

The COSINUS muon veto system

Publications on muon veto system

 Passive shielding: "Simulation-based design study for the passive shielding of the COSINUS dark matter experiment", 2022, doi: 10.1140/epjc/s10052-022-10184-5

> "...muon-induced spallation and subsequent hadronic showers result in a further emission of neutrons. A muon veto to tag such events is therefore crucial."

 Active shielding: "Water Cherenkov muon veto for the COSINUS experiment: design and simulation optimization", on peer-review process.

> "The active veto will reduce the cosmogenic neutron background rate to 0.11 ± 0.02 cts ·kg⁻¹ · year⁻¹"

The COSINUS muon veto system

Cherenkov light can come from cosmogenic muons (95%) or showers of those muons (5%).

*

- MUSUN code used for generating muons, ImpCRESST used for physics simulation
- 7x7 cylindrical water tank with 28 PMTs. Internal surface covered with reflective foil

Goals and challenges

Effectively detect (and veto) muons that generate neutrons

Hamamatsu R5912-30

Consider the ambient gamma background(~10⁵ 8's per second though water tank)

Take dark counts (~1200/6000 Hz) into account

Muon veto simulation

★ 30×10^6 muons simulated (~13 years) → 11682 (~0.04%) tagged as dangerous

(i.e. muon-induced neutrons enter the detector volume)

- Higher energy events tend to be more dangerous (negligible angular resolution)
- Illumination map can be reconstructed:

Muon veto efficiency

- Efficiency can be optimized varying two parameters: threshold and coincidence
- Ideally, threshold will be set at 1 PE, what about coincidence?

Ambient gamma background

- Gamma photons sub-products can also generate Cherenkov radiation
- Utilizing an optical dead layer may drastically reduce this background
- The probability **p** of having a spurious
 background event in coincidence with a signal event in our detector during a period ΔT is given by

$$p(\Delta T) = 1 - e^{-R_B \Delta T}$$

where R_B is the rate of the background event. For a ΔT = 10ms and p < 0.01, RB should be < 1Hz.

6 -	0.02	0.01	0.01	0.01	0.01	0.01	0.00	10 ³	
5 -	0.3	0.2	0,1	0.07	0.06		0.02	10 ²	
4 - 4 -	3	2	1	0.9	0.7	0.3	0.1	10 ¹	Total
	35	20	12	8	5	2	0.6	10 ⁰	Trigge
2 -	359	189	106	64	39	10	3	10 ⁻¹	r Rate
1 -	3659	1769	924	508	285	54	11	10 ⁻²	(Hz)
	0	10 Dea	20 d Lave	30 er Thicl	40 (ness (70 (cm)	100	•	

Ambient gamma background

- Gamma photons sub-products can also generate Cherenkov radiation
- Utilizing an optical dead layer may drastically reduce this background
- The probability **p** of having a spurious
 background event in coincidence with a signal event in our detector during a period ΔT is given by

$$p(\Delta T) = 1 - e^{-R_B \Delta T}$$

where R_B is the rate of the background event. For a ΔT = 10ms and p < 0.01, RB should be < 1Hz.

Dead layer not recommended!

Total Trigger Rate

(Hz

Dark current

 Dark current can be taken into account by adding it as a Poisson-like contribution over gamma background

Conclusions

Effectively detect (and veto) muons that generate neutrons

5-fold PMT coincidence yield a efficiency veto of **99.63(16)%** for muons and **44.4+-5.6 %** for showers (while the first composes 95% of dangerous events!)

Hamamatsu R5912-30

Consider the ambient gamma background(~10⁵ 8s per second though water tank)

- 5-fold PMT coincidence reduces rate <1Hz
- Take dark counts (~1200/6000 Hz) into account

5-fold PMT coincidence reduces rate <1Hz

Conclusions

Effectively detect (and veto) muons that generate neutrons

5-fold PMT coincidence yield a efficiency veto of **99.63(16)%** for muons and **44.4+-5.6 %** for showers (while the first comprises 95% of dangerous events!)


```
Hamamatsu R5912-30
```

Consider the ambient gamma background(~10⁵ Vs per second though water tank)

- 5-fold PMT coincidence reduces rate <1Hz
- Take dark counts (~1200/6000 Hz) into account

5-fold PMT coincidence reduces rate <1Hz

Muon-induced neutron background of 0.11±0.02 cts · kg⁻¹ · year⁻¹

• For a 6-fold PMT coincidence 95% of events will be tagged with a coincidence window of > 410 ns